Towards a Digital Twin for Gas Turbines: Thermodynamic Modeling, Critical Parameter Estimation, and Performance Optimization Using PINN and PSO
Abstract
1. Introduction
- Estimating unknown critical parameters using thermodynamic analysis and PINN;
- Developing three separate ANN models to predict GT performance parameters (i.e., TIT, SFC, and GTPO);
- Optimizing the ANN models using random search and PSO;
- Detecting suboptimal conditions (alarms) using conformal prediction;
- Optimizing GT power output and specific fuel consumption during a suboptimal condition by adjusting controllable parameters (i.e., AFR and inlet guide vane position) using PSO.
- Data analysis to clean, visualize, and pre-process three months of operational data;
- Thermodynamic analysis for critical parameter generation;
- PINN-based critical parameter estimation;
- Feature selection to develop three ANN models to predict TIT, GTPO, and SFC;
- Optimization of the ANN model using random search and PSO, and comparison of the performance with three machine learning algorithms (ML);
- Development of ANN with conformal prediction;
- Improved PSO testing and benchmarking on optimization tasks;
- Validation using operational data from a power plant operator.
2. Methods
2.1. Data Preparation and Pre-Processing
2.2. Thermodynamic Analysis
2.2.1. Compressor Models
2.2.2. Combustor Models
2.2.3. Turbine Models
2.2.4. Constant Properties
2.3. Artificial Neural Network (ANN) Modeling
2.3.1. Feature Selection
2.3.2. Data Splitting
2.3.3. ANN Model Setup
2.3.4. ANN Model Training and Validation
2.3.5. ANN Hyperparameter Tuning
2.4. PINN to Estimate AFR and Combustion Efficiency ()
2.5. Particle Swarm Optimization (PSO) Algorithm
2.5.1. PSO Overview
2.5.2. Improved PSO
2.5.3. PSO Testing and Benchmarking
2.6. Alarm Detection Using Conformal Prediction
2.7. IPSO + GJ + CM and ANN Models to Optimize GT Performance
2.8. Digital Twin Prototype (DTP) Framework for Gas Turbine
2.9. Resources Used for Experimentation
3. Results and Discussion
3.1. Results on Parameter Calculation Using Thermodynamic Analysis
3.2. Results of ANN Modeling
3.2.1. ANN Model Optimization
3.2.2. ANN Models Compared to Machine Learning Algorithms
3.3. Results of AFR and Combustion Efficiency Estimation Using PINN
3.4. Results of PSO Algorithm Benchmarking
3.5. Results of GT Performance Optimization
3.5.1. Results of GTPO Optimization
3.5.2. Results of SFC Optimization
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Variable Name | Variable Long Name | Unit |
---|---|---|
ACTLD | Actual load | MW |
BPT | Blade path temperature | °C |
BPREF | Baseline pressure reference | kPa |
CSP | Combustor shell pressure | bar |
COT | Compressor outlet air temperature | °C |
CIT | Compressor inlet air temperature | °C |
DE | Differential expansion between turbine and casing | mm |
TOT | Exhaust gas average temperature | °C |
FGF | Fuel gas flow | kg/s |
FGHT | Fuel gas heater outlet temperature | °C |
FGSP | Fuel gas supply pressure | kPa |
FGT | Fuel gas temperature | °C |
CompEff | GT compressor efficiency | - |
GTPL | Estimated GT Part Loading | µm |
GTPO | GT power output | kW |
GPF | Generator power factor | - |
GTGO | GT generated output | kW |
Speed | GT Speed | RPM |
HPCV | HP control valve | - |
HPSV | HP stop valve | - |
ICV | Inlet control valve position | - |
IGV | Inlet guide vanes position | - |
IGVCSO | Inlet guide vanes closed shut-off | - |
IFDP | Inlet air filter differential pressure | kPa |
IMSP | Inlet manifold static pressure | kPa |
IPCV | Intermediate pressure bypass control valve | - |
LPBT | LP last stage stationary blade temperature | °C |
Gb1X | Gearbox bearing 1 X-vibration | µm |
Gb1Y | Gearbox bearing 1 Y-vibration | µm |
Gb2X | Gearbox bearing 2 X-vibration | µm |
Gb2Y | Gearbox bearing 2 Y-vibration | µm |
Gb3X | Gearbox bearing 3 X-vibration | µm |
Gb3Y | Gearbox bearing 3 Y-vibration | µm |
Gb4X | Gearbox bearing 4 X-vibration | µm |
Gb4Y | Gearbox bearing 4 Y-vibration | µm |
Gb5X | Gearbox bearing 5 X-vibration | µm |
Gb5Y | Gearbox bearing 5 Y-vibration | µm |
Gb6X | Gearbox bearing 6 X-vibration | µm |
Gb6Y | Gearbox bearing 6 Y-vibration | µm |
RCAT | Rotor cooling air average temperature | °C |
WI | Wobbe index |
References
- Pilavachi, P. Power generation with gas turbine systems and combined heat and power. Appl. Therm. Eng. 2000, 20, 1421–1429. [Google Scholar] [CrossRef]
- Wang, M.; Peng, J.; Li, N.; Yang, H.; Wang, C.; Li, X.; Lu, T. Comparison of energy performance between PV double skin facades and PV insulating glass units. Appl. Energy 2017, 194, 148–160. [Google Scholar] [CrossRef]
- Fentaye, A.D.; Baheta, A.T.; Gilani, S.I.; Kyprianidis, K.G. A review on gas turbine gas-path diagnostics: State-of-the-art methods, challenges and opportunities. Aerospace 2019, 6, 83. Available online: https://www.mdpi.com/2226-4310/6/7/83 (accessed on 1 November 2024). [CrossRef]
- Diakunchak, I.S. Performance deterioration in industrial gas turbines. J. Eng. Gas Turbine. Power 1992, 114, 161–168. [Google Scholar] [CrossRef]
- Ying, Y.; Li, J.; Chen, Z.; Guo, J. Study on rolling bearing on-line reliability analysis based on vibration information processing. Comput. Electr. Eng. 2018, 69, 842–851. Available online: https://www.sciencedirect.com/science/article/pii/S0045790617325260 (accessed on 1 November 2024). [CrossRef]
- Li, Y. Gas turbine performance and health status estimation using adaptive gas path analysis. J. Eng. Gas Turbines Power-Trans. Asme 2010, 132, 041701. [Google Scholar] [CrossRef]
- Bechini, G. Performance Diagnostics and Measurement Selection for On-Line Monitoring of Gas Turbine Engines. Ph.D. Dissertation, Cranfield University, Wharley End, UK, 2007. [Google Scholar]
- Wang, Z.; Wang, Y.; Wang, X.; Yang, K.; Zhao, Y. A novel digital twin framework for aeroengine performance diagnosis. Aerospace 2023, 10, 789. [Google Scholar] [CrossRef]
- Liu, X.; Jiang, D.; Tao, B.; Xiang, F.; Jiang, G.; Sun, Y.; Kong, J.; Li, G. A systematic review of digital twin about physical entities, virtual models, twin data, and applications. Adv. Eng. Inform. 2023, 55, 101876. Available online: https://www.sciencedirect.com/science/article/pii/S1474034623000046 (accessed on 1 February 2025). [CrossRef]
- Sleiti, A.K.; Kapat, J.S.; Vesely, L. Digital twin in energy industry: Proposed robust digital twin for power plant and other complex capitalintensive large engineering systems. Energy Rep. 2022, 8, 3704–3726. Available online: https://www.sciencedirect.com/science/article/pii/S2352484722005522 (accessed on 1 February 2025). [CrossRef]
- Patterson, E.; Taylor, R.; Bankhead, M. A framework for an integrated nuclear digital environment. Prog. Nucl. Energy 2016, 87, 97–103. [Google Scholar] [CrossRef]
- Okita, T.; Kawabata, T.; Murayama, H.; Nishino, N.; Aichi, M. A new concept of digital twin of artifact systems: Synthesizing monitoring/inspections, physical/numerical models, and social system models. Procedia CIRP 2019, 79, 667–672. Available online: https://www.sciencedirect.com/science/article/pii/S2212827119301623 (accessed on 18 February 2025). [CrossRef]
- Ebrahimi, A. Challenges of developing a digital twin model of renewable energy generators. In Proceedings of the 2019 IEEE 28th International Symposium on Industrial Electronics (ISIE), Vancouver, BC, Canada, 12–14 June 2019; pp. 1059–1066. [Google Scholar] [CrossRef]
- Jain, P.; Poon, J.; Singh, J.P.; Spanos, C.; Sanders, S.R.; Panda, S.K. A digital twin approach for fault diagnosis in distributed photovoltaic systems. IEEE Trans. Power Electron. 2020, 35, 940–956. [Google Scholar] [CrossRef]
- Kahlen, F.-J.; Flumerfelt, S.; Alves, A.C. (Eds.) Transdisciplinary Perspectives on Complex Systems, 1st ed.; Springer International Publishing: Cham, Switzerland, 2016. [Google Scholar]
- Sivalingam, K.; Sepulveda, M.; Spring, M.; Davies, P. A review and methodology development for remaining useful life prediction of offshore fixed and floating wind turbine power converter with digital twin technology perspective. In Proceedings of the 2018 2nd International Conference on Green Energy and Applications (ICGEA), Singapore, 24–26 March 2018; IEEE: Singapore, 2018. [Google Scholar]
- Moussa, C.; Ai-Haddad, K.; Kedjar, B.; Merkhouf, A. Insights into digital twin based on finite element simulation of a large hydro generator. In Proceedings of the IECON 2018-44th Annual Conference of the IEEE Industrial Electronics Society, Washington, DC, USA, 21–23 October 2018; IEEE: Piscataway, NJ, USA, 2018. [Google Scholar]
- Xu, B.; Wang, J.; Wang, X.; Liang, Z.; Cui, L.; Liu, X.; Ku, A.Y. A case study of digital-twin-modelling analysis on powerplant-performance optimizations. Clean Energy 2019, 3, 227–234. [Google Scholar] [CrossRef]
- Aiki, H.; Saito, K.; Domoto, K.; Hirahara, H.; Obara, K.; Sahara, S. Boiler digital twin applying machine learning. Mitsubishi Heavy Ind. Tech. Rev. 2018, 55, 1–7. [Google Scholar]
- Hu, M.; He, Y.; Lin, X.; Lu, Z.; Jiang, Z.; Ma, B. Digital twin model of gas turbine and its application in warning of performance fault. Chin. J. Aeronaut. 2023, 36, 449–470. Available online: https://www.sciencedirect.com/science/article/pii/S1000936122001583 (accessed on 3 November 2024). [CrossRef]
- Moroz, L.; Burlaka, M.; Barannik, V. Application of digital twin for gas turbine off-design performance and operation analyses. In Proceedings of the AIAA Propulsion and Energy 2019 Forum, Indianapolis, IN, USA, 19–22 August 2019. [Google Scholar] [CrossRef]
- Shuang, S.; Wang, Z.; Xiao-peng, S.; Hong-li, Z.; Zhi-ping, W. An adaptive compressor characteristic map method based on the b’ezier curve. Case Stud. Therm. Eng. 2021, 28, 101512. [Google Scholar] [CrossRef]
- Fentaye, A.; Gilani, S.; Baheta, A. Gas turbine gas path diagnostics: A review. MATEC Web Conf. 2016, 74, 00005. [Google Scholar] [CrossRef]
- Zedda, M.; Singh, R. Gas turbine engine and sensor fault diagnosis using optimization techniques. J. Propuls. Power 2002, 18, 1019–1025. [Google Scholar] [CrossRef]
- Saini, M.; Gupta, N.; Shankar, V.G.; Kumar, A. Stochastic modeling and availability optimization of condenser used in steam turbine power plants using GA and PSO. Qual. Reliab. Eng. 2022, 38, 2670–2690. [Google Scholar] [CrossRef]
- Wang, Z.; Xue, W.; Li, K.; Tang, Z.; Liu, Y.; Zhang, F.; Cao, S.; Peng, X.; Wu, E.Q.; Zhou, H. Dynamic combustion optimization of a pulverized coal boiler considering the wall temperature constraints: A deep reinforcement learning-based framework. Appl. Therm. Eng. 2025, 259, 124923. [Google Scholar] [CrossRef]
- Rahman, M.M.; Ibrahim, T.K.; Abdalla, A.N. Thermodynamic performance analysis of gas-turbine power-plant. Int. J. Phys. Sci. 2011, 6, 3539–3550. Available online: http://www.academicjournals.org/IJPS (accessed on 20 February 2025). [CrossRef]
- Kumar, A.; Singhania, A.; Sharma, A.K.; Roy, R.; Mandal, B.K. Thermodynamic analysis of gas turbine power plant. Int. J. Innov. Res. Eng. Manag. 2017, 4, 648–654. [Google Scholar] [CrossRef]
- Raissi, M.; Perdikaris, P.; Karniadakis, G.E. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 2019, 378, 686–707. [Google Scholar] [CrossRef]
- Nath, K.; Meng, X.; Smith, D.J.; Karniadakis, G.E. Physics-informed neural networks for predicting gas flow dynamics and unknown parameters in diesel engines. Sci. Rep. 2023, 13, 13683. [Google Scholar] [CrossRef] [PubMed]
- Lakshminarayana, S.; Sthapit, S.; Maple, C. Application of physics informed machine learning techniques for power grid parameter estimation. Sustainability 2022, 14, 2051. Available online: https://www.mdpi.com/2071-1050/14/4/2051 (accessed on 22 February 2025). [CrossRef]
- Wang, S.; Wu, W.; Lin, C.; Wang, Q.; Xu, S.; Chen, B. Physics-informed recurrent network for gas pipeline network parameters identification. arXiv 2025, arXiv:2502.07230. [Google Scholar]
- Hornik, K.; Stinchcombe, M.; White, H. Multilayer feedforward networks are universal approximators. Neural Netw. 1989, 2, 359–366. Available online: https://www.sciencedirect.com/science/article/pii/0893608089900208 (accessed on 22 February 2025). [CrossRef]
- Fentaye, A.D.; Baheta, A.T.; Gilani, S.I.U.-H. Gas turbine gas-path fault identification using nested artificial neural networks. Aircr. Eng. Aerosp. Technol. 2018, 90, 992–999. [Google Scholar] [CrossRef]
- Shao, H.; Jiang, H.; Zhang, X.; Niu, M. Rolling bearing fault diagnosis using an optimization deep belief network. Meas. Sci. Technol. 2015, 26, 115002. [Google Scholar] [CrossRef]
- Li, J.; Ying, Y. Gas turbine gas path diagnosis under transient operating conditions: A steady state performance model based local optimization approach. Appl. Therm. Eng. 2020, 170, 115025. Available online: https://www.sciencedirect.com/science/article/pii/S135943111936541X (accessed on 19 February 2025). [CrossRef]
- Ng, E.Y.-K.; Lim, J.T. Machine learning on fault diagnosis in wind turbines. Fluids 2022, 7, 371. Available online: https://www.mdpi.com/2311-5521/7/12/371 (accessed on 10 November 2024). [CrossRef]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the IEEE International Conference on Neural Networks, Perth, Australia, 27 November–1 December 1995; IEEE: Piscataway, NJ, USA, 1995; pp. 1942–1948. [Google Scholar]
- Montazeri-Gh, M.; Jafari, S.; Ilkhani, M.R. Application of particle swarm optimization in gas turbine engine fuel controller gain tuning. Eng. Optim. 2012, 44, 225–240. [Google Scholar] [CrossRef]
- Choi, J.W.; Sung, H.-G. Performance analysis of an aircraft gas turbine engine using particle swarm optimization. Int. J. Aeronaut. Space Sci. 2014, 15, 434–443. [Google Scholar] [CrossRef]
- Wang, D.; Tan, D.; Liu, L. Particle swarm optimization algorithm: An overview. Soft Comput. 2018, 22, 387–408. [Google Scholar] [CrossRef]
- Wang, H.; Liu, Y.; Wu, Z.; Sun, H.; Zeng, S.; Kang, L. An improved particle swarm optimization with adaptive jumps. In Proceedings of the 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence), Hong Kong, China, 1–6 June 2008; pp. 392–397. [Google Scholar] [CrossRef]
- Sola, J.; Sevilla, J. Importance of input data normalization for the application of neural networks to complex industrial problems. IEEE Trans. Nucl. Sci. 1997, 44, 1464–1468. [Google Scholar] [CrossRef]
- Lefebvre, A.H. Gas Turbine Combustion; Hemisphere Publishing Corporation: Coral Gables, FL, USA, 1983; ISBN 0-89116-896-6. [Google Scholar]
- Fujimoto, K.; Fukunaga, Y.; Hada, S.; Ai, T.; Yuri, M.; Masada, J. Technology application to MHPS large flame F series gas turbine. In Volume 3: Coal, Biomass, and Alternative Fuels; Cycle Innovations; Electric Power; Industrial and Cogeneration; Organic Rankine Cycle Power Systems; American Society of Mechanical Engineers: New York, NY, USA, 2018. [Google Scholar]
- Teal Group Corporation. M701f program briefing. In World Power Systems Briefing; Technical Representative; Teal Group Corporation: Fairfax, VA, USA, 2022. [Google Scholar]
- Anitescu, C.; Ate, I.; Rabczuk, T. Physics-informed neural networks: Theory and applications. In Machine Learning in Modeling and Simulation: Methods and Applications; Rabczuk, T., Bathe, K.-J., Eds.; Springer International Publishing: Cham, Switzerland, 2023; pp. 179–218. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Bengio, Y.; Glorot, X. Understanding the difficulty of training deep feed forward neural networks. In Proceedings of the International Conference on Artificial Intelligence and Statistics, Sardinia, Italy, 13–15 May 2010; pp. 249–256. [Google Scholar]
- Botan, M. Early stopping in deep learning: A study on patience and number of epochs. ITM Web Conf. 2024, 64, 01003. [Google Scholar] [CrossRef]
- Shi, Y.; Eberhart, R.C. A modified particle swarm optimizer. In Proceedings of the 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360), Anchorage, AK, USA, 4–9 May 1998; Volume 6, pp. 69–73, ISBN 0-7803-4869-9. [Google Scholar] [CrossRef]
- Carlisle, A.; Dozier, G. An off-the-shelf PSO. In Proceedings of the Workshop on Particle Swarm Optimization, Seoul, Republic of Korea, 27–30 May 2001. [Google Scholar]
- Krohling, R.A. Gaussian particle swarm with jumps. In Proceedings of the 2005 IEEE Congress on Evolutionary Computation, Edinburgh, UK, 2–5 September 2005; pp. 1226–1231. [Google Scholar]
- Clerc, M.; Kennedy, J. The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Trans. Evol. Comput. 2002, 6, 58–73. [Google Scholar] [CrossRef]
- Yao, X.; Liu, Y.; Lin, G. Evolutionary programming using mutations based on Levi probability distribution. IEEE Trans. Evol. Comput. 2004, 8, 1–24. [Google Scholar] [CrossRef]
- NVIDIA; Vingelmann, P.; Fitzek, F.H. CUDA, Release: 10.2.89. 2020. Available online: https://developer.nvidia.com/cuda-toolkit (accessed on 18 February 2025).
- Van Rossum, G.; Drake, F.L., Jr. Python Reference Manual; Centrum voor Wiskunde en Informatica Amsterdam: Amsterdam, The Netherlands, 1995. [Google Scholar]
- Anaconda Software Distribution, Version Vers. 2-2.4.0; Anaconda: Austin, TX, USA, 2020. Available online: https://docs.anaconda.com/ (accessed on 18 February 2025).
- Kluyver, T.; Ragan-Kelley, B.; Pérez, F.; Granger, B.; Bussonnier, M.; Frederic, J.; Kelley, K.; Hamrick, J.; Grout, J.; Corlay, S.; et al. Jupyter notebooks—A publishing format for reproducible computational workflows. In Positioning and Power in Academic Publishing: Players, Agents and Agendas; Loizides, F., Schmidt, B., Eds.; IOS Press: Amsterdam, The Netherlands, 2016; pp. 87–90. [Google Scholar]
- Wilarso; Wibowo, A.D. Online blade washing analysis on gas turbine performance in power plants. J. Energy Mech. Mater. Manuf. Eng. 2021, 6. Available online: http://ejournal.umm.ac.id/index.php/JEMMME (accessed on 5 August 2024).
- Lefebvre, A.H. Fuel effects on gas turbine combustion—Ignition, stability, and combustion efficiency. J. Eng. Gas Turbine. Power 1985, 107, 24–37. [Google Scholar] [CrossRef]
- Aygun, H. Effects of air to fuel ratio on parameters of combustor used for gas turbine engines: Applications of turbojet, turbofan, turboprop and turboshaft. Energy 2024, 305, 132346. [Google Scholar] [CrossRef]
Operating Parameters | Mean | Min | Max | Units |
---|---|---|---|---|
Atmosphere temperature | 29.75 | 24.60 | 36.30 | °C |
Atmosphere pressure | 1005.12 | 1000.44 | 1009.32 | kPa |
Atmosphere humidity | 80.61 | 49.16 | 98.71 | g/m3 |
Compressor outlet pressure | 17.09 | 17.01 | 17.16 | Bar |
Compressor outlet temperature | 420.95 | 390.50 | 455.20 | °C |
Exhaust gas temperature | 602.17 | 482.28 | 617.53 | °C |
Turbine power output | 106,658.08 | 2022.00 | 124,089.00 | kW |
Net power output | 187.11 | 97.00 | 242.00 | MW |
LHV | 56,927.14 | 54,971.30 | 58,864.58 | kJ/kg |
Fuel gas flow | 10.43 | 2.37 | 12.56 | kg/s |
Specifications | Description |
---|---|
Configuration | |
Number of compressor stages | 17 |
Number of turbine stages | 4 |
Cooling method | Air cooled |
Number of rotors | 1 |
Rated speed | 3000 RPM |
Performance | |
Frequency | 50 Hz |
ISO base rating | 385 MW |
LHV heat rate | 8592 kJ/kWh |
Efficiency | 41.9% LHV |
Exhaust flow | 748 kg/s |
Exhaust temperature | 630 °C |
Turn down load | 45% |
Ramp rate | 45%/min |
Constant Properties | Values |
---|---|
) | 17 |
) | 0.9 |
) | 1/4 |
) | 0.9 |
) | 1.33 |
) | 1.005 kJ/kg |
) | 1.8083 kJ/kg |
Mechanical efficiency of compressor | 0.9 |
Hyperparameter | Search Space |
---|---|
Learning rate | np.logspace(−6, −1, num = 10) |
Dropout ratio | [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7] |
Number of nodes | range(32, 512, 32) |
Activation function | [relu, sigmoid, tanh, leaky_relu, elu, selu] |
Optimizer | [sgd, adam, rmsprop, adamw, nadam, adagrad] |
PSO Algorithm | Description |
---|---|
SPSO | Standard PSO |
KPSO | PSO with constriction factor [54] |
IPSO + GJ | Improved PSO with Gaussian jump |
IPSO + ACJ | Improved PSO with adaptive Cauchy jump |
IPSO + GJ + CM | IPSO + GJ with controlled mutation |
IPSO + ACJ + CM | IPSO + ACJ with controlled mutation |
GPSO + GJ | Gaussian PSO with Gaussian jump |
GPSO + ACJ | Gaussian PSO with adaptive Cauchy jump |
GPSO + GJ + CM | GPSO + GJ with controlled mutation |
GPSO + ACJ + CM | GPSO + ACJ with controlled mutation |
Benchmark Functions | ||
---|---|---|
0 | ||
0 | ||
0 | ||
0 |
Operating Parameters | Mean | Min | Max | Units |
---|---|---|---|---|
TIT | 1464.24 | 1226.28 | 1494.73 | °C |
) | 31.34 | 25.12 | 87.07 | % |
SFC | 0.495 | 0.372 | 0.929 | kg/kWh |
Target | Test MSE | Test R2 Score (%) | Training Time (s) | Training Memory (MB) | |
---|---|---|---|---|---|
CPU | GPU | ||||
TIT | 0.057 | 94.03 | 3.86 | 0.77 | 238.31 |
GTPO | 0.159 | 82.27 | 0.66 | 0.75 | 92.00 |
SFC | 0.031 | 97.59 | 5.00 | 0.76 | 218.00 |
Number of Hidden Layers | R2 Score | Test MSE | Time (s) | Memory (MB) | ||||
---|---|---|---|---|---|---|---|---|
IPSO | RS | IPSO | RS | IPSO | RS | IPSO | RS | |
TIT | ||||||||
1 | 86.825 | 91.373 | 0.127 | 0.083 | 1785.721 | 1401.196 | 38.176 | 197.800 |
2 | 89.532 | 94.033 | 0.101 | 0.058 | 2011.473 | 1640.982 | 2.332 | 174.414 |
3 | 86.808 | 88.996 | 0.127 | 0.106 | 4233.213 | 1919.514 | 3.542 | 198.514 |
4 | 88.473 | 90.617 | 0.111 | 0.090 | 5328.002 | 2152.087 | 3.166 | 222.085 |
5 | 87.284 | 91.418 | 0.123 | 0.083 | 6613.566 | 2176.519 | 4.198 | 241.229 |
GTPO | ||||||||
1 | 80.472 | 82.814 | 0.175 | 0.154 | 14,075.537 | 4532.693 | 36.658 | 596.997 |
2 | 79.501 | 79.689 | 0.184 | 0.182 | 12,710.275 | 3229.522 | 2.104 | 669.477 |
3 | 79.527 | 78.385 | 0.183 | 0.194 | 16,687.238 | 3478.373 | 2.356 | 747.213 |
4 | 62.855 | 77.172 | 0.333 | 0.204 | 19,688.012 | 4022.068 | 2.715 | 833.693 |
5 | 76.444 | 73.631 | 0.211 | 0.236 | 26,821.297 | 4381.155 | 2.986 | 921.462 |
SFC | ||||||||
1 | 97.589 | 79.489 | 0.022 | 0.184 | 2165.076 | 782.748 | 37.369 | 148.254 |
2 | 94.286 | 73.710 | 0.053 | 0.235 | 2325.503 | 960.313 | 2.371 | 165.159 |
3 | 95.407 | 80.717 | 0.042 | 0.173 | 2255.444 | 1108.242 | 3.369 | 186.845 |
4 | 95.539 | 76.454 | 0.041 | 0.211 | 6010.036 | 1185.941 | 5.566 | 211.164 |
5 | 95.942 | 78.312 | 0.037 | 0.194 | 3438.750 | 1262.703 | 5.099 | 230.509 |
Model | TIT | GTPO | SFC | |||
---|---|---|---|---|---|---|
MSE | R2 | MSE | R2 | MSE | R2 | |
ANN | 0.057 | 94.03 | 0.175 | 82.814 | 0.022 | 97.589 |
LR | 0.293 | 67.315 | 0.172 | 80.811 | 0.012 | 98.751 |
SVR | 0.198 | 77.852 | 0.220 | 75.382 | 0.036 | 96.081 |
XGBoost | 0.641 | 28.408 | 0.426 | 52.417 | 0.008 | 99.170 |
Initial AFR | Final AFR | Total Loss | Remarks | ||
---|---|---|---|---|---|
15 | 15.328 | 0.622 | 0.153 | 0.227 | - |
20 | 20.185 | 0.803 | 0.124 | 0.371 | - |
25 | 25.016 | 0.983 | 0.105 | 0.468 | Selected |
30 | 29.829 | 1.163 | 0.121 | 0.837 | Rejected |
35 | 34.625 | 1.342 | 0.148 | 0.250 | Rejected |
SPSO | KPSO | IPSO + GJ | IPSO + ACJ | IPSO + GJ + CM | IPSO + ACJ + CM | GPSO + GJ | GPSO + ACJ | GPSO + GJ + CM | GPSO + ACJ + CM | GEP [41] | |
---|---|---|---|---|---|---|---|---|---|---|---|
−8372.878 (808.292) | −5599.925 (298.221) | −10,328.824 (1090.873) | −12,199.546 (1544.250) | −9903.798 (821.021) | −11,682.823 (1648.968) | −9330.477 (1079.759) | −11,588.186 (1582.361) | −9290.839 (955.453) | −11,411.818 (1450.727) | −7976.677 | |
16.555 (40.244) | 65.286 (23.240) | 26.381 (37.756) | 86.130 (23.651) | 52.725 (31.756) | 27.672 (35.609) | 32.836 (32.887) | 31.582 (33.541) | 24.879 (44.006) | 37.787 (32.922) | 63.416 | |
2.693 (2.490) | 10.408 (0.625) | 0.353 (2.949) | 2.131 (2.605) | 0.682 (2.901) | 1.230 (2.717) | 10.410 (0.671) | 0.205 (2.991) | 11.538 (0.559) | 1.757 (2.780) | 8.882 | |
8.557 (21.210) | 22.255 (19.563) | 0.143 (23.858) | 0.501 (22.926) | 0.159 (23.123) | 0.719 (22.573) | 0.010 (22.510) | 0.320 (23.005) | 0.066 (23.928) | 0.532 (22.330) | 0.0582 | |
0.054 (2.28 × 107) | 59,564.602 (2.28 × 107) | 0.010 (2.28 × 107) | 0.430 (2.29 × 107) | 0.023 (2.28 × 107) | 0.745 (2.28 × 107) | 48.896 (2.28 × 107) | 0.160 (2.27 × 107) | 49.797 (2.27 × 107) | 0.701 (2.28 × 107) | 0.0948 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lim, J.T.; Habibullah, A.; Ng, E.Y.K. Towards a Digital Twin for Gas Turbines: Thermodynamic Modeling, Critical Parameter Estimation, and Performance Optimization Using PINN and PSO. Energies 2025, 18, 3721. https://doi.org/10.3390/en18143721
Lim JT, Habibullah A, Ng EYK. Towards a Digital Twin for Gas Turbines: Thermodynamic Modeling, Critical Parameter Estimation, and Performance Optimization Using PINN and PSO. Energies. 2025; 18(14):3721. https://doi.org/10.3390/en18143721
Chicago/Turabian StyleLim, Jian Tiong, Achnaf Habibullah, and Eddie Yin Kwee Ng. 2025. "Towards a Digital Twin for Gas Turbines: Thermodynamic Modeling, Critical Parameter Estimation, and Performance Optimization Using PINN and PSO" Energies 18, no. 14: 3721. https://doi.org/10.3390/en18143721
APA StyleLim, J. T., Habibullah, A., & Ng, E. Y. K. (2025). Towards a Digital Twin for Gas Turbines: Thermodynamic Modeling, Critical Parameter Estimation, and Performance Optimization Using PINN and PSO. Energies, 18(14), 3721. https://doi.org/10.3390/en18143721