Investigation on Imbibition Recovery Characteristics in Jimusar Shale Oil and White Mineral Oil by NMR
Abstract
1. Introduction
2. Materials and Methods
2.1. Core Samples
2.2. Fluids Characteristics
2.3. NMR and Imbibition Methods
3. Results
3.1. T1–T2 Spectra of White and Crude Oil in Test Tube and Cores
3.2. T1–T2 Spectrum of Crude Oil Before and After Imbibition
3.3. Imbibition Recovery Characteristics of WMO
3.3.1. T2 Spectrum of the WMO-Saturated Samples
3.3.2. T1–T2 Spectrum of WMO Before and After Imbibition
3.3.3. T2 Spectrum Characteristics During Imbibition
4. Discussion
5. Conclusions
- (1)
- WMO, kerosene, or decanes with matched apparent viscosity may not comprehensively replicate the imbibition behavior of resin–asphaltene-rich crude oils. These simplified systems fail to capture the pore-scale occurrence characteristics of resins/asphaltenes and their influence on pore wettability alteration, and consequently may overestimate the intrinsic imbibition displacement efficiency in reservoir formations.
- (2)
- Surfactant optimization must holistically address the intrinsic coupling between interfacial tension reduction, wettability modification, and pore-scale crude oil mobilization mechanisms. The alteration of overall wettability exhibits higher priority over interfacial tension reduction in governing displacement dynamics.
- (3)
- Imbibition displacement demonstrates preferential mobilization characteristics, selectively targeting oil phases in smaller pores or lighter hydrocarbon components prior to larger-pore/heavier-fraction extraction.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hu, S.; Zhao, W.; Hou, L.; Yang, Z.; Zhu, R.; Wu, S.; Bai, B.; Jin, X. Development potential and technical strategy of continental shale oil in China. Pet. Explor. Dev. 2020, 47, 877–887. [Google Scholar] [CrossRef]
- Zhao, W.; Hu, S.; Hou, L.; Yang, T.; Li, X.; Guo, B.; Yang, Z. Types and resource potential of continental shale oil in China and its boundary with tight oil. Pet. Explor. Dev. 2020, 47, 1–11. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, G.; Tang, W.; Wang, D.; Wang, K.; Liu, J.; Du, D. A review of commercial development of continental shale oil in China. Energy Geosci. 2022, 3, 282–289. [Google Scholar] [CrossRef]
- Tang, H.; Yang, L.; Zhu, F.; An, K.; Long, X.; Zhang, Z. Molecular size and structure characteristics of tight oil of Lucaogou Formation in Jimusar depression. Earth Sci. 2018, 43, 1587–1593. [Google Scholar]
- Hu, T.; Pang, X.; Wang, X.; Pang, H.; Tang, L.; Pan, Z.; Wang, Y.; Shen, W.; Jiang, H.; Pang, Y. Source rock characteristics of Permian Lucaogou Formation in the Jimusar Sag, Junggar Basin, northwest China, and its significance on tight oil source and occurrence. Geol. J. 2017, 52, 624–645. [Google Scholar] [CrossRef]
- Xie, J.; Cui, X.; Li, W.; Zhu, J.; Wu, X.; Chu, Y.; Chen, Y.; Tang, T.; Zhu, S.; Wu, C.; et al. Exploration and practice of benefit development of shale oil in Jimsar Sag, Junggar Basin. China Pet. Explor. 2022, 27, 99–110. [Google Scholar]
- Wu, B.; Li, J.; Wu, Y.; Han, L.; Zhao, T.; Zou, Y. Development practices of geology-engineering integration on upper sweet spots of Lucaogou Formation shale oil in Jimusar sag, Junggar Basin. China Pet. Explor. 2019, 24, 679–690. [Google Scholar]
- Morrow, N.R.; Mason, G. Recovery of oil by spontaneous imbibition. Curr. Opin. Colloid Interface Sci. 2021, 6, 321–337. [Google Scholar] [CrossRef]
- Hatiboglu, C.U.; Babadagli, T. Oil recovery by counter-current spontaneous imbibition: Effects of matrix shape factor, gravity, IFT, oil viscosity, wettability, and rock type. J. Pet. Sci. Eng. 2007, 59, 106–122. [Google Scholar] [CrossRef]
- Li, Y.; Mason, G.; Morrow, N.R.; Ruth, D.W. Capillary pressure at the imbibition front during water–oil counter-current spontaneous imbibition. Transp. Porous Media 2009, 77, 475–487. [Google Scholar] [CrossRef]
- Zhang, Y.; Ge, H.; Shen, Y.; Jia, L.; Wang, J. Evaluating the potential for oil recovery by imbibition and time-delay effect in tight reservoirs during shut-in. J. Pet. Sci. Eng. 2020, 184, 106557. [Google Scholar] [CrossRef]
- Liu, J.; Sheng, J.J.; Emadibaladehi, H.; Tu, J. Experimental study of the stimulating mechanism of shut-in after hydraulic fracturing in unconventional oil reservoirs. Fuel 2021, 300, 120982. [Google Scholar] [CrossRef]
- Xie, K.; Wu, Z.; Liu, C.; Mei, J.; Cao, W.; Ding, H.; Zhang, X.; Xu, H.; Suo, Y.; Tian, X.; et al. A review of mechanisms and ML-based research on factors affecting spontaneous imbibition of surfactant. Geoenergy Sci. Eng. 2024, 240, 213071. [Google Scholar] [CrossRef]
- Tian, W.; Wu, K.; Gao, Y.; Chen, Z.; Gao, Y.; Li, J. A critical review of enhanced oil recovery by imbibition: Theory and practice. Energy Fuels 2021, 35, 5643–5670. [Google Scholar] [CrossRef]
- Liu, C.; Wang, T.-R.; You, Q.; Du, Y.-C.; Zhao, G.; Dai, C.-L. The effects of various factors on spontaneous imbibition in tight oil reservoirs. Pet. Sci. 2024, 21, 315–326. [Google Scholar] [CrossRef]
- Cheng, Z.; Ning, Z.; Yu, X.; Wang, Q.; Zhang, W. New insights into spontaneous imbibition in tight oil sandstones with NMR. J. Pet. Sci. Eng. 2019, 179, 455–464. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, Y.; Liu, Y.; Zhong, C. Influencing factors and application of spontaneous imbibition of fracturing fluids in tight sandstone gas reservoir. ACS Omega 2022, 7, 38912–38922. [Google Scholar] [CrossRef]
- Wang, F.; Ruan, Y.; Chen, Q.; Zhang, S. A pressure drop model of post-fracturing shut-in considering the effect of fracturing-fluid imbibition and oil replacement. Pet. Explor. Dev. 2021, 48, 1440–1449. [Google Scholar] [CrossRef]
- Eltahan, E.; Rego, F.B.; Yu, W.; Sepehrnoori, K. Impact of well shut-in after hydraulic-fracture treatments on productivity and recovery of tight oil reservoirs. J. Pet. Sci. Eng. 2021, 203, 108592. [Google Scholar] [CrossRef]
- Zhao, M.; Cheng, Y.; Wu, Y.; Dai, C.; Gao, M.; Yan, R.; Guo, X. Enhanced oil recovery mechanism by surfactant-silica nanoparticles imbibition in ultra-low permeability reservoirs. J. Mol. Liq. 2022, 348, 118010. [Google Scholar] [CrossRef]
- Karimaie, H.; Torsæter, O.; Esfahani, M.; Dadashpour, M.; Hashemi, S. Experimental investigation of oil recovery during water imbibition. J. Pet. Sci. Eng. 2006, 52, 297–304. [Google Scholar] [CrossRef]
- Chen, L.; Liu, J.; Wu, Z.; Liu, J.; Nulahong, A.; Ma, F. Molecular Characteristics of Jimusaer Shale Oil from Xinjiang, China. ACS Omega 2022, 7, 35496–35505. [Google Scholar] [CrossRef]
- Liu, S.; Misch, D.; Gao, G.; Jin, J.; Gang, W.; Suan, Y.; Wu, X.; Xiang, B.; Wang, M.; Luo, Q. Physical properties of lacustrine shale oil: A case study on the lower member of the Lucaogou Formation (Jimusaer Sag, Junggar Basin, NW China). Mar. Pet. Geol. 2022, 145, 105888. [Google Scholar] [CrossRef]
- Cao, Z.; Liu, G.; Kong, Y.; Wang, C.; Niu, Z.; Zhang, J.; Geng, C.; Shan, X.; Wei, Z. Lacustrine tight oil accumulation characteristics: Permian Lucaogou Formation in Jimusaer sag, Junggar Basin. Int. J. Coal Geol. 2016, 153, 37–51. [Google Scholar] [CrossRef]
- Liu, Y.; Zeng, J.; Jin, J.; Yang, G.; Xiang, B.; Zhou, N.; Ma, W.; Qiao, J.; Li, S.; Liu, S. Geochemical evaluation of produced petroleum from the Middle Permian Lucaogou reservoirs Junggar Basin and its implication for the unconventional shale oil play. J. Pet. Sci. Eng. 2022, 211, 110202. [Google Scholar] [CrossRef]
- Wang, Y.; Cao, J.; Tao, K.; Zhang, C.; Xiang, B.; Li, E.; Yu, S.; Pan, C. Origin of heavy shale oil in saline lacustrine basins: Insights from the Permian Lucaogou Formation, Junggar Basin. AAPG Bull. 2023, 107, 1553–1579. [Google Scholar] [CrossRef]
- Adams, J.J. Asphaltene adsorption, a literature review. Energy Fuels 2014, 28, 2831–2856. [Google Scholar] [CrossRef]
- Boek, E.S.; Wilson, A.D.; Padding, J.T.; Headen, T.F.; Crawshaw, J.P. Multi-scale simulation and experimental studies of asphaltene aggregation and deposition in capillary flow. Energy Fuels 2010, 24, 2361–2368. [Google Scholar] [CrossRef]
- Xu, N.; Wang, Y.; Zhang, C.; Bai, B.; Li, D.; Zhang, Y.; Shi, W.; Ding, W. Effect of surfactants on the interface characteristics and imbibition processes in shale oil reservoirs. Colloids Surf. A Physicochem. Eng. Asp. 2025, 706, 135818. [Google Scholar] [CrossRef]
- Sheng, J.J. What type of surfactants should be used to enhance spontaneous imbibition in shale and tight reservoirs? J. Pet. Sci. Eng. 2017, 159, 635–643. [Google Scholar] [CrossRef]
- Ding, M.-C.; Xue, X.-F.; Wang, Y.-F.; Zhang, C.-H.; Qiu, S.-Z. Mobilization of tight oil by spontaneous imbibition of surfactants. Pet. Sci. 2024, 21, 4176–4188. [Google Scholar] [CrossRef]
- SY/T 5119-2016; Analysis Method for Family Composition of Rock Extracts and Crude Oil. National Energy Administration: Beijing, China, 2016.
- Zhang, Y.; Yang, C. Study on the imbibition production mechanism and main controlling factors of low-permeability reservoir. RSC Adv. 2024, 14, 31183–31192. [Google Scholar] [CrossRef] [PubMed]
- Sakthivel, S.; Kanj, M.Y. Spontaneous imbibition characteristics of carbon nanofluids in carbonate reservoirs. Energy Rep. 2021, 7, 4235–4248. [Google Scholar] [CrossRef]
- Song, Y.Q.; Kausik, R. NMR application in unconventional shale reservoirs–A new porous media research frontier. Prog. Nucl. Magn. Reson. Spectrosc. 2019, 112, 17–33. [Google Scholar] [CrossRef]
- Yuan, Y.; Rezaee, R.; Zhou, M.-F.; Iglauer, S. A comprehensive review on shale studies with emphasis on nuclear magnetic resonance (NMR) technique. Gas Sci. Eng. 2023, 120, 205163. [Google Scholar] [CrossRef]
- Liu, D.; Ge, H.; Liu, J.; Shen, Y.; Wang, Y.; Liu, Q.; Jin, C.; Zhang, Y. Experimental investigation on aqueous phase migration in unconventional gas reservoir rock samples by nuclear magnetic resonance. J. Nat. Gas Sci. Eng. 2016, 36, 837–851. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, F.; Kang, Y.; Hu, Y.; Li, L.; Liu, Y. Experimental study on CO2 Huff-n-Puff for enhanced shale oil recovery and microscopic mobilization characteristics using online NMR. Fuel 2025, 387, 134428. [Google Scholar] [CrossRef]
- Duplan, J.C.; Mahi, L.; Brunet, J.L. NMR determination of the equilibrium constant for the liquid H2O-D2O mixture. Chem. Phys. Lett. 2005, 413, 400–403. [Google Scholar] [CrossRef]
- Grant, E.H. Relationship between relaxation time and viscosity for water. J. Chem. Phys. 1957, 26, 1575–1577. [Google Scholar] [CrossRef]
- Korb, J.-P.; Vorapalawut, N.; Nicot, B.; Bryant, R.G. Relation and correlation between NMR relaxation times, diffusion coefficients, and viscosity of heavy crude oils. J. Phys. Chem. C 2015, 119, 24439–24446. [Google Scholar] [CrossRef]
- Sandor, M.; Cheng, Y.; Chen, S. Improved correlations for heavy-oil viscosity prediction with NMR. J. Pet. Sci. Eng. 2016, 147, 416–426. [Google Scholar] [CrossRef]
- Cao, Y.; Jin, Z.; Zhu, R.; Liu, K.; Bai, J. Comprehensive evaluation of the organic-rich saline lacustrine shale in the Lucaogou Formation, Jimusar sag, Junggar Basin, NW China. Energy 2024, 294, 130786. [Google Scholar] [CrossRef]
- Pang, X.; Li, M.; Li, B.; Wang, T.; Hui, S.; Liu, Y.; Liu, G.; Hu, T.; Xu, T.; Jiang, F.; et al. Main controlling factors and movability evaluation of continental shale oil. Earth-Sci. Rev. 2023, 243, 104472. [Google Scholar] [CrossRef]
- Zhao, R.; Xue, H.; Lu, S.; Greenwell, H.C.; Erastova, V. Revealing crucial effects of reservoir environment and hydrocarbon fractions on fluid behavior in kaolinite pores. Chem. Eng. J. 2024, 489, 151362. [Google Scholar] [CrossRef]
- Du, M.; Zhengming, Y.; Lv, W.; Xiao, Q.; Xiang, Q.; Yao, L.; Feng, C. Experimental study on microscopic production characteristics and influencing factors during dynamic imbibition of shale reservoir with online NMR and fractal theory. Energy 2024, 310, 133244. [Google Scholar] [CrossRef]
- Tian, W.; Lu, S.; Zhang, J.; Gao, Y.; Huang, W.; Wen, Z.; Li, J.; Li, J. NMR characterization of fluid mobility in low-permeability conglomerates: An experimental investigation of spontaneous imbibition and flooding. J. Pet. Sci. Eng. 2022, 214, 110483. [Google Scholar] [CrossRef]
- Ravera, F.; Dziza, K.; Santini, E.; Cristofolini, L.; Liggieri, L. Emulsification and emulsion stability: The role of the interfacial properties. Adv. Colloid Interface Sci. 2021, 288, 102344. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, V.; Taylor, S.E. Asphaltene adsorption on quartz sand in the presence of pre-adsorbed water. J. Colloid Interface Sci. 2016, 480, 137–145. [Google Scholar] [CrossRef]
- Standnes, D.C.; Austad, T. Wettability alteration in chalk: 2. Mechanism for wettability alteration from oil-wet to water-wet using surfactants. J. Pet. Sci. Eng. 2000, 28, 123–143. [Google Scholar] [CrossRef]
- Alvarez, J.O.; Schechter, D.S. Wettability alteration and spontaneous imbibition in unconventional liquid reservoirs by surfactant additives. SPE Reserv. Eval. Eng. 2017, 20, 107–117. [Google Scholar] [CrossRef]
- Song, Y.-Q.; Venkataramanan, L.; Hurlimann, M.D.; Flaum, M.; Frulla, P.; Straley, C. T1–T2 correlation spectra obtained using a fast two-dimensional Laplace inversion. J. Magn. Reson. 2002, 154, 261–268. [Google Scholar] [CrossRef] [PubMed]
- Aghajanzadeh, S.; Asghari, A.; Cordella, C.B.; Khalloufi, S. Using low-field nuclear magnetic resonance to investigate the effect of composition, mechanical treatments, and storage on the stability of emulsions. Food Chem. 2025, 478, 143585. [Google Scholar] [CrossRef] [PubMed]
Core No | Length (mm) | Diamter (mm) | Poroity (%) | Permeability (mD) |
---|---|---|---|---|
B1 | 36.27 | 25.13 | ~8.98 | ~0.09 |
B2 | 37.14 | 25.10 | ~8.98 | ~0.09 |
B3 | 38.13 | 25.14 | 8.98 | 0.09 |
O1 | 55.22 | 25.16 | 11.15 | 0.11 |
O2 | 56.31 | 25.14 | 11.63 | 0.13 |
O3 | 55.24 | 25.09 | 11.25 | 0.12 |
O4 | 55.19 | 25.13 | 11.53 | 0.14 |
O5 | 54.16 | 25.14 | 11.14 | 0.12 |
Crude Oil | #7 WMO | #25 WMO | D2O | 0.1 wt.%AEO-9 in D2O | |
---|---|---|---|---|---|
Viscosity (mPa·s) | 10.7 | 8.5 | 28.7 | 1.1 | 1.1 |
Surface Tension (mN/m) | Crude Oil | #7 WMO | #25 WMO |
---|---|---|---|
D2O | 19.09 | 27 | 20.4 |
0.1 wt.% AEO-9 in D2O | 0.36 | 3.3 | 2.4 |
Contact Angle (°) | #7 WMO Outcrop Sample | #25 WMO Outcrop Sample | Cruel Oil Bottom-hole Sample |
---|---|---|---|
D2O | 77.4 | 79.8 | 96.7 |
0.1 wt.% AEO-9 in D2O | 70 | 68.3 | 67.8 |
Core No | Saturated Fluids | Imbibed Fluids |
---|---|---|
B1 | crude oil | D2O |
B2 | crude oil | 1‰ AEO-9 in D2O |
B3 | #25 WMO | / |
O1 | #7 WMO | D2O |
O2 | #25 WMO | D2O |
O3 | #7 WMO | 1‰ AEO-9 in D2O |
O4 | #25 WMO | 1‰ AEO-9 in D2O |
O5 | #7 WMO | 1‰ AEO-9 in D2O |
Signal Type | Sequence | TE (μs) | Tw (ms) | Echo Number | Scan Number | Gain (dB) | TiMin (μs) | TiMax (μs) |
---|---|---|---|---|---|---|---|---|
T2 | CPMG | 60 | 3000 | 4096 | 16 | 20 | / | / |
T1–T2 | IR-CPMG | 100 | 5500 | 4096 | 12 | 30 | 100 | 20,000,000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, D.; Jia, C.; Chen, K. Investigation on Imbibition Recovery Characteristics in Jimusar Shale Oil and White Mineral Oil by NMR. Energies 2025, 18, 4111. https://doi.org/10.3390/en18154111
Liu D, Jia C, Chen K. Investigation on Imbibition Recovery Characteristics in Jimusar Shale Oil and White Mineral Oil by NMR. Energies. 2025; 18(15):4111. https://doi.org/10.3390/en18154111
Chicago/Turabian StyleLiu, Dunqing, Chengzhi Jia, and Keji Chen. 2025. "Investigation on Imbibition Recovery Characteristics in Jimusar Shale Oil and White Mineral Oil by NMR" Energies 18, no. 15: 4111. https://doi.org/10.3390/en18154111
APA StyleLiu, D., Jia, C., & Chen, K. (2025). Investigation on Imbibition Recovery Characteristics in Jimusar Shale Oil and White Mineral Oil by NMR. Energies, 18(15), 4111. https://doi.org/10.3390/en18154111