Heat and Mass Transfer Simulation of Nano-Modified Oil-Immersed Transformer Based on Multi-Scale
Abstract
1. Introduction
2. Methodology
2.1. Lattice Boltzmann Method
2.2. Finite Difference Method for Electric Field
2.3. Calculation of Heat Transfer Parameters
2.4. Force Calculation of Particles
3. Model Parameters and Validity Verification
3.1. Model Parameters
3.2. Grid Independence Test
3.3. Contrast with Thermal Circuit Method
3.4. Contrast with Finite Volume Method
4. Results and Discussion
4.1. Effect of Nanoparticles on Heat Transfer
4.2. Transfer of Nanoparticles
4.3. The Transfer of Metal Particles
5. Conclusions
- (1)
- As the particle volume fraction in the nano-modified oil-immersed transformer increases, the local Nusselt number rises, indicating enhanced convective heat transfer performance. The migration behavior of particles varies by type: nanoparticles follow the natural convection direction of the transformer oil. Metal particles are advected by oil flow in high-speed region but show gravitational settling and oscillation in the low-speed region, and because metal particles can carry electric charge, this may produce partial discharge phenomena, thus endangering the safe operation of the transformer.
- (2)
- The LBM is applied to model heat and mass transfer in nanoparticle-enhanced oil-immersed transformers, offering an explicit computational framework for thermal–fluid simulations. Relative to the FVM, LBM demonstrates superior computational efficiency and reduced memory requirements in transient thermal analysis, owing to its inherent parallel computing capabilities.
- (3)
- Limited by the constraint of the two-dimensional model constructed in this paper, the influence of the three-dimensional effect of transformer oil flow is not considered in the simulation. In the future, a three-dimensional simulation model of transformer will be constructed based on the proposed method to further study the heat transfer characteristics, including the axial heat transfer process and the motion characteristics, including multiple particles.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Choi, S.U.S.; Eastman, J.A. Enhancing Thermal Conductivity of Fluids with Nanoparticles; Argonne National Lab: Argonne, IL, USA, 1995; pp. 1–8. [Google Scholar]
- Miadzvedzeva, M.; Fedotov, A.S.; Zur, I.; Fedotova, J. Heat Transfer and Flow Dynamics for Natural Convection in Fe3O4/H2O Nanofluid. Energies 2025, 18, 2767. [Google Scholar] [CrossRef]
- Li, F.; Tan, Z.; He, H.; Zhou, Y.; Tang, X.; Zhu, W. Research on Thermal Performance of the Microchannel with Internal Cavities under Al2O3-Water Nanofluid. Energies 2025, 18, 4419. [Google Scholar] [CrossRef]
- Kadim, E.J.; Noorden, Z.A.; Adzis, Z.; Azis, N. Nanoparticle Effects on the Electrical and Thermal Performance of the Transformer Mineral Oil. IEEE Trans. Dielectr. Electr. Insul. 2023, 30, 1932–1940. [Google Scholar] [CrossRef]
- Seddik, M.S.; Shazly, J.; Eteiba, M.B. Thermal Analysis of Power Transformer Using 2D and 3D Finite Element Method. Energies 2024, 17, 3203. [Google Scholar] [CrossRef]
- Ai, M.; Shan, Y. The Whole Field Temperature Rise Calculation of Oil-Immersed Power Transformer Based on Thermal Network Method. Int. J. Appl. Electromagn. Mech. 2022, 70, 55–72. [Google Scholar] [CrossRef]
- Wang, S.; Li, X.; Zhang, R.; Sha, Z.; Wu, Z.; Zhang, Q. Thermal Distribution Characteristics Related to the Transformer Fine Structure Predicted by CFD-Based Spline Interpolation. IEEE Trans. Dielectr. Electr. Insul. 2023, 30, 892–901. [Google Scholar] [CrossRef]
- Abdali, A.; Maosumkhani, H.; Mazlumi, K.; Rabiee, A. Accurate and Nonuniform CFD-Based Thermal Behavior Analysis of Distribution Transformers: Voltage Imbalance Effect. J. Braz. Soc. Mech. Sci. Eng. 2023, 45, 613. [Google Scholar] [CrossRef]
- Smolyanov, I.; Shmakov, E.; Butusov, D.; Khalyasmaa, A.I. Review of Modeling Approaches for Conjugate Heat Transfer Processes in Oil-Immersed Transformers. Computation 2024, 12, 97. [Google Scholar] [CrossRef]
- Xiao, J.; Zhang, Z.; Hao, Y.; Zhao, H.; Liu, X. Method for Measuring Thermal Flow Field Distribution in Oil-Immersed Transformer Using Dynamic Heat Transfer Coefficient. IEEE Trans. Instrum. Meas. 2024, 73, 1–11. [Google Scholar] [CrossRef]
- Sun, Z.; Yao, Q.; Jin, H.; Xu, Y.; Hang, W.; Chen, H.; Li, K.; Shi, L.; Gu, J.; Zhang, Q.; et al. A Novel In-Situ Sensor Calibration Method for Building Thermal Systems Based on Virtual Samples and Autoencoder. Energy 2024, 297, 131314. [Google Scholar] [CrossRef]
- Zhang, F.; Nghiem, L.; Chen, Z. A Novel Approach to Solve Hyperbolic Buckley-Leverett Equation by Using a Transformer Based Physics Informed Neural Network. Geoenergy Sci. Eng. 2024, 236, 212711. [Google Scholar] [CrossRef]
- Tang, P.; Zhang, Z.; Tong, J.; Long, T.; Huang, C.; Qi, Z. Predicting Transformer Temperature Field Based on Physics-informed Neural Networks. High Volt. 2024, 9, 839–852. [Google Scholar] [CrossRef]
- Wang, F.; Liang, K.; Zhong, L.; Chen, S.; Wan, T.; Duan, X.; Dong, X. Effect of Metal Ions and Suspended Particles on Streamer Propagation. IEEE Trans. Dielectr. Electr. Insul. 2023, 30, 1154–1161. [Google Scholar] [CrossRef]
- Wei, B.; Wang, Z.; Qi, R.; Wang, X.; Zhao, T. A Study on the Motion Behavior of Metallic Contaminant Particles in Transformer Insulation Oil under Multiphysical Fields. Sensors 2024, 24, 5483. [Google Scholar] [CrossRef]
- Li, X.; Wang, Y.; Yan, C.; Bi, J.; Wang, F. Motion Characteristic of Copper Particle in Insulating Oil under AC and DC Voltages. In Proceedings of the 2017 IEEE 19th International Conference on Dielectric Liquids (ICDL), Manchester, UK, 25–29 June 2017; IEEE: New York, NY, USA, 2017; pp. 1–4. [Google Scholar]
- Yu, W.; Guan, X.; Lai, Z.; Mo, D.; Shu, S. MRT-LBM-EnKF Simulation of Transient Temperature Rise of Three-phase Enclosure GIS Bus Considering Non-uniform Heat Transfer Boundary of Shell. In Proceedings of the CSEE, Nanjing, China, 21–23 February 2025; Available online: https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=ZGDC20250512002&uniplatform=OVERSEA&v=8Axxp8z74077MtDkC7DB-_TZ9Dkq5ac_qEWjDVVot_uqiHAvGuixy9_ciZYWLV9W (accessed on 22 September 2025). (In Chinese).
- Hong, N.; Liu, X.; Wang, H. A Conservative Phase-Field Lattice Boltzmann Method for Incompressible Two-Phase Flows. Int. J. Numer. Methods Fluids 2023, 95, 1431–1440. [Google Scholar] [CrossRef]
- Yuan, Z.; Dong, Y.; Jin, Z. Numerical Simulation of MHD Natural Convection and Entropy Generation in Semicircular Cavity Based on LBM. Energies 2023, 16, 4055. [Google Scholar] [CrossRef]
- Lin, Q.; Li, Q.; Xu, P.; Zheng, R.; Bao, J.; Li, L.; Tan, D. Transport Mechanism and Optimization Design of LBM–LES Coupling-Based Two-Phase Flow in Static Mixers. Processes 2025, 13, 1666. [Google Scholar] [CrossRef]
- Yu, W.; Guan, X.; Zhao, J.; Tu, J.; Lai, Z. Transient Temperature Rise Simulation and Load Capacity Eval-uation of Oil-Immersed Transformer Based on Lattice Boltzmann Method. Trans. China Electrotech. Soc. 2025, 40, 3315–3325. (In Chinese) [Google Scholar] [CrossRef]
- Karki, P.; Gangawane, K. Study of Magnetohydrodynamics-Based-Mixed Convection & Entropy Generation within the Rectangular Enclosure with Two Obstacles for Cu-SiO2 Multiwalled Carbon Nanotubes Ternary Hybrid Nanofluids. Numer. Heat Transf. Part A Appl. 2024, 85, 2257–2279. [Google Scholar] [CrossRef]
- Nemati, M.; Sefid, M. Correction: Magnetohydrodynamics Combined Convection Modeling via LBM for Shear Thinning Nanofluids within an Inclined Enclosure: Appraisement of Heat Transfer and Entropy under the Impact of Various Parameters. Comput. Part. Mech. 2024, 11, 509. [Google Scholar] [CrossRef]
- Oulahou, Y.; Elguennouni, Y.; Hssikou, M.; Baliti, J.; Alaoui, M. Theoretical Examination of the Volume Concentration and Nanoparticles Density Influence on the Convective Heat Transfer Enhancement of Nanofluid in 2D Cavity Including the Square Heater. Probl. Reg. Energ. 2023, 4, 55–70. [Google Scholar] [CrossRef]
- Mohamad, A.A. Lattice Boltzmann Method: Fundamentals and Engineering Applications with Computer Codes, 2011th ed.; Springer: London, UK, 2014; ISBN 978-1-4471-6099-1. [Google Scholar]
- Ma, S.; Tang, J.; Zhang, M.; Liu, Z.; Li, X. Simulation Study on Distribution and Influence Factors of Metal Particles in Traction Transformer. High Volt. Eng. 2015, 41, 3628–3634. [Google Scholar] [CrossRef]
- Brinkman, H.C. The Viscosity of Concentrated Suspensions and Solutions. J. Chem. Phys. 1952, 20, 571. [Google Scholar] [CrossRef]
- Khanafer, K.; Vafai, K.; Lightstone, M. Buoyancy-Driven Heat Transfer Enhancement in a Two-Dimensional Enclosure Utilizing Nanofluids. Int. J. Heat Mass Transf. 2003, 46, 3639–3653. [Google Scholar] [CrossRef]
- Nguyen, C.T.; Desgranges, F.; Galanis, N.; Roy, G.; Maré, T.; Boucher, S.; Angue Mintsa, H. Viscosity Data for Al2O3–Water Nanofluid—Hysteresis: Is Heat Transfer Enhancement Using Nanofluids Reliable? Int. J. Therm. Sci. 2008, 47, 103–111. [Google Scholar] [CrossRef]
- Clerk-Maxwell, J. A Treatise on Electricity and Magnetism. Nature 1873, 7, 478–480. [Google Scholar] [CrossRef]
- Swift, G.; Molinski, T.S.; Lehn, W. A Fundamental Approach to Transformer Thermal Modeling. I. Theory and Equivalent Circuit. IEEE Trans. Power Deliv. 2001, 16, 171–175. [Google Scholar] [CrossRef]
- Pourpasha, H.; Zeinali Heris, S.; Mousavi, S.B. Thermal Performance of Novel ZnFe2O4 and TiO2-Doped MWCNT Nanocomposites in Transformer Oil. J. Mol. Liq. 2024, 394, 123727. [Google Scholar] [CrossRef]
- Yang, P.; Peng, Y.; Ramachandran, D.S.; Alkaabi, A.K.; Wu, J. Numerical Analysis of Electrothermoconvection of a Dielectric Nanofluid in a Heated Cavity. Phys. Scr. 2024, 99, 065034. [Google Scholar] [CrossRef]
Parameters | Fitting Formula |
---|---|
μf/Pa·s | 0.08467 − 0.0004T + 5e − 7T2 |
(Cp)f/J·kg−1·K−1 | 807.163 + 3.58T |
ρf/kg·m−3 | 1098.72 − 0.712T |
kf/W·m−1·K−1 | 0.159 − 7.10le − 5T |
Item | Iron Core | Primary Winding | Secondary Winding |
---|---|---|---|
kh/W·m−1·K−1 | 21 | 368 | 368 |
P/W | 203.6 | 1269 | 1400 |
Item | Thermal Circuit Method (°C) | Lattice Boltzmann Method (°C) | Relative Error (%) |
---|---|---|---|
T0 | 25 | 25 | / |
T1 | 61.75 | 63.13 | 2.23 |
ΔT | 36.75 | 38.13 | 3.76 |
Item | Finite Volume Method (°C) | Lattice Boltzmann Method (°C) | Relative Error (%) |
---|---|---|---|
T0 | 25 | 25 | / |
T1 | 64.24 | 63.13 | −1.73 |
ΔT | 39.24 | 38.13 | −2.83 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, W.; Guan, X.; Xuan, L. Heat and Mass Transfer Simulation of Nano-Modified Oil-Immersed Transformer Based on Multi-Scale. Energies 2025, 18, 5086. https://doi.org/10.3390/en18195086
Yu W, Guan X, Xuan L. Heat and Mass Transfer Simulation of Nano-Modified Oil-Immersed Transformer Based on Multi-Scale. Energies. 2025; 18(19):5086. https://doi.org/10.3390/en18195086
Chicago/Turabian StyleYu, Wenxu, Xiangyu Guan, and Liang Xuan. 2025. "Heat and Mass Transfer Simulation of Nano-Modified Oil-Immersed Transformer Based on Multi-Scale" Energies 18, no. 19: 5086. https://doi.org/10.3390/en18195086
APA StyleYu, W., Guan, X., & Xuan, L. (2025). Heat and Mass Transfer Simulation of Nano-Modified Oil-Immersed Transformer Based on Multi-Scale. Energies, 18(19), 5086. https://doi.org/10.3390/en18195086