Comparative Performance of Machine Learning Classifiers for Photovoltaic Mapping in Arid Regions Using Google Earth Engine
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources and Image Preprocessing
2.3. Sample Selection and Feature Extraction
2.3.1. Sample Selection
2.3.2. Spectral and Topographic Features
2.4. Classification Model Training
2.5. Accuracy Assessment
2.6. Image Post-Processing Workflow
2.7. Spatial Distribution and Landscape Pattern Analysis of Photovoltaic Stations
3. Results
3.1. Model Comparison and Selection
3.2. Influence of Variables on Classifier Performance
3.3. Spatial Distribution and Landscape Pattern of Photovoltaic Stations in the Inner Mongolia Yellow River Basin in 2024
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- IPCC. Climate Change 2023: Synthesis Report. In A Report of the Intergovernmental Panel on Climate Change. IPCC2023. Available online: https://www.ipcc.ch/report/ar6/syr/ (accessed on 1 August 2025).
- bp. bp Energy Outlook: 2024 Edition. 2024. Available online: https://www.bp.com/en/global/corporate/energy-economics/energy-outlook.html (accessed on 1 August 2025).
- Irena, E.C.S.; WEMC; Inside Climate Service SRL. 2023 Year in Review: Climate-Driven Global Renewable Energy Potential Resources and Energy Demand, Technical Report 2025. Available online: https://www.irena.org/ (accessed on 1 August 2025).
- Wang, X.X.; Xiao, X.M.; Zhang, X.; Ye, H.; Dong, J.W.; He, Q.; Wang, X.B.; Liu, J.Q.; Li, B.; Wu, J.H. Characterization and mapping of photovoltaic solar power plants by Landsat imagery and random forest: A case study in Gansu Province, China. J. Clean. Prod. 2023, 417, 138015. [Google Scholar] [CrossRef]
- Zhang, X.H.; Xu, M.; Wang, S.J.; Huang, Y.K.; Xie, Z.Y. Mapping photovoltaic power plants in China using Landsat, random forest, and Google Earth Engine. Earth Syst. Sci. Data 2022, 14, 3743–3755. [Google Scholar] [CrossRef]
- Shimada, S.; Takeuchi, W. Revealing a Shift in Solar Photovoltaic Planning Sites in Vietnam from 2019 to 2022. Remote Sens. 2023, 15, 2756. [Google Scholar] [CrossRef]
- Zhang, H.T.; Tian, P.; Zhong, J.; Liu, Y.C.; Li, J.L. Mapping Photovoltaic Panels in Coastal China Using Sentinel-1 and Sentinel-2 Images and Google Earth Engine. Remote Sens. 2023, 15, 3712. [Google Scholar] [CrossRef]
- Lee, S.H.; Yoon, D.H.; Lee, S.K.; Oh, K.Y.; Lee, M.J. Development of a Technique for Classifying Photovoltaic Panels Using Sentinel-1 and Machine Learning. J. Sens. 2022, 2022, 1121971. [Google Scholar] [CrossRef]
- Garcia, G.; Aparcedo, A.; Nayak, G.K.; Ahmed, T.; Shah, M.; Li, M. Generalized deep learning model for photovoltaic module segmentation from satellite and aerial imagery. Sol. Energy 2024, 274, 112539. [Google Scholar] [CrossRef]
- Jiang, H.; Yao, L.; Lu, N.; Qin, J.; Liu, T.; Liu, Y.; Zhou, C. Multi-resolution dataset for photovoltaic panel segmentation from satellite and aerial imagery. Earth Syst. Sci. Data 2021, 13, 5389–5401. [Google Scholar] [CrossRef]
- Wang, X.X.; Xiao, X.M.; Zou, Z.H.; Hou, L.Y.; Qin, Y.W.; Dong, J.W.; Doughty, R.B.; Chen, B.Q.; Zhang, X.; Cheng, Y.; et al. Mapping coastal wetlands of China using time series Landsat images in 2018 and Google Earth Engine. ISPRS J. Photogramm. Remote Sens. 2020, 163, 312–326. [Google Scholar] [CrossRef]
- Feng, Q.; Niu, B.; Ren, Y.; Su, S.; Wang, J.; Shi, H.; Yang, J.; Han, M. A 10-m national-scale map of ground-mounted photovoltaic power stations in China of 2020. Sci. Data 2024, 11, 198. [Google Scholar] [CrossRef]
- Chen, Z.H.; Kang, Y.W.; Sun, Z.X.; Wu, F.; Zhang, Q. Extraction of Photovoltaic Plants Using Machine Learning Methods: A Case Study of the Pilot Energy City of Golmud, China. Remote Sens. 2022, 14, 2697. [Google Scholar] [CrossRef]
- Ji, S.; Wei, S.; Lu, M. Fully Convolutional Networks for Multisource Building Extraction from an Open Aerial and Satellite Imagery Data Set. IEEE Trans. Geosci. Remote Sens. 2019, 57, 574–586. [Google Scholar] [CrossRef]
- Xia, Z.L.; Li, Y.J.; Chen, R.S.; Sengupta, D.; Guo, X.N.; Xiong, B.; Niu, Y.L. Mapping the rapid development of photovoltaic power stations in northwestern China using remote sensing. Energy Rep. 2022, 8, 4117–4127. [Google Scholar] [CrossRef]
- Zhu, R.; Guo, D.X.; Wong, M.S.; Qian, Z.; Chen, M.; Yang, B.S.; Chen, B.Y.; Zhang, H.R.; You, L.L.; Heo, J.; et al. Deep solar PV refiner: A detail-oriented deep learning network for refined segmentation of photovoltaic areas from satellite imagery. Int. J. Appl. Earth Obs. Geoinf. 2023, 116, 103134. [Google Scholar] [CrossRef]
- Ball, J.; Anderson, D.; Chan, C.S. Comprehensive survey of deep learning in remote sensing: Theories, tools, and challenges for the community. J. Appl. Remote Sens. 2017, 11, 042609. [Google Scholar] [CrossRef]
- Tanner, K.E.; Moore-O’leary, K.A.; Parker, I.M.; Pavlik, B.M.; Hernandez, R.R. Simulated solar panels create altered microhabitats in desert landforms. Ecosphere 2020, 11, e03089. [Google Scholar] [CrossRef]
- Meng, R.B.; Meng, Z.J.; Ren, X.M.; Cai, J.L.; Tong, X.F. Positive impacts of typical desert photovoltaic scenarios in China on the growth and physiology of sand-adapted plants. Front. Plant Sci. 2025, 15, 1515896. [Google Scholar] [CrossRef]
- Rabaia, M.K.H.; Abdelkareem, M.A.; Sayed, E.T.; Elsaid, K.; Chae, K.J.; Wilberforce, T.; Olabi, A.G. Environmental impacts of solar energy systems: A review. Sci. Total Environ. 2021, 754, 141989. [Google Scholar] [CrossRef]
- Wu, Z.Y.; Hou, A.P.; Chang, C.; Huang, X.; Shi, D.Q.; Wang, Z.F. Environmental impacts of large-scale CSP plants in northwestern China. Environ. Sci. Process. Impacts 2014, 16, 2432–2441. [Google Scholar] [CrossRef] [PubMed]
- Grodsky, S.M.; Hernandez, R.R. Reduced ecosystem services of desert plants from ground-mounted solar energy development. Nat. Sustain. 2020, 3, 1036–1043. [Google Scholar] [CrossRef]
- Yun, J.; Liu, H.M.; Xu, Z.C.; Cao, X.A.; Ma, L.Q.; Wen, L.; Zhuo, Y.; Wang, L.X. Assessing Changes in the Landscape Pattern of Wetlands and Its Impact on the Value of Wetland Ecosystem Services in the Yellow River Basin, Inner Mongolia. Sustainability 2022, 14, 6328. [Google Scholar] [CrossRef]
- Gao, W.; Zhang, S.; Rao, X.; Lin, X.; Li, R. Landsat TM/OLI-Based Ecological and Environmental Quality Survey of Yellow River Basin, Inner Mongolia Section. Remote Sens. 2021, 13, 4477. [Google Scholar] [CrossRef]
- Gascon, F.; Bouzinac, C.; Thépaut, O.; Jung, M.; Francesconi, B.; Louis, J.; Lonjou, V.; Lafrance, B.; Massera, S.; Gaudel-Vacaresse, A.; et al. Copernicus Sentinel-2A Calibration and Products Validation Status. Remote Sens. 2017, 9, 584. [Google Scholar] [CrossRef]
- Andenæs, E.; Jelle, B.P.; Ramlo, K.; Kolås, T.; Selj, J.; Foss, S.E. The influence of snow and ice coverage on the energy generation from photovoltaic solar cells. Sol. Energy 2018, 159, 318–328. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Laso Bayas, J.C.; Lesiv, M.; Waldner, F.; Schucknecht, A.; Duerauer, M.; See, L.; Fritz, S.; Fraisl, D.; Moorthy, I.; McCallum, I.; et al. A global reference database of crowdsourced cropland data collected using the Geo-Wiki platform. Sci. Data 2017, 4, 170136. [Google Scholar] [CrossRef]
- Rediske, G.; Siluk, J.C.M.; Gastaldo, N.G.; Rigo, P.D.; Rosa, C.B. Determinant factors in site selection for photovoltaic projects: A systematic review. Int. J. Energy Res. 2019, 43, 1689–1701. [Google Scholar] [CrossRef]
- Rondeaux, G.; Steven, M.; Baret, F. Optimization of soil-adjusted vegetation indices. Remote Sens. Environ. 1996, 55, 95–107. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Qin, Y.; Xiao, X.; Dong, J.; Zhou, Y.; Zhu, Z.; Zhang, G.; Du, G.; Jin, C.; Kou, W.; Wang, J.; et al. Mapping paddy rice planting area in cold temperate climate region through analysis of time series Landsat 8 (OLI), Landsat 7 (ETM+) and MODIS imagery. ISPRS J. Photogramm. Remote Sens. 2015, 105, 220–233. [Google Scholar] [CrossRef]
- Zha, Y.; Gao, J.; Ni, S. Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. Int. J. Remote Sens. 2003, 24, 583–594. [Google Scholar] [CrossRef]
- Wang, S. Application of Machine Learning Method in Remote Sensing Extraction of Photovoltaic Power Plants. Master’s Thesis, School of Geography, Geomatics and Planning, Jiangsu Normal University, Xuzhou, China, 2018. [Google Scholar]
- Van Deventer, A.P.; Ward, A.D.; Gowda, P.H.; Lyon, J.G. Using Thematic Mapper Data to Identify Contrasting Soil Plains and Tillage Practices. Photogramm. Eng. Remote Sens. 1997, 63, 87–93. [Google Scholar]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef]
- Lyu, X.; Li, X.; Wei, H.; Wu, J.; Dang, D.; Zhang, C.; Wang, K.; Lou, A. Mapping of Utility-Scale Solar Panel Areas From 2000 to 2022 in China Using Google Earth Engine. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 18083–18095. [Google Scholar] [CrossRef]
- Xu, H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Loh, W.Y. Classification and regression trees. WIREs Data Min. Knowl. Discov. 2011, 1, 14–23. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Congalton, R.G. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 1991, 37, 35–46. [Google Scholar] [CrossRef]
- Chen, Y.; Zhou, J.; Ge, Y.; Dong, J. Uncovering the rapid expansion of photovoltaic power plants in China from 2010 to 2022 using satellite data and deep learning. Remote Sens. Environ. 2024, 305, 114100. [Google Scholar] [CrossRef]
- Schumaker, N.H. Using Landscape Indices to Predict Habitat Connectivity. Ecology 1996, 77, 1210–1225. [Google Scholar] [CrossRef]
- Su, N.; Jarvie, S.; Yan, Y.; Gong, X.; Li, F.; Han, P.; Zhang, Q. Landscape context determines soil fungal diversity in a fragmented habitat. Catena 2022, 213, 106163. [Google Scholar] [CrossRef]
- Liu, L.Y.; Liu, P.T.; Yu, J.W.; Feng, G.; Zhang, Q.; Svenning, J.C. Wind farms increase land surface temperature and reduce vegetation productivity in the Inner Mongolia. Geogr. Sustain. 2024, 5, 319–328. [Google Scholar] [CrossRef]
- Mountrakis, G.; Im, J.; Ogole, C. Support vector machines in remote sensing: A review. ISPRS J. Photogramm. Remote Sens. 2011, 66, 247–259. [Google Scholar] [CrossRef]
- Zhang, X.H.; Zeraatpisheh, M.; Rahman, M.M.; Wang, S.J.; Xu, M. Texture Is Important in Improving the Accuracy of Mapping Photovoltaic Power Plants: A Case Study of Ningxia Autonomous Region, China. Remote Sens. 2021, 13, 3909. [Google Scholar] [CrossRef]
- Ji, L.; Wu, Y.X.; Sun, L.J.; Zhao, X.H.; Wang, X.Q.; Xie, Y.L.; Guo, J.H.; Huang, G.R. Solar photovoltaics can help China fulfill a net-zero electricity system by 2050 even facing climate change risks. Resour. Conserv. Recycl. 2022, 186, 106596. [Google Scholar] [CrossRef]
- Shang, W.; Zhang, Z.P.; Fu, G.Q.; Wang, Q.; Li, Y.Q.; Chang, L. Spatial Heterogeneity of Vegetation Communities and Soil Properties in a Desert Solar Photovoltaic Power Station of the Hexi Corridor, Northwestern China. Pol. J. Environ. Stud. 2023, 32, 2795–2807. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Tian, Z.Q.; Liu, B.L.; Chen, S.Y.; Wu, J.H. Effects of photovoltaic power station construction on terrestrial ecosystems: A meta-analysis. Front. Ecol. Evol. 2023, 11, 1151182. [Google Scholar] [CrossRef]
- National Development and Reform Commission. The 14th Five-Year Plan for Renewable Energy Development. Available online: https://www.ndrc.gov.cn/ (accessed on 1 August 2025).
- Zhang, H.; Song, Y.; Zhang, M.; Duan, Y.; Zhao, D. Ecological environmental impact assessment of photovoltaic and “photovoltaic +” development in China. Renew. Energy 2025, 252, 123509. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, B.; Xing, Y.; Peng, H.; Wu, H.; Zhong, J. Ecological construction status of photovoltaic power plants in China’s deserts. Front. Environ. Sci. 2024, 12, 1406546. [Google Scholar] [CrossRef]
Feature Type | Variable | Description | Formula | Reference |
---|---|---|---|---|
Topography | AVE | DEM output | Elevation | [29] |
Slope | DEM output | Slope | ||
Aspect | DEM output | Aspect | ||
Spectral Bands | B2 | Blue | B2 | [25] |
B3 | Green | B3 | ||
B4 | Red | B4 | ||
B8 | Near-infrared | B8 | ||
B11 | Shortwave infrared1 | B11 | ||
B12 | Shortwave infrared2 | B12 | ||
Spectral Indices | SAVI | Soil-Adjusted Vegetation Index | SAVI = 1.5 × (B8 − B4)/(B8 + B4 + 0.5) | [30] |
EVI | Enhanced Vegetation Index | EVI = [2.5 × (B8 − B4)]/(B8 + B11 × 4 − 7.5 × B2 + 1) | [31] | |
LSWI | Land Surface Water Index | LSWI = (B8 − B12)/(B8 + B12) | [32] | |
NDBI | Normalized Built-Up Index | NDBI = (B11 − B8)/(B11 + B8) | [33] | |
NDPI | Normalized Difference PV Index | NDPI = (B11 − B8)/(B8 − B12) | [34] | |
NDTI | Normalized Difference Tillage Index | NDTI = (B11 − B12)/(B11 + B12) | [35] | |
NDVI | Normalized Difference Vegetation Index | NDVI = (B8 − B4)/(B8 + B4) | [36] | |
BUAI | Built-Up Area Index | BUAI = NDBI − NDVI | [33] | |
SI | Shadow Index | [37] | ||
MNDWI | Modified Normalized Difference Water Index | MNDWI = (B3 − B11)/(B3 + B11) | [38] |
Index | Name | Formula | Scale | Unit | Meaning |
---|---|---|---|---|---|
AREA | Area | - | Patch | ha | Larger values indicate larger patch areas. |
LPI | Largest Patch Index | Landscape | % | is the area of the largest patch, and TA is the total landscape area. | |
PERIM | Perim | - | Patch | m | Perimeter length of each patch. |
SHAPE | Shape Index | Patch | - | E is the total edge length of all patches, and TA is the total landscape area. Higher values indicate more complex and irregular shapes. | |
PD | Patch Density | Landscape | n/100 ha | The number of patches per 100 hectares reflects fragmentation and spatial density. | |
ENN | Euclidean Nearest-Neighbor Distance | Patch | m | represents the Euclidean distance between patch i and its nearest neighbor j; larger values indicate more isolated patches. | |
DIVISION | Landscape Division Index | Landscape | % | Reflects the degree of landscape division and patch isolation; higher values indicate more dispersed and fragmented distributions. |
Classifier/Index | Zoning | SVM | CART | RF |
---|---|---|---|---|
OA | - | 92.19% | 93.36% | 97.27% |
PA | nPV | 96.02% | 96.59% | 97.73% |
PV | 83.75% | 86.25% | 96.25% | |
UA | nPV | 92.86% | 93.92% | 98.29% |
PV | 90.54% | 92.00% | 95.06% | |
Kappa | - | 0.81 | 0.84 | 0.94 |
F1 | nPV | 0.94 | 0.95 | 0.98 |
PV | 0.87 | 0.89 | 0.96 |
Region | Number of PV | AREA /km2 | PERIM /km | SHAPE | ENN /km | LPI /% | PD/ n/km2 | DIVISI ON/% | Ratio /% |
---|---|---|---|---|---|---|---|---|---|
Ordos | 108 | 167.58 | 4.29 | 1.56 | 1.49 | 15.83 | 1.42 | 95.37 | 61.59 |
BayanNur | 52 | 33.23 | 3.81 | 1.49 | 3.23 | 9.18 | 1.96 | 96.44 | 12.22 |
Ulanqab | 3 | 0.86 | 3.10 | 1.70 | 0.14 | 60.68 | 4.65 | 57.99 | 0.32 |
Wuhai | 50 | 10.51 | 2.44 | 1.57 | 0.37 | 9.30 | 5.80 | 95.20 | 3.86 |
Baotou | 30 | 30.24 | 1.35 | 1.50 | 0.24 | 6.64 | 16.14 | 98.54 | 11.11 |
Hohhot | 52 | 29.66 | 2.11 | 1.50 | 0.50 | 12.86 | 5.39 | 95.43 | 10.90 |
Alxa | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Wang, Z.; Zhang, H.; Zhang, N.; Zhang, T.; Bao, H.; Chen, H.; Zhang, Q. Comparative Performance of Machine Learning Classifiers for Photovoltaic Mapping in Arid Regions Using Google Earth Engine. Energies 2025, 18, 4464. https://doi.org/10.3390/en18174464
Zhang L, Wang Z, Zhang H, Zhang N, Zhang T, Bao H, Chen H, Zhang Q. Comparative Performance of Machine Learning Classifiers for Photovoltaic Mapping in Arid Regions Using Google Earth Engine. Energies. 2025; 18(17):4464. https://doi.org/10.3390/en18174464
Chicago/Turabian StyleZhang, Le, Zhaoming Wang, Hengrui Zhang, Ning Zhang, Tianyu Zhang, Hailong Bao, Haokai Chen, and Qing Zhang. 2025. "Comparative Performance of Machine Learning Classifiers for Photovoltaic Mapping in Arid Regions Using Google Earth Engine" Energies 18, no. 17: 4464. https://doi.org/10.3390/en18174464
APA StyleZhang, L., Wang, Z., Zhang, H., Zhang, N., Zhang, T., Bao, H., Chen, H., & Zhang, Q. (2025). Comparative Performance of Machine Learning Classifiers for Photovoltaic Mapping in Arid Regions Using Google Earth Engine. Energies, 18(17), 4464. https://doi.org/10.3390/en18174464