Numerical Analysis of Bismuth Telluride-Based Thermoelectric Device Performance in Lunar Extreme Cold Environments
Abstract
1. Introduction
2. Methodology
2.1. Geometric TEM Model
2.2. Properties of TE Materials
2.3. Governing Equations
2.4. Computational Setup
2.5. Grid Independence Validation
3. Simulation Results
3.1. Model Verification
3.2. Thermoelectric Performance of a Single TEM Couple
3.3. Geometry Optimization
3.4. Performance of a TEM Couple over a Lunar Diurnal Cycle
4. Discussion
5. Conclusions
- (1)
- Bi2Te3-based thermoelectric materials demonstrate significant potential for in situ power generation under cryogenic temperature conditions by utilizing local resources. This approach could offer a viable power supply solution during the extended lunar night.
- (2)
- Taking a thermoelectric couple consisting of a P-type leg and an N-type leg, each with dimensions of 1.7 × 1.7 × 1.8 mm3, as an example, it can achieve a maximum output power ranging from 0.08 W to 0.278 W under temperature differences between 158 K and 310 K. The corresponding maximum thermoelectric conversion efficiency reaches values from 3.76% to 7.45%.
- (3)
- Effect of the geometry size of a TE couple on its thermoelectric performance was conducted, based on which a couple using P-type and N-type legs with the same dimensions of 1.4 × 1.4 × 1.6 mm3 was selected for evaluation the performance of the couple under natural temperature difference on the moon over a diurnal lunar cycle.
- (4)
- The couple exhibits a good potential for power supply. The average maximum output power over a diurnal lunar cycle reaches 0.039 W and accumulated electric energy production reaches 28 W·h. A TEM comprising such 200 TE couples can produce 5.6 kW·h of electricity.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ISRU | In situ resource utilization |
ILRS | International Lunar Research Station |
TEG | Thermoelectric Generation |
TEM | Thermoelectric Module |
TM | Thermoelectric Material |
References
- Zhang, P.; Dai, W.; Niu, R.; Zhang, G.; Liu, G.; Liu, X.; Bo, Z.; Wang, Z.; Zheng, H.; Liu, C.; et al. Overview of the lunar in situ resource utilization techniques for future lunar missions. Space Sci. Technol. 2023, 3, 37. [Google Scholar] [CrossRef]
- Marrone, M.; Pasqualin, L.; Ferro, C.G. Lunar power sources: An opportunity to experiment. Aerospace 2025, 12, 58. [Google Scholar] [CrossRef]
- Peng, Q.; Wang, P.; Xing, L. Perspectives on China’s Manned Lunar Scientific Research and Test Station. Adv. Astronaut. Sci. Technol. 2024, 7, 51–64. [Google Scholar] [CrossRef]
- Cuervo-Ortiz, J.M.; Palomares, J.C.G.; Ozen, S.; Härtel, M.; Sarisozen, S.; Dittwald, A.; Kourkafas, G.; Castro-Méndez, A.-F.; Peña-Camargo, F.; Seid, B.A.; et al. Moon Photovoltaics Utilizing Lunar Regolith and Halide Perovskites. Device 2025, 3, 100747. [Google Scholar] [CrossRef]
- Pei, Z.; Wang, Q. Strategic Concept of Resource Utilization Development Route of the International Lunar Research Station. J. Astronaut. Sci. 2024, 45, 625–637. (In Chinese) [Google Scholar] [CrossRef]
- Lei, S.; Guoqing, Z.; Yaohui, W.; Chang, W.; Bo, L. A Review of the Construction of the Supporting Energy System for the Lunar Base. Front. Astron. Space Sci. 2025, 12, 1609140. [Google Scholar] [CrossRef]
- Qi, S.; Wang, J.; Liu, X.; Xia, C.; Li, X.; Shao, W.; Wang, Z. Experimental and Simulation Investigation of Lunar Energy Storage and Conversion Thermoelectric System Based on In-Situ Resource Utilization. Appl. Therm. Eng. 2024, 254, 123854. [Google Scholar] [CrossRef]
- Palos, M.F.; Serra, P.; Fereres, S.; Stephenson, K.; González-Cinca, R. Lunar ISRU Energy Storage and Electricity Generation. Acta Astronaut. 2020, 170, 412–420. [Google Scholar] [CrossRef]
- Kim, S.; Lim, H.; Kim, B.-J.; Kim, T.; Park, S.-H.; Jeong, J.-W. Simulation of a Thermoelectric Power Generation System with Multiple Heat Storage for Lunar Habitat. Acta Astronaut. 2025, 236, 616–626. [Google Scholar] [CrossRef]
- Liu, Z.; Cheng, K.; Wang, Z.; Wang, Y.; Ha, C.; Qin, J. Performance Analysis of the Heat Pipe-Based Thermoelectric Generator (HP-TEG) Energy System Using in-Situ Resource for Heat Storage Applied to the Early-Period Lunar Base. Appl. Therm. Eng. 2023, 218, 119303. [Google Scholar] [CrossRef]
- Mazzetti, A.; Gianotti Pret, M.; Pinarello, G.; Celotti, L.; Piskacev, M.; Cowley, A. Heat to Electricity Conversion Systems for Moon Exploration Scenarios: A Review of Space and Ground Technologies. Acta Astronaut. 2019, 156, 162–186. [Google Scholar] [CrossRef]
- Palaporn, D.; Tanusilp, S.; Sun, Y.; Pinitsoontorn, S.; Kurosaki, K. Thermoelectric Materials for Space Explorations. Mater. Adv. 2024, 5, 5351–5364. [Google Scholar] [CrossRef]
- Chen, J.-L.; Liao, Y.; Zhou, Q.; Liang, J.; Miao, L.; Zhu, Y.; Wang, S.; He, W.; Nishiate, H.; Lee, C.-H.; et al. Realizing High Conversion Efficiency in Shallow Cryogenic Thermoelectric Module Based on N-Type BiSb and p-Type MgAgSb Materials. Mater. Today Phys. 2022, 28, 100855. [Google Scholar] [CrossRef]
- Lobunets, Y. Thermoelectric Generator for Utilizing Cold Energy of Cryogen Liquids. J. Electron. Mater. 2019, 48, 5491–5496. [Google Scholar] [CrossRef]
- Sun, W.; Hu, P.; Chen, Z.; Jia, L. Performance of Cryogenic Thermoelectric Generators in LNG Cold Energy Utilization. Energy Convers. Manag. 2005, 46, 789–796. [Google Scholar] [CrossRef]
- Vasavada, A.R.; Bandfield, J.L.; Greenhagen, B.T.; Hayne, P.O.; Siegler, M.A.; Williams, J.-P.; Paige, D.A. Lunar Equatorial Surface Temperatures and Regolith Properties from the Diviner Lunar Radiometer Experiment. J. Geophys. Res. Planets 2012, 117, E00H18. [Google Scholar] [CrossRef]
- Zhong, Z.; Yan, J.; Xiao, Z. Lunar Regolith Temperature Variation in the Rümker Region Based on the Real-Time Illumination. Remote Sens. 2020, 12, 731. [Google Scholar] [CrossRef]
- Xiao, X.; Yu, S.; Huang, J.; Zhang, H.; Zhang, Y.; Xiao, L. Thermophysical Properties of the Regolith on the Lunar Far Side Revealed by the in Situ Temperature Probing of the Chang’E-4 Mission. Natl. Sci. Rev. 2022, 9, nwac175. [Google Scholar] [CrossRef]
- Malla, R.B.; Brown, K.M. Determination of Temperature Variation on Lunar Surface and Subsurface for Habitat Analysis and Design. Acta Astronaut. 2015, 107, 196–207. [Google Scholar] [CrossRef]
- Martinez, A.; Siegler, M.A. A Global Thermal Conductivity Model for Lunar Regolith at Low Temperatures. J. Geophys. Res. Planets 2021, 126, e2021JE006829. [Google Scholar] [CrossRef]
- Horvath, T.; Hayne, P.O.; Paige, D.A. Thermal and Illumination Environments of Lunar Pits and Caves: Models and Observations from the Diviner Lunar Radiometer Experiment. Geophys. Res. Lett. 2022, 49, e2022GL099710. [Google Scholar] [CrossRef]
- Daniarta, S.; Błasiak, P.; Kolasiński, P.; Imre, A.R. Sustainability by Means of Cold Energy Utilisation-to-Power Conversion: A Review. Renew. Sustain. Energy Rev. 2024, 205, 114833. [Google Scholar] [CrossRef]
- Kambe, M.; Morita, R.; Omoto, K.; Koji, Y.; Yoshida, T.; Noishiki, K. Thermoelectric Module Performance in Cryogenic Temperature. J. Power Energy Syst. 2010, 4, 12–26. [Google Scholar] [CrossRef]
- Zulkepli, N.; Yunas, J.; Mohamed, M.A.; Hamzah, A.A. Review of Thermoelectric Generators at Low Operating Temperatures: Working Principles and Materials. Micromachines 2021, 12, 734. [Google Scholar] [CrossRef]
- Sidorenko, N.; Parashchuk, T.; Maksymuk, M.; Dashevsky, Z. Development of Cryogenic Cooler Based on n-Type Bi-Sb Thermoelectric and HTSC. Cryogenics 2020, 112, 103197. [Google Scholar] [CrossRef]
- Lavrentev, M.G.; Drabkin, I.A.; Ershova, L.B.; Volkov, M.P. Improved Extruded Thermoelectric Materials. J. Electron. Mater. 2020, 49, 2937–2942. [Google Scholar] [CrossRef]
- Chung, D.Y.; Hogan, T.; Brazis, P.; Rocci-Lane, M.; Kannewurf, C.; Bastea, M.; Uher, C.; Kanatzidis, M.G. CsBi4Te6: A High-Performance Thermoelectric Material for Low-Temperature Applications. Science 2000, 287, 1024–1027. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Chen, Z.; Zhang, S.; Zhang, X.; Zhou, R.; Li, W.; Luo, J.; Pei, Y. Enhanced Cryogenic Thermoelectric Cooling of Bi0.5Sb1.5Te3 by Carrier Optimization. InfoMat 2025, 7, e12663. [Google Scholar] [CrossRef]
- Woods-Robinson, R.; Siegler, M.A.; Paige, D.A. A Model for the Thermophysical Properties of Lunar Regolith at Low Temperatures. J. Geophys. Res. Planets 2019, 124, 1989–2011. [Google Scholar] [CrossRef]
- Luo, D.; Wang, R.; Yu, W.; Zhou, W. Parametric Study of Asymmetric Thermoelectric Devices for Power Generation. Int. J. Energy Res. 2020, 44, 6950–6963. [Google Scholar] [CrossRef]
Items | Value | Units |
---|---|---|
P-leg | ||
Cross-section area | w × l | mm2 |
Height | h | mm |
Seebeck coefficient | 1.52 × 10−4 − 5.8 × 10−8T + 1.65 × 10−9T2 − 2.7 × 10−12T3 (<300 K) | V/K |
(3.5874 × 10−6T3 − 6.37 × 10−3T2 + 3.3976T − 367.8679)/106 (>300 K) | V/K | |
Electrical conductivity | 277660 − 819T + 0.67T2 (<300 K) | S/m |
105/(−9.218 × 10−8T3 + 1.1856 × 10−4T2 − 0.04623T + 6.2083) (>300 K) | S/m | |
Thermal conductivity | 3.748 − 0.01449T + 2 × 10−5T2 (<300 K) | W/(m·K) |
3.4352 × 10−8T3 − 2.4638 × 10−5T2 + 6.08 × 10−3T + 1.5035 (>300 K) | W/(m·K) | |
N-leg | ||
Cross-section area | w × l | mm2 |
Height | h | mm |
Seebeck coefficient | −1.52 × 10−4 + 5.8 × 10−8T − 1.65 × 10−9T2 + 2.7 × 10−12T3 (<300 K) | V/K |
(2.6555 × 10−6T3 − 2.54 × 10−3T2 + 0.6364T − 198.6904)/106 (>300 K) | V/K | |
Electrical conductivity | 277660 − 819T + 0.67T2 (<300 K) | S/m |
105/(1.2802 × 10−8 T3 − 1.634 × 10−5 T2 + 8.69 × 10−3T − 1.1129) (>300 K) | S/m | |
Thermal conductivity | 3.748 − 0.01449T + 2 × 10−5T2 (<300 K) | W/(m·K) |
2.3892 × 10−8T3 − 3.0422 × 10−5T2 + 0.0152T − 0.013 (>300 K) | W/(m·K) | |
Copper conductor | ||
Cross-section area (lunar surface) | 4.2 × 1.7 | mm2 |
Cross-section area (subsurface regolith) | 2.1 × 1.7 | mm2 |
Height | 0.2 | mm |
Electrical conductivity | 57,142,857 | S/m |
Thermal conductivity | 399 | W/(m·K) |
Density | 8960 | kg/m3 |
Al2O3 ceramic plates | ||
Cross-section area | 5 × 1.7 | mm2 |
Height | 0.8 | mm |
Thermal conductivity | 18 | W/(m·K) |
Physics Interface | Description | Settings |
---|---|---|
Heat Transfer | Initial condition | T0 = 293.15 K |
Fixed temperature | hot-side = constant temperature cold-side = constant temperature | |
Thermal insulation | load resistance, all other external surfaces | |
Electric current | Initial condition | I0 = 0 |
Electric insulation | Al2O3 ceramic plates, all external surfaces | |
Multiphysics coupling | Thermoelectric effect | P-leg, N-leg |
Electromagnetic heating | P-leg, N-leg, Copper conductor | |
- | Numerical method | Finite Element Method (FEM) |
Mesh Size (mm) | Mesh Number | Output Voltage (mV) | Output Power (W) | Error of Output Power |
---|---|---|---|---|
0.2 | 5343 | 35.6720 | 0.1241 | 0.06% |
0.15 | 14392 | 35.6680 | 0.1241 | 0.03% |
0.1 | 38274 | 35.6660 | 0.1241 | 0.02% |
0.08 | 82525 | 35.6650 | 0.1240 | 0.01% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, X.; Zheng, J.; Sun, L.; Long, X.; Gao, T.; Li, B.; Zhang, Q.; Li, C.; Wang, J.; Mo, Z.; et al. Numerical Analysis of Bismuth Telluride-Based Thermoelectric Device Performance in Lunar Extreme Cold Environments. Energies 2025, 18, 5224. https://doi.org/10.3390/en18195224
Xu X, Zheng J, Sun L, Long X, Gao T, Li B, Zhang Q, Li C, Wang J, Mo Z, et al. Numerical Analysis of Bismuth Telluride-Based Thermoelectric Device Performance in Lunar Extreme Cold Environments. Energies. 2025; 18(19):5224. https://doi.org/10.3390/en18195224
Chicago/Turabian StyleXu, Xin, Jiaxin Zheng, Licheng Sun, Xiting Long, Tianyi Gao, Biao Li, Qinyi Zhang, Cunbao Li, Jun Wang, Zhengyu Mo, and et al. 2025. "Numerical Analysis of Bismuth Telluride-Based Thermoelectric Device Performance in Lunar Extreme Cold Environments" Energies 18, no. 19: 5224. https://doi.org/10.3390/en18195224
APA StyleXu, X., Zheng, J., Sun, L., Long, X., Gao, T., Li, B., Zhang, Q., Li, C., Wang, J., Mo, Z., Du, M., & Xie, H. (2025). Numerical Analysis of Bismuth Telluride-Based Thermoelectric Device Performance in Lunar Extreme Cold Environments. Energies, 18(19), 5224. https://doi.org/10.3390/en18195224