Assessing the Theoretical Biohydrogen Potential from Agricultural Residues Using Togo as an Example
Abstract
1. Introduction
- Estimate the quantities and availability of agricultural residues in Togo.
- Identify the most suitable biohydrogen production process.
- Quantify the theoretical biohydrogen potential from these residues.
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
- Primary residues—Generated on farms during harvesting.
- Secondary residues—Produced during post-harvest processing [27].
2.3. Residue Potential Assessment
- Gross residue potential (GRP) calculation, which represents the total potential amount of residues generated.
- Sustainable residue potential (SRP) calculation, which accounts for ecological constraints that limit residue availability.
2.3.1. Gross Residue Potential
2.3.2. Sustainable Residue Potential
- Lower-bound scenario (RRF = 0.25)
- 2.
- Reference scenario (RRF = 0.50)
- 3.
- Upper-bound scenario (RRF = 0.80)
2.4. Selection of the Biohydrogen Production Process
2.4.1. Evaluation Criteria and Weighting
- Investment costs
- 2.
- Operational costs
- 3.
- Environmental Impact
- 4.
- Technological Readiness Level
- 5.
- Energy requirements
- 6.
- Feedstock flexibility
2.4.2. Candidate Biohydrogen Production Processes
2.5. Biohydrogen Potential Estimation
- Determining the dry mass of the residues;
- Quantifying the cellulose and hemicellulose fractions;
- Calculating the theoretical biohydrogen yield using stoichiometric equations;
- Adjusting biohydrogen yields for uncertainties in metabolic pathways and thermodynamic limitations.
2.5.1. Data Collection
2.5.2. Calculation of Dry-State Feedstock and Sugar Equivalents
2.5.3. Theoretical Hydrogen Yield Estimation
3. Results
3.1. Theoretical Residue Assessment
3.1.1. Gross Residue Potential
3.1.2. Sustainable Residue Potential
- Field-based residues (e.g., stalks, straws, fronds), which are subject to ecological and technical limitations.
- Processing residues (e.g., husks, shells, fibers, pods, peels), which are assumed to be fully recoverable at the point of processing and are not constrained by field-level retention requirements.
- Low (RRF = 25%);
- Reference (RRF = 50%);
- High (RRF = 80%).
3.2. Selection of the Biohydrogen Production Process
3.3. Biohydrogen Potential Estimation
Sensitivity of Biohydrogen Potential to Sustainable Residue Potential Scenarios
4. Discussion
4.1. Theoretical Residue Assessment
4.1.1. Gross Residue Potential
4.1.2. Sustainable Residue Potential
4.2. Selection of a Biohydrogen Production Process
4.2.1. Investment and Operational Costs
4.2.2. Environmental Impact
4.2.3. Energy Requirement
4.2.4. Implications and Future Directions
4.3. Biohydrogen Potential Estimation
Comparison of Theoretical and Experimental Hydrogen Yields
5. Conclusions
- Objective 1: Estimate the quantities and availability of agricultural residues in Togo.
- Objective 2: Select a suitable process for biohydrogen production.
- Objective 3: Quantify the theoretical biohydrogen potential.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BHP | Biohydrogen Potential |
DF | Dark Fermentation |
EFB | Empty Fruit Bunches |
FAO | Food and Agriculture Organization of the United Nations |
GRP | Gross Residue Potential |
LCA | Lifecycle Assessment |
LHV | Lower Heating Value |
MC | Moisture Content |
MCDA | Multi-Criteria Decision Analysis |
MEC | Microbial Electrolysis Cell |
P | Production |
RPR | Residue-to-Product Ratio |
RRF | Residue Recoverability Factor |
SRP | Sustainable Residue Potential |
TRL | Technological Readiness Level |
TVS | Total Volatile Solids |
VF | Variability Factor |
References
- International Renewable Energy Agency. Green Hydrogen Strategy: A Guide to Design; International Renewable Energy Agency: Abu Dhabi, United Arab Emirates, 2024; Available online: https://www.irena.org/Publications/2024/Jul/Green-hydrogen-strategy-A-guide-to-design (accessed on 23 November 2024).
- International Energy Agency. Global Hydrogen Review 2023; International Renewable Energy Agency: Paris, France, 2024; Available online: https://www.iea.org/reports/global-hydrogen-review-2023 (accessed on 29 June 2024).
- Camargo, L.; Comas, D.; Escorcia, Y.C.; Alviz-Meza, A.; Carrillo Caballero, G.; Portnoy, I. Bibliometric Analysis of Global Trends around Hydrogen Production Based on the Scopus Database in the Period 2011–2021. Energies 2023, 16, 87. [Google Scholar] [CrossRef]
- Cheng, W.; Lee, S. How Green Are the National Hydrogen Strategies? Sustainability 2022, 14, 1930. [Google Scholar] [CrossRef]
- Lou, Y.; Fan, Z.; Firedmann, J. The Potential Role of Biohydrogen in Creating a Net-Zero World: The Production and Application of Carbon-Negative Hydrogen; Center on Global Energy Policy: New York, NY, USA, 2023; Available online: https://www.energypolicy.columbia.edu/publications/the-potential-role-of-biohydrogen-in-creating-a-net-zero-world/?utm_source=chatgpt.com& (accessed on 28 November 2024).
- International Renewable Energy Agency. International Trade and Green Hydrogen: Supporting the Global Transition to a Low-Carbon Economy; International Renewable Energy Agency: Abu Dhabi, United Arab Emirates, 2023; Available online: https://www.wto-ilibrary.org/content/books/9789287075635 (accessed on 6 December 2024).
- International Energy Agency. Global Hydrogen Review 2024; International Renewable Energy Agency: Paris, France, 2024; Available online: https://www.iea.org/reports/global-hydrogen-review-2024 (accessed on 14 December 2024).
- Kusoglu, A. Chalkboard 1—The Many Colors of Hydrogen. Electrochem. Soc. Interface 2021, 30, 44–48. [Google Scholar] [CrossRef]
- Demirbas, A. Biohydrogen. In Green Energy and Technology; Singh, A., Pant, D., Dillon, P., Eds.; Springer: London, UK, 2009; pp. 163–219. ISBN 978-1-84882-511-6. [Google Scholar]
- Chaves, T.C.; Peiter, F.S.; de Amorim, E.L.C. Biohydrogen from Agricultural Waste. In Emerging Trends and Techniques in Biofuel Production from Agricultural Waste; Springer: Berlin/Heidelberg, Germany, 2024; pp. 101–118. [Google Scholar] [CrossRef]
- Kanwal, F.; Torriero, A.A.J. Biohydrogen—A Green Fuel for Sustainable Energy Solutions. Energies 2022, 15, 7783. [Google Scholar] [CrossRef]
- Demirbas, A. Biohydrogen. In Biohydrogen; Springer: London, UK, 2009. [Google Scholar]
- Hallenbeck, P.C.; Ghosh, D. Advances in fermentative biohydrogen production: The way forward? Trends Biotechnol. 2009, 27, 287–297. [Google Scholar] [CrossRef]
- Uzoagba, C.; Bello, A.; Kadivar, M.; Okoroigwe, E.; Ezealigo, U.S.; Anye, V.C.; Kemausuor, F.; Onwualu, P.A. Bioenergy Potential Assessment of Crop Residue Biomass Resources in Africa Towards Circular Economy. Cureus J. 2024, 1, e1. [Google Scholar] [CrossRef]
- Kemausuor, F.; Kamp, A.; Thomsen, S.T.; Bensah, E.C.; Østergård, H. Assessment of biomass residue availability and bioenergy yields in Ghana. Resour. Conserv. Recycl. 2014, 86, 28–37. [Google Scholar] [CrossRef]
- Okello, C.; Pindozzi, S.; Faugno, S.; Boccia, L. Bioenergy potential of agricultural and forest residues in Uganda. Biomass Bioenergy 2013, 56, 515–525. [Google Scholar] [CrossRef]
- International Energy Agency. Executive Summary—Uganda 2023. Available online: https://www.iea.org/reports/uganda-2023/executive-summary (accessed on 6 December 2024).
- Nimon, P.; Issaou, L.; Konko, Y.; Kokou, K. Spatio-Temporal Patterns of Rainfall Variability for Wet Season over Togo in West Africa. OALib J. 2020, 7, 1–11. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. In World Food and Agriculture—Statistical Yearbook 2023; FAO: Rome, Italy, 2023; Available online: https://doi.org/10.4060/cc8166en (accessed on 6 December 2024).
- African Development Bank. Country Strategy Paper 2021–2026—Togo. Available online: https://www.afdb.org/en/documents/togo-country-strategy-paper-2021-2026 (accessed on 4 July 2024).
- Central Intelligence Agency. The World Factbook: Togo. Available online: https://www.cia.gov/the-world-factbook/countries/togo/factsheets/ (accessed on 12 December 2024).
- Ministère de la Planification, du Développement et de l’Aménagement du Territoire (MPDAT). Enquête Démographique et de Santé au Togo 2013–2014; ICF International: Rockville, MD, USA, 2015; Available online: https://inseed.tg/rapports-danalyse/ (accessed on 25 June 2024).
- United Nations Office for the Coordination of Humanitarian Affairs, Regional Office for West and Central Africa. West and Central Africa—Administrative Boundaries Levels 0 to 2 (COD-AB). Available online: https://data.humdata.org/dataset/west-and-central-africa-administrative-boundaries-levels (accessed on 15 August 2025).
- World Food Programme. Annual Country Report 2022: Togo; World Food Programme: Rome, Italy, 2022; Available online: https://www.wfp.org/operations/annual-country-report?operation_id=TG03&year=2022#/25351 (accessed on 10 December 2024).
- Food and Agriculture Organization of the United Nations. FAO Statistics and Data Quality Assurance Framework (SDQAF). Available online: https://www.fao.org (accessed on 12 November 2024).
- Netherlands Energy Research Foundation. Phyllis2: Database for Biomass and Wast. Available online: https://phyllis.nl (accessed on 23 August 2024).
- Panoutsou, C.; Perakis, C.; Elbersen, B.; Zheliezna, T.; Staritsky, I. Chapter 7—Assessing Potentials for Agricultural Residues. In Modeling and Optimization of Biomass Supply Chains: Top-Down and Bottom-up Assessment for Agricultural, Forest and Waste Feedstock; Panoutsou, C., Ed.; Elsevier Science: San Diego, CA, USA, 2017; pp. 169–197. ISBN 978-0-12-812303-4. [Google Scholar]
- Food and Agriculture Organization of the United Nations. FAOSTAT Database: Crops and Livestock Products—Togo. Available online: https://www.fao.org/faostat/en/#data/QV (accessed on 2 August 2024).
- Kim, S.; Dale, B.E. Global potential bioethanol production from wasted crops and crop residues. Biomass Bioenergy 2004, 26, 361–375. [Google Scholar] [CrossRef]
- Karan, S.K.; Hamelin, L. Crop residues may be a key feedstock to bioeconomy but how reliable are current estimation methods? Resour. Conserv. Recycl. 2021, 164, 105211. [Google Scholar] [CrossRef]
- Kemausuor, F. Assessment of Technical Potential and Selected Sustainability Impacts of Second Generation Bioenergy in Ghana. Ph.D. Thesis, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana, 2015. [Google Scholar]
- Scarlat, N.; Martinov, M.; Dallemand, J.-F. Assessment of the availability of agricultural crop residues in the European Union: Potential and limitations for bioenergy use. Waste Manag. 2010, 30, 1889–1897. [Google Scholar] [CrossRef] [PubMed]
- Wilhelm, W.W.; Johnson, J.M.F.; Hatfield, J.L.; Voorhees, W.B.; Linden, D.R. Crop and Soil Productivity Response to Corn Residue Removal. Agron. J. 2004, 96, 1–17. [Google Scholar] [CrossRef]
- Tanyi, R.J.; Adaramola, M.S. Bioenergy potential of agricultural crop residues and municipal solid waste in Cameroon. AIMS Energy 2023, 11, 31–46. [Google Scholar] [CrossRef]
- Smeets, E.; Faaij, A.; Lewandowski, I.; Turkenburg, W. A bottom-up assessment and review of global bio-energy potentials to 2050. Prog. Energy Combust. Sci. 2007, 33, 56–106. [Google Scholar] [CrossRef]
- Berndes, G.; Hoogwijk, M.; van den Broek, R. The contribution of biomass in the future global energy supply: A review of 17 studies. Biomass Bioenergy 2003, 25, 1–28. [Google Scholar] [CrossRef]
- Pudelko, R.; Borzecka-Walker, M.; Faber, A. Feedstock Potential Assessment for EU-27 + Switzerland: BioBoost Project Deliverable D1.2; BioBoost Geoportal: Pulawy, Poland, 2013; Available online: https://bioboost.eu/uploads/files/bioboost_d1.2_iung_feedstock_potential_vers1_0-final.pdf (accessed on 15 May 2025).
- Glassner, D.A.; Hettenhaus, J.R.; Schechinger, T.M. (Eds.) Corn Stover Collection Project. In Proceedings of the BioEnergy’98: Expanding BioEnergy Partnerships, Madison, WI, USA, 4–8 October 1998; Coalition of Great Lakes Governors: Chicago, IL, USA, 1998. [Google Scholar]
- Esteban, L.S.; Carrasco, J.E. Biomass resources and costs: Assessment in different EU countries. Biomass Bioenergy 2011, 35, 21–30. [Google Scholar] [CrossRef]
- Koopmans, A.; Koppejan, J. Agricultural and Forest Residues: Generation, Utilization and Availability. In Proceedings of the Regional Consultation on Modern Applications of Biomass Energy, Kuala Lumpur, Malaysia, 6–10 January 1997; Available online: https://www.fao.org/4/AD576E/AD576E00.htm (accessed on 10 August 2024).
- Kartah, S.; Larson, E. Bioenergy Primer: Modernised Biomass Energy for Sustainable Development; United Nations Development Programme: New York, NY, USA, 2000. [Google Scholar]
- Food and Agriculture Organization of the United Nations. BEFS Rapid Appraisal: Crop Residues Tool. Available online: https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://www.fao.org/fileadmin/user_upload/energy/befs/natural_resources/external/Agricultural_Residues__tool_2.0.xlsm&ved=2ahUKEwjrrL2NiPeGAxX_SKQEHT07DJEQFnoECBAQAQ&usg=AOvVaw0QA6WazKbIZpKQF5zBxNLI (accessed on 30 June 2024).
- Mboumboue, E.; Njomo, D. Biomass resources assessment and bioenergy generation for a clean and sustainable development in Cameroon. Biomass Bioenergy 2018, 118, 16–23. [Google Scholar] [CrossRef]
- Ghimire, A.; Frunzo, L.; Pirozzi, F.; Trably, E.; Escudie, R.; Lens, P.N.; Esposito, G. A review on dark fermentative biohydrogen production from organic biomass: Process parameters and use of by-products. Appl. Energy 2015, 144, 73–95. [Google Scholar] [CrossRef]
- World Bank. GDP per Capita (Current US$)—Togo. Available online: https://data.worldbank.org/indicator/NY.GDP.PCAP.CD?locations=TG (accessed on 3 July 2024).
- Olechowski, A.L.; Eppinger, S.D.; Joglekar, N.; Tomaschek, K. Technology readiness levels: Shortcomings and improvement opportunities. Syst. Eng. 2020, 23, 395–408. [Google Scholar] [CrossRef]
- Lanjekar, P.R.; Panwar, N.L. A Review on Hydrogen Production from Biomass and Commercialization Assessment Through Technology Readiness Levels (TRLs). BioEnergy Res. 2023, 17, 912–931. [Google Scholar] [CrossRef]
- World Bank Open Data. Access to Electricity, Rural (% of Rural Population)—Togo. Available online: https://data.worldbank.org/indicator/EG.ELC.ACCS.RU.ZS?locations=TG (accessed on 1 August 2024).
- Kimatu, J.N.; Ayenagbo, K.; Johnson, K.-A.; Tchalim, T.-I.; Nguhi, S. Analysis of Togo’s economic and socio-political situation: Challenges and perspectives. Afr. J. Bus. Manag. 2013, 30, 2985–2995. [Google Scholar] [CrossRef]
- Tian, H.; Li, J.; Yan, M.; Tong, Y.W.; Wang, C.-H.; Wang, X. Organic waste to biohydrogen: A critical review from technological development and environmental impact analysis perspective. Appl. Energy 2019, 256, 113961. [Google Scholar] [CrossRef]
- Lepage, T.; Kammoun, M.; Schmetz, Q.; Richel, A. Biomass-to-hydrogen: A review of main routes production, processes evaluation and techno-economical assessment. Biomass Bioenergy 2021, 144, 105920. [Google Scholar] [CrossRef]
- Papathoti, N.K.; Mendam, K.; Thepbandit, W.; Burgula, N.; Sangpueak, R.; Saengchan, C.; Hoang, N.H.; Keshav, P.K.; Le Thanh, T.; Buensanteai, N. Bioethanol production from alkali-pretreated cassava stem waste via consolidated bioprocessing by ethanol-tolerant Clostridium thermocellum ATCC 31,924. Biomass Convers. Biorefinery 2024, 14, 6821–6833. [Google Scholar] [CrossRef]
- Salihu, A.; Abbas, O.; Sallau, A.B.; Alam, M.Z. Agricultural residues for cellulolytic enzyme production by Aspergillus niger: Effects of pretreatment. 3 Biotech 2015, 5, 1101–1106. [Google Scholar] [CrossRef] [PubMed]
- Bashir, A.; Mohammed Baba, N.M.; Akpomie, T. Characterization of biomass residue (yam peels) for bioethanol production. Int. J. Adv. Chem. 2021, 9, 146–149. [Google Scholar] [CrossRef]
- Yang, X.; Li, X.; Zhu, L.; Liang, J.; Zhu, J. Production of Hemicellulose Sugars Combined with the Alkaline Extraction Lignin Increased the Hydro-Depolymerization of Cellulose from Corn Cob. Sustainability 2023, 15, 9041. [Google Scholar] [CrossRef]
- Ibrahim, M.I.J.; Sapuan, S.M.; Zainudin, E.S.; Zuhri, M.Y.M. Extraction, chemical composition, and characterization of potential lignocellulosic biomasses and polymers from corn plant parts. BioResources 2019, 14, 6485–6500. [Google Scholar] [CrossRef]
- Loh, S.K. The potential of the Malaysian oil palm biomass as a renewable energy source. Energy Convers. Manag. 2017, 141, 285–298. [Google Scholar] [CrossRef]
- Sudiyani, Y.; Styarini, D.; Triwahyuni, E.; Sudiyarmanto; Sembiring, K.C.; Aristiawan, Y.; Abimanyu, H.; Han, M.H. Utilization of Biomass Waste Empty Fruit Bunch Fiber of Palm Oil for Bioethanol Production Using Pilot–Scale Unit. Energy Procedia 2013, 32, 31–38. [Google Scholar] [CrossRef]
- Sangthong, S.; Phetwarotai, W.; Bakar, M.S.A.; Cheirsilp, B.; Phusunti, N. Phenol-rich bio-oil from pyrolysis of palm kernel shell and its isolated lignin. Ind. Crops Prod. 2022, 188, 115648. [Google Scholar] [CrossRef]
- Kelly-Yong, T.L.; Lee, K.T.; Mohamed, A.R.; Bhatia, S. Potential of hydrogen from oil palm biomass as a source of renewable energy worldwide. Energy Policy 2007, 35, 5692–5701. [Google Scholar] [CrossRef]
- Pennells, J.; Cruickshank, A.; Chaléat, C.; Godwin, I.D.; Martin, D.J. Sorghum as a novel biomass for the sustainable production of cellulose nanofibers. Ind. Crops Prod. 2021, 171, 113917. [Google Scholar] [CrossRef]
- Martelli-Tosi, M.; Assis, O.B.G.; Silva, N.C.; Esposto, B.S.; Martins, M.A.; Tapia-Blácido, D.R. Chemical treatment and characterization of soybean straw and soybean protein isolate/straw composite films. Carbohydr. Polym. 2017, 157, 512–520. [Google Scholar] [CrossRef] [PubMed]
- Toro-Trochez, J.L.; Carrillo-Pedraza, E.S.; Bustos-Martínez, D.; García-Mateos, F.J.; Ruiz-Rosas, R.R.; Rodríguez-Mirasol, J.; Cordero, T. Thermogravimetric characterization and pyrolysis of soybean hulls. Bioresour. Technol. Rep. 2019, 6, 183–189. [Google Scholar] [CrossRef]
- Kopania, E.; Wietecha, J.; Ciechańska, D. Studies on Isolation of Cellulose Fibres from Waste Plant Biomass. Fibres Text. East. Eur. 2012, 96, 167–172. [Google Scholar]
- Yukesh Kannah, R.; Kavitha, S.; Sivashanmugham, P.; Kumar, G.; Nguyen, D.D.; Chang, S.W.; Rajesh Banu, J. Biohydrogen production from rice straw: Effect of combinative pretreatment, modelling assessment and energy balance consideration. Int. J. Hydrogen Energy 2019, 44, 2203–2215. [Google Scholar] [CrossRef]
- Goodman, B.A. Utilization of waste straw and husks from rice production: A review. J. Bioresour. Bioprod. 2020, 5, 143–162. [Google Scholar] [CrossRef]
- Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D.; Crocker, D. Determination of Structural Carbohydrates and Lignin in Biomass; National Renewable Energy Laboratory: Washington, DC, USA, 2005. Available online: https://www.semanticscholar.org/paper/Determination-of-Structural-Carbohydrates-and-in-Sluiter-Hames/e8b210c00c005b0a2fd7aab65b2e96b4189b8e98 (accessed on 15 September 2024).
- Silva, F.; Liduino da Silva, F.-L.; Cammarota, M. Biohydrogen from Pentose-Rich Lignocellulosic Biomass Hydrolysate. In Organic Waste to Biohydrogen; Kuddus, M., Yunus, G., Ramteke, P.W., Molina, G., Eds.; Springer: Singapore, 2022; pp. 123–146. ISBN 9789811919947. [Google Scholar]
- Hawkes, F.; Hussy, I.; Kyazze, G.; Dinsdale, R.; Hawks, D. Continuous dark fermentative hydrogen production by mesophilic microflora: Principles and progress. Int. J. Hydrogen Energy 2007, 32, 172–184. [Google Scholar] [CrossRef]
- Kim, D.; Woo, H.M. Deciphering bacterial xylose metabolism and metabolic engineering of industrial microorganisms for use as efficient microbial cell factories. Appl. Microbiol. Biotechnol. 2018, 102, 9471–9480. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.-Y.; Lay, C.-H.; Sen, B.; Chu, C.-Y.; Kumar, G.; Chen, C.-C.; Chang, J.-S. Fermentative hydrogen production from wastewaters: A review and prognosis. Int. J. Hydrogen Energy 2012, 37, 15632–15642. [Google Scholar] [CrossRef]
- Jain, R.; Panwar, N.L.; Jain, S.K.; Gupta, T.; Agarwal, C.; Meena, S.S. Bio-hydrogen production through dark fermentation: An overview. Biomass Convers. Biorefinery 2022, 14, 12699–12724. [Google Scholar] [CrossRef]
- Khatiwada, J.R.; Shrestha, S.; Sharma, H.K.; Qin, W. Bioconversion of Hemicelluloses into Hydrogen. In Sustainable Bioconversion of Waste to Value Added Products; Inamuddin, Khan, A., Eds.; Springer: Cham, Switzerland, 2021. [Google Scholar]
- Lalman, J.A.; Chaganti, S.R.; Moon, C.; Kim, D.-H. Elucidating acetogenic H2 consumption in dark fermentation using flux balance analysis. Bioresour. Technol. 2013, 146, 775–778. [Google Scholar] [CrossRef]
- Qureshi, F.; Yusuf, M.; Tahir, M.; Haq, M.; Mohamed, M.M.I.; Kamyab, H.; Nguyen, H.-H.T.; Vo, D.-V.N.; Ibrahim, H. Renewable hydrogen production via biological and thermochemical routes: Nanomaterials, economic analysis and challenges. Process Saf. Environ. Prot. 2023, 179, 68–88. [Google Scholar] [CrossRef]
- Aziz, M.; Darmawan, A.; Juangsa, F.B. Hydrogen production from biomasses and wastes: A technological review. Int. J. Hydrogen Energy 2021, 46, 33756–33781. [Google Scholar] [CrossRef]
- Rey, J.R.C.; Mateos-Pedrero, C.; Longo, A.; Rijo, B.; Brito, P.; Ferreira, P.; Nobre, C. Renewable Hydrogen from Biomass: Technological Pathways and Economic Perspectives. Energies 2024, 17, 3530. [Google Scholar] [CrossRef]
- Albuquerque, M.M.; Martinez-Burgos, W.J.; de Bona Sartor, G.; Medeiros, A.B.P.; de Carvalho, J.C.; Soccol, C.R. Microbial Electrolysis Cells in Biohydrogen Production. Biohydrogen Adv. Process. 2024, 13, 429–453. [Google Scholar] [CrossRef]
- Fudge, T.; Bulmer, I.; Bowman, K.; Pathmakanthan, S.; Gambier, W.; Dehouche, Z.; Al-Salem, S.M.; Constantinou, A. Microbial Electrolysis Cells for Decentralised Wastewater Treatment: The Next Steps. Water 2021, 13, 445. [Google Scholar] [CrossRef]
- Hosseinzadeh, A.; Zhou, J.L.; Li, X.; Afsari, M.; Altaee, A. Techno-economic and environmental impact assessment of hydrogen production processes using bio-waste as renewable energy resource. Renew. Sustain. Energy Rev. 2022, 156, 111991. [Google Scholar] [CrossRef]
- International Energy Agency. Togo: Oil. Available online: https://www.iea.org/countries/togo/oil (accessed on 13 December 2024).
- Nikolaidis, P.; Poullikkas, A. A comparative overview of hydrogen production processes. Renew. Sustain. Energy Rev. 2017, 67, 597–611. [Google Scholar] [CrossRef]
- Laird, D.A.; Chang, C.-W. Long-term impacts of residue harvesting on soil quality. Soil Tillage Res. 2013, 134, 33–40. [Google Scholar] [CrossRef]
- Wang, H.; Li, X.; Li, X.; Wang, J.; Li, X.; Guo, Q.; Yu, Z.; Yang, T.; Zhang, H. Long-term no-tillage and different residue amounts alter soil microbial community composition and increase the risk of maize root rot in northeast China. Soil Tillage Res. 2020, 196, 104452. [Google Scholar] [CrossRef]
- Larbi, A.; Smith, J.W.; Adekunle, I.O.; Agyare, W.A.; Gbaraneh, L.D.; Tanko, R.J.; Akinlade, J.; Omokaye, A.T.; Karbo, N.; Aboh, A. Crop Residues for Mulch and Feed in Crop–Livestock Systems: Impact on Maize Grain Yield and Soil Properties in the West African Humid Forest and Savanna Zones. Exp. Agric. 2002, 38, 253–264. [Google Scholar] [CrossRef]
- Daioglou, V.; Stehfest, E.; Wicke, B.; Faaij, A.; van Vuuren, D.P. Projections of the availability and cost of residues from agriculture and forestry. GCB Bioenergy 2016, 8, 456–470. [Google Scholar] [CrossRef]
- Searle, S.; Malins, C. A reassessment of global bioenergy potential in 2050. GCB Bioenergy 2015, 7, 328–336. [Google Scholar] [CrossRef]
- Nelson, R.G. Resource assessment and removal analysis for corn stover and wheat straw in the Eastern and Midwestern United States—Rainfall and wind-induced soil erosion methodology. Biomass Bioenergy 2002, 22, 349–363. [Google Scholar] [CrossRef]
- Taherdoost, H.; Madanchian, M. Multi-Criteria Decision Making (MCDM) Methods and Concepts. Encyclopedia 2023, 3, 77–87. [Google Scholar] [CrossRef]
- Escapa, A.; Mateos, R.; Martínez, E.J.; Blanes, J. Microbial electrolysis cells: An emerging technology for wastewater treatment and energy recovery. From laboratory to pilot plant and beyond. Renew. Sustain. Energy Rev. 2016, 55, 942–956. [Google Scholar] [CrossRef]
- Goren, A.Y.; Dincer, I.; Khalvati, A. Comparative environmental sustainability assessment of biohydrogen production methods. Sci. Total Environ. 2023, 904, 166613. [Google Scholar] [CrossRef]
- Yagmur Goren, A.; Dincer, I.; Khalvati, A. A comprehensive review on environmental and economic impacts of hydrogen production from traditional and cleaner resources. J. Environ. Chem. Eng. 2023, 11, 111187. [Google Scholar] [CrossRef]
- Maniscalco, M.P.; Longo, S.; Cellura, M.; Miccichè, G.; Ferraro, M. Critical Review of Life Cycle Assessment of Hydrogen Production Pathways. Environments 2024, 11, 108. [Google Scholar] [CrossRef]
- Ukoba, M.O.; Diemuodeke, E.O.; Briggs, T.A.; Ojapah, M.M.; Owebor, K.; Okedu, K.E.; Akhtar, K.; Ilhami, C. Using remote sensing technique to assess biomass energy potentials and appropriate site locations in Nigeria. Meas. Sens. 2024, 33, 101145. [Google Scholar] [CrossRef]
- Kapdan, I.K.; Kargi, F. Bio-hydrogen production from waste materials. Enzym. Microb. Technol. 2006, 38, 569–582. [Google Scholar] [CrossRef]
- González-Cabaleiro, R.; Lema, J.M.; Rodríguez, J. Metabolic energy-based modelling explains product yielding in anaerobic mixed culture fermentations. PLoS ONE 2015, 10, e0126739. [Google Scholar] [CrossRef]
- Hallenbeck, P. Biological hydrogen production; fundamentals and limiting processes. Int. J. Hydrogen Energy 2002, 27, 1185–1193. [Google Scholar] [CrossRef]
- Minton, N.P.; Clarke, D.J. Clostridia: Biotechnology Handbook; Springer: Boston, MA, USA, 1989; ISBN 978-1-4757-9720-6. [Google Scholar]
- Zhang, J.-N.; Li, Y.-H.; Zheng, H.-Q.; Fan, Y.-T.; Hou, H.-W. Direct degradation of cellulosic biomass to bio-hydrogen from a newly isolated strain Clostridium sartagoforme FZ11. Bioresour. Technol. 2015, 192, 60–67. [Google Scholar] [CrossRef]
- Song, Z.-X.; Li, X.-H.; Li, W.-W.; Bai, Y.-X.; Fan, Y.-T.; Hou, H.-W. Direct bioconversion of raw corn stalk to hydrogen by a new strain Clostridium sp. FS3. Bioresour. Technol. 2014, 157, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.-L.; Fan, Y.-T.; Xing, Y.; Pan, C.-M.; Zhang, G.-S.; Lay, J.-J. Enhanced biohydrogen production from cornstalk wastes with acidification pretreatment by mixed anaerobic cultures. Biomass Bioenergy 2007, 31, 250–254. [Google Scholar] [CrossRef]
No. | Crop | Types of Residue |
---|---|---|
1 | Cassava | Stalk, Peel |
2 | Yam | Straw |
3 | Maize | Stalk, Cob, Husk |
4 | Oil Palm | Empty fruit bunches (EFBs), Kernel Shells, Fibers, Fronds |
5 | Sorghum | Stalk, Husk |
6 | Soybean | Straw, Pod |
7 | Bean, dry | Straw |
8 | Rice | Straw, Husk |
Crop | Crop Residue | RPR (g/g) | Reference | Field-Based | Process-Based | RRF (g/g) |
---|---|---|---|---|---|---|
Cassava | Stalk | 0.13 | [40] | x | 0.5 | |
Peel | 0.34 | [31] | x | 1 | ||
Yam | Straw | 0.5 | [41] | x | 0.5 | |
Maize | Stalk | 1.37 | [31] | x | 0.5 | |
Cob | 0.25 | [31] | x | 1 | ||
Husk | 0.26 | [31] | x | 1 | ||
Oil Palm | EFB | 0.23 | [40] | x | 1 | |
Shells | 0.06 | [40] | x | 1 | ||
Fibers | 0.15 | [40] | x | 1 | ||
Fronds | 2.60 | [42] | x | 0.5 | ||
Sorghum | Stalk | 4.75 | [31] | x | 0.5 | |
Husk | 0.14 | [31] | x | 1 | ||
Soybean | Straw | 2.5 | [40] | x | 0.5 | |
Pod | 1.0 | [40] | x | 1 | ||
Bean | Straw | 2.5 | [43] | x | 0.5 | |
Rice | Straw | 3.05 | [31] | x | 0.5 | |
Husk | 0.23 | [31] | x | 1 |
Criteria | Weight |
---|---|
Investment cost | 0.2 |
Operational cost | 0.2 |
Environmental impact | 0.1 |
Technological Readiness Level | 0.1 |
Energy requirement | 0.2 |
Feedstock flexibility | 0.2 |
Biological Pathway | Thermochemical Pathway | Biochemical Pathway |
---|---|---|
Dark Fermentation | Gasification | Microbial Electrolysis Cells |
Crop | Crop Residue | Moisture Content (wt. %) | Reference | Cellulose Dry (wt. %) | Hemicellulose Dry (wt. %) | Reference |
---|---|---|---|---|---|---|
Cassava | Stalk | 20 | [31] | 32 | 20 | [52] |
Peel | 50 | [41] | 39 | 25 | [53] | |
Yam | Straw | 15 | [31] | 29 | 29 | [54] |
Maize | Stalk | 15 | [31] | 36 | 31 | [55] |
Cob | 8 | [31] | 37 | 33 | [55] | |
Husk | 11 | [31] | 46 | 36 | [56] | |
Oil Palm | EFB | 67 | [57] | 37 | 15 | [58] |
Shells | 12 | [57] | 42 | 12 | [59] | |
Fibers | 37 | [57] | 34 | 26 | [60] | |
Fronds | 71 | [57] | 40 | 30 | [60] | |
Sorghum | Stalk | 62 | [31] | 32 | 16 | [61] |
Husk | 15 | [43] | 32 | 15 | [61] | |
Soybean | Straw | 15 | [40] | 40 | 23 | [62] |
Pod | 15 | [40] | 52 | 19 | [63] | |
Bean | Straw | 10 | [43] | 40 | 19 | [64] |
Rice | Straw | 16 | [31] | 35 | 24 | [65] |
Husk | 13 | [31] | 36 | 26 | [66] |
No. | Crop | Crop Production (kt/Year) | Types of Residues |
---|---|---|---|
1 | Cassava | 1225 | Stalk, Peel |
2 | Yam | 985 | Straw |
3 | Maize | 957 | Stalk, Cob, Husk |
4 | Oil Palm | 588 | EFB, Kernel Shells, Fibers, Fronds |
5 | Sorghum | 281 | Stalk, Husk |
6 | Soybean | 236 | Straw, Pods |
7 | Bean, dry | 217 | Straw |
8 | Rice | 170 | Straw, Husk |
Crop | Crop Production (kt/Year) | Crop Residue | RPR (g/g) | GRP (kt/Year) | GRP per Crop (kt/Year) |
---|---|---|---|---|---|
Cassava | 1225 | Stalk | 0.13 | 159 | 576 |
Peel | 0.34 | 416 | |||
Yam | 985 | Straw | 0.5 | 492 | 492 |
Maize | 957 | Stalk | 1.37 | 1311 | 1799 |
Cob | 0.25 | 239 | |||
Husk | 0.26 | 249 | |||
Oil Palm | 588 | EFB | 0.23 | 135 | 1787 |
Shells | 0.06 | 35 | |||
Fibers | 0.15 | 88 | |||
Fronds | 2.60 | 1529 | |||
Sorghum | 281 | Stalk | 4.75 | 1334 | 1373 |
Husk | 0.14 | 39 | |||
Soybean | 236 | Straw | 2.5 | 591 | 828 |
Pod | 1.0 | 236 | |||
Bean | 217 | Straw | 2.5 | 541 | 541 |
Rice | 170 | Straw | 3.05 | 517 | 556 |
Husk | 0.23 | 39 | |||
Total | 4658 | 7953 |
Crop | Crop Residue | GRP (kt/Year) | RRF (g/g) | SRP (kt/Year) | SRP per Crop (kt/Year) |
---|---|---|---|---|---|
Cassava | Stalk | 159 | 0.5 | 80 | 496 |
Peel | 416 | 1 | 416 | ||
Yam | Straw | 492 | 0.5 | 246 | 246 |
Maize | Stalk | 1311 | 0.5 | 656 | 1144 |
Cob | 239 | 1 | 239 | ||
Husk | 249 | 1 | 249 | ||
Oil Palm | EFB | 135 | 1 | 135 | 1023 |
Shells | 35 | 1 | 35 | ||
Fibers | 88 | 1 | 88 | ||
Fronds | 1529 | 0.5 | 764 | ||
Sorghum | Stalk | 1334 | 0.5 | 667 | 706 |
Husk | 39 | 1 | 39 | ||
Soybean | Straw | 591 | 0.5 | 296 | 532 |
Pod | 236 | 1 | 236 | ||
Bean | Straw | 541 | 0.5 | 271 | 271 |
Rice | Straw | 517 | 0.5 | 259 | 298 |
Husk | 39 | 1 | 39 | ||
Total | 7953 | 4715 |
Scenario | RRF | SRP (kt/Year) |
---|---|---|
Lower-bound scenario | 25% | 3097 |
Reference scenario | 50% | 4715 |
Upper-bound scenario | 80% | 6658 |
Criteria | Weight | DF | Gasification | MEC |
---|---|---|---|---|
Investment Costs | 0.2 | 2 | 3 | 1 |
Operational Costs | 0.2 | 2 | 3 | 1 |
Environmental Impact | 0.1 | 3 | 1 | 2 |
TRL | 0.1 | 2 | 3 | 1 |
Energy Requirement | 0.2 | 3 | 1 | 2 |
Feedstock Flexibility | 0.2 | 3 | 2 | 1 |
Total | 1 | 2.5 | 2.2 | 1.3 |
Crop | Crop Residue | SRP (kt/Year) | Yield (mL H2/g Substrate) | BHP (t/Year) | Total BHP per Crop (t/Year) |
---|---|---|---|---|---|
Cassava | Stalk | 80 | 80 | 519 | 2607 |
Peel | 416 | 62 | 2088 | ||
Yam | Straw | 246 | 95 | 1906 | 1906 |
Maize | Stalk | 656 | 110 | 5859 | 11,126 |
Cob | 239 | 124 | 2419 | ||
Husk | 249 | 141 | 2849 | ||
Oil Palm | EFB | 135 | 33 | 363 | 3588 |
Shells | 35 | 91 | 262 | ||
Fibers | 88 | 73 | 523 | ||
Fronds | 764 | 39 | 2441 | ||
Sorghum | Stalk | 667 | 35 | 1904 | 2150 |
Husk | 39 | 77 | 246 | ||
Soybean | Straw | 296 | 103 | 2479 | 4709 |
Pod | 236 | 116 | 2230 | ||
Bean | Straw | 271 | 102 | 2249 | 2249 |
Rice | Straw | 259 | 96 | 2009 | 2339 |
Husk | 39 | 104 | 330 | ||
Total | 4715 | 30,674 |
Parameter | Value | Unit | Reference |
---|---|---|---|
Biohydrogen Potential | 30,674 | (t/year) | |
Energy Content Hydrogen (LHV) | 120 | (MJ/kg) | [82] |
Biohydrogen Energy Equivalent | 3681 | (TJ/year) | |
Togo’s Total Oil Supply (2022) | 21,295 | (TJ/year) | [81] |
Scenario | RRF | Biohydrogen Potential (t/Year) | Energy Equivalent (TJ/Year) |
---|---|---|---|
Low recoverability | 25% | 20,991 | 2519 |
Reference case | 50% | 30,674 | 3681 |
High recoverability | 80% | 42,293 | 5075 |
Crop | Crop Residue | Yield (mL H2/g TVS *) | Yield (mL H2/g Substrate) |
---|---|---|---|
Maize | Stalk | 133 | 110 |
Substrate Type | Microbial Inoculum Source | Strain | Temp. (°C) | H2-Yield | Unit | Reference |
---|---|---|---|---|---|---|
Maize stalk | Cow manure | Clostridium sartagoforme | 35 | 87 | mL H2/g substrate | [99] |
Cattle manure | Clostridium butyricum | 36 | 93 | mL H2/g substrate | [100] | |
Cow manure | Clostridium sp. | 50 | 150 | mL H2/g TVS | [101] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jegla, Z.; Bonaita, S.; Amou, K.A.; Reppich, M. Assessing the Theoretical Biohydrogen Potential from Agricultural Residues Using Togo as an Example. Energies 2025, 18, 4674. https://doi.org/10.3390/en18174674
Jegla Z, Bonaita S, Amou KA, Reppich M. Assessing the Theoretical Biohydrogen Potential from Agricultural Residues Using Togo as an Example. Energies. 2025; 18(17):4674. https://doi.org/10.3390/en18174674
Chicago/Turabian StyleJegla, Zdeněk, Silvio Bonaita, Komi Apélété Amou, and Marcus Reppich. 2025. "Assessing the Theoretical Biohydrogen Potential from Agricultural Residues Using Togo as an Example" Energies 18, no. 17: 4674. https://doi.org/10.3390/en18174674
APA StyleJegla, Z., Bonaita, S., Amou, K. A., & Reppich, M. (2025). Assessing the Theoretical Biohydrogen Potential from Agricultural Residues Using Togo as an Example. Energies, 18(17), 4674. https://doi.org/10.3390/en18174674