Electrical Properties of Electric Vehicle Gear Oils
Abstract
1. Introduction
1.1. Electric Properties in EV
- 10% (at 70 °C) and 15% (at 90 °C) for transformers with a voltage of 110–150 kV;
- 7% (at 70 °C) and 10% (at 90 °C) for transformers with a voltage of 220–500 kV;
- 3% (at 70 °C) and 5% (at 90 °C) for transformers with a voltage of 750 kV.
1.2. Electromagnetic Field
- ‘ASTM D1816 Dielectric breakdown voltage of insulating liquids’,
- ‘ASTM D2624 Electrical conductivity of aviation and distillate fuels’,
- ‘ASTM D4308 Electrical conductivity of liquid hydrocarbons’.
2. Tests
- ➢
- Physicochemical parameters:
- Kinematic viscosity, according to ISO 3104 [28]: The determination of kinematic viscosity is carried out using a glass capillary viscometer. The measurement involves recording the time required for a specified volume of liquid to flow through the capillary at a controlled temperature (typically 40 °C or 100 °C). The kinematic viscosity is calculated as the result of the flow time and the viscometer’s calibration constant, with the result expressed in mm2/s.
- Viscosity index, according to ISO 2909 [29]: The viscosity index is determined based on the kinematic viscosity values measured at two temperatures: 40 °C and 100 °C. The calculation follows the formula provided in the standard, comparing the tested sample with reference oils of known viscosity behaviour. The viscosity index is a dimensionless number that indicates the degree to which a lubricant’s viscosity changes with temperature.
- Acid number, according to ISO 6618 [30]: The acid number is determined by titrating the sample dissolved in a solvent mixture (ethanol and toluene) with a potassium hydroxide solution in ethanol, using phenolphthalein as an indicator. The acid number is expressed as the number of milligrams of KOH required to neutralise the acids in 1 g of the sample (mg KOH/g).
- Water content, according to DIN 51777 [31]: The water content is determined by means of the distillation method using toluene. The sample is heated in the presence of toluene, and the separated water is collected and measured volumetrically in a properly calibrated receiving tube. The result is expressed as a mass percentage % (m/m).
- Weld load is the lowest applied load at which, under the conditions established in EN-ISO 20623 [32], welding of a rotating test ball with three stationary test balls will occur.
- ➢
- Electric properties:
- The dielectric loss factor, tgδ, is a measure of the loss of energy in the dielectric and is defined as the ratio of the current associated with losses in the dielectric to the current associated with charge buildup on the capacitor cladding. Energy losses during dielectric polarisation depend on the leakage current, the rotation of the dipoles in dipole polarisation, and the movement of the bound charge during macroscopic polarisation. Analysis of the measurement involves matching the measured dielectric response with the ageing time of the individual oil samples tested.
- The power factor, PF, according to EN 60247 [33], in transformer oil is a measure that determines how much electricity is actually used for operation (active power) and how much is lost as reactive power. Power factor values for transformer oil are usually very low, typically less than 0.5% when corrected to 20 °C.
- Resistivity, according to EN 60247 [33], was measured at an ambient temperature using Megger’s IDAX-300 insulation analyser (Megger, Dover, UK).
- Conductivity was measured at an ambient temperature using Megger’s IDAX-300 insulation analyser, according to EN 60247 [33].
- ➢
- These measurements were performed under the following conditions: AC voltage of 50 Hz, and electric field strength of 1 kV/mm, using an automatic high-voltage measuring bridge, type 2820, from Tettex (Haefely, Basel, Switzerland).
3. Samples
Discussion of the Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, Y.; Jha, S.; Raut, A.; Zhang, W.; Liang, H. Performance Characteristics of Lubricants in Electric and Hybrid Vehicles: A Review of Current and Future Needs. Front. Mech. Eng. 2020, 6, 571464. [Google Scholar] [CrossRef]
- Cornwell, K. Electric Drivelines Challenge. Lubes’n’Greases 2018, 24, 58–69. [Google Scholar]
- Kwak, Y.; Cleveland, C.; Adhvaryu, A.; Fang, X.; Hurley, S.; Adachi, T. Understanding Base Oils and Lubricants for Electric Drivetrain Applications; SAE Technical Paper; SAE International: Warrendale, PA, USA, 2019. [Google Scholar] [CrossRef]
- Bouvy, C.; Baltzer, S.; Jeck, P.; Gißing, J.; Lichius, T.; Eckstein, L. Holistic Vehicle Simulation Using Modelica—An Application on Thermal Management and Operation Strategy for Electrified Vehicles. In Proceedings of the 9th International Modelica Conference, Munich, Germany, 3–5 September 2012; Linköping University Electronic Press: Linköping, Sweden, 2012. [Google Scholar]
- Van Rensselar, J. The Tribology of Electric Vehicles. Tribol. Lubr. Technol. 2019, 75, 34–36. [Google Scholar]
- Narita, K.; Takekawa, D. Lubricants Technology Applied to Transmissions in Hybrid Electric Vehicles and Electric Vehicles; SAE Technical Paper; SAE International: Warrendale, PA, USA, 2019. [Google Scholar] [CrossRef]
- Stępień, Z. Specyfika Środków Smarowych do Zespołów Napędowych Samochodów Elektrycznych. Nafta-Gaz 2023, 2, 131–140. [Google Scholar] [CrossRef]
- Hemanth, G.; Suresha, B.; Ananthapadmanabha. Hybrid and electric vehicle tribology: A review. Surf. Topogr. Metrol. Prop. 2021, 9, 043001. [Google Scholar]
- Shah, R.; Gashi, B.; González-Poggini, S.; Colet-Lagrille, M.; Rosenkranz, A. Recent Trends in Batteries and Lubricants for Electric Vehicles. Adv. Mech. Eng. 2021, 13, 16878140211021730. [Google Scholar] [CrossRef]
- Dan, D.; Zhao, Y.; Wei, M.; Wang, X. Review of Thermal Management Technology for Electric Vehicles. Energies 2023, 16, 4693. [Google Scholar] [CrossRef]
- Sacha, D.; Skibińska, A.; Żółty, M.; Barglik, E. Skrzynie Biegów (Przekładnie) i Oleje Przekładniowe Stosowane w Pojazdach Elektrycznych. Nafta-Gaz 2024, 11, 716–722. [Google Scholar] [CrossRef]
- Shah, R.; Tung, S.; Aragon, N. Optimizing the Performance of Transmission Fluids for EVs and HEVs. F+L Magazine, 21 July 2021. [Google Scholar]
- Bartels, T.; Bock, W. Gear Lubrication Oils. In Lubricants and Lubrication; Dresel, W., Mang, T., Eds.; Wiley: Hoboken, NJ, USA, 2017. [Google Scholar]
- Skubis, J. Wybrane Zagadnienia z Technik i Diagnostyki Wysokonapięciowej; Oficyna Wydawnicza Politechniki Opolskiej: Opole, Poland, 1998. [Google Scholar]
- Kohtoh, M.; Kaneko, S.; Okabe, S.; Amimoto, T. Aging Effect on Electrical Characteristics of Insulating Oil in Field Transformer. IEEE Trans. Dielectr. Electr. Insul. 2009, 16, 1698–1706. [Google Scholar] [CrossRef]
- Griffiths, D.J. Wprowadzenie do Elektrodynamiki; Pearson Education: London, UK, 2013. [Google Scholar]
- Belmecheri, H.; Seghier, T.; Belkheiri, M.; Zegnini, B. Insulating and Thermal Aging Dielectric Properties Dependency of Transformer Oil Using Spectroscopy Techniques. Instrum. Mes. Métrol. 2019, 18, 337–342. [Google Scholar] [CrossRef]
- Błaszkiewicz, Z.; Moskała, J. Normalizacja Środków Smarowych w Polsce. Nafta-Gaz 2017. [Google Scholar] [CrossRef]
- Antosz, A. Oleje Transformatorowe—Stan Aktualny i Perspektywy Rozwoju. Nafta-Gaz 2010, 222–227. [Google Scholar]
- Maina, R.; Tumiatti, V.; Pompili, M.; Bartnikas, R. Dielectric Loss Characteristics of Copper-Contaminated Transformer Oils. IEEE Trans. Power Deliv. 2010, 25, 1673–1677. [Google Scholar] [CrossRef]
- Peng, D.; Yang, D.; Wang, C.; Li, M. The Influence of Transformer Oil Aging to Dielectric Dissipation Factor and Its Insulating Lifetime. In Proceedings of the 2009 Asia-Pacific Power and Energy Engineering Conference, Wuhan, China, 27–31 March 2009; pp. 1–4. [Google Scholar] [CrossRef]
- Tormos, B.; Bermúdez, V.; Ruiz, S.; Alvis-Sanchez, J. Degradation Effects of Base Oils after Thermal and Electrical Aging for EV Thermal Fluid Applications. Lubricants 2023, 11, 241. [Google Scholar] [CrossRef]
- Gao, Z.; Salvi, L.; Flores-Torres, S. High Conductivity Lubricating Oils for Electric and Hybrid Vehicles. U.S. Patent US20180100115A1, 12 April 2018. [Google Scholar]
- Flores-Torres, S.; Holt, D.G.L.; Carey, J.T. Method for Controlling Electrical Conductivity of Lubricating Oils in Electric Vehicle Powertrains. International Patent Application No. WO2018067903A1, 12 April 2018. [Google Scholar]
- Lesinski, L. Electrical Fluid Properties for EVs. Lubes’n’Greases 2022. [Google Scholar]
- Jackson, M. Test Methods for Evaluating Electrified Vehicle Fluids. Lube Mag. 2022, 170, 24–28. [Google Scholar]
- ASTM D5704-22; Standard Test Method for Evaluation of the Thermal and Oxidative Stability of Lubricating Oils Used for Manual Transmissions and Final Drive Axles. ASTM Internation: West Conshohocken, PA, USA, 2023.
- PN-EN ISO 3104:2024; Przetwory Naftowe—Ciecze Przezroczyste i Nieprzezroczyste—Oznaczanie Lepkości Kinematycznej i Obliczanie Lepkości Dynamicznej. International Organization for Standardization: Geneva, Switzerland, 2024.
- PN-ISO 2909:2009; Przetwory Naftowe—Obliczanie Wskaźnika Lepkości na Podstawie Lepkości Kinematycznej. International Organization for Standardization: Geneva, Switzerland, 2013.
- PN-ISO 6618:2011; Przetwory Naftowe i Środki Smarowe—Oznaczanie Liczby Kwasowej i Zasadowej—Metoda Miareczkowania Wobec Wskaźników Barwnych. International Organization for Standardization: Geneva, Switzerland, 1997.
- DIN 51777:2020; Petroleum Products—Determination of Water Content Using Titration According to Karl Fischer. DIN Media Standards Solutions: Berlin, Germany, 2020.
- PN-EN ISO 20623:2018; Petroleum and Related Products—Determination of the Extreme-Pressure and Anti-Wear Properties of Lubricants—Four-Ball Method (European Conditions). International Organization for Standardization: Geneva, Switzerland, 2018.
- PN-EN 60247:2008; Ciecze Elektroizolacyjne—Pomiar Przenikalności Elektrycznej Względnej, Współczynnika Strat Dielektrycznych (Tg Delta) i Rezystywności Przy Prądzie Stałym. International Organization for Standardization: Geneva, Switzerland, 2013.
- DIN 51451:2004; Testing of Petroleum Products and Related Products—Analysis by Infrared Spectrometry—General Working Principles. DIN Media Standards Solutions: Berlin, Germany, 2020.
- ASTM E2412-23a; Standard Practice for Condition Monitoring of In-Service Lubricants by Trend Analysis Using Fourier Transform Infrared (FT-IR) Spectrometry. ASTM Internation: West Conshohocken, PA, USA, 2023.
- Krasodomski, M.; Krasodomski, W.; Skibińska, A.; Żółty, M. Badania Porównawcze w Zakresie Metod Oznaczania Stabilności Termooksydacyjnej Olejów Bazowych. Przem. Chem. 2019, 98, 563–568. [Google Scholar] [CrossRef]
- Krasodomski, W.; Skibińska, A.; Żółty, M. Thermal Oxidation Stability of Lubricating Greases. Adv. Sci. Technol. Res. J. 2020, 14, 75–82. [Google Scholar] [CrossRef]
Properties | Unit | Oil A | Oil B | Oil C | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Fresh | Aged | Difference | Difference % | Fresh | Aged | Difference | Difference % | Fresh | Aged | Difference | Difference % | ||
PQ index | - | * | 11 | – | – | * | 368 | – | – | * | 12 | – | – |
Kinematic viscosity at 40 °C | mm/s2 | 32.06 | 36.68 | 4.62 | 4.14 | 32.39 | 43.89 | 11.5 | 35.5 | 36.43 | 36.73 | 0.3 | 0.8 |
Kinematic viscosity at 100 °C | mm/s2 | 7.625 | 7.300 | −0.325 | −4.2 | 6.402 | 4.872 | −1.530 | −23.9 | 7.618 | 7.703 | 0.085 | 1.1 |
Acid number | mg KOH/g | 1.763 | 2.719 | 0.956 | 54.2 | 2.064 | 2.150 | 0.086 | 4.2 | 1.372 | 1.079 | −0.293 | −21.3 |
Water content | % (m/m) | 0.204 | 0.012 | −0.192 | −94.1 | 0.309 | 0.17 | −0.139 | −44.9 | 0.104 | 0.013 | −0.091 | −87.5 |
Weld load (10 s) | N | 2600 | 2500 | 100 | −3.85 | 2100 | 2000 | 100 | −4.76 | 2200 | 2100 | 100 | −4.55 |
Dielectric loss factor, tgδ | - | ||||||||||||
at 20 °C | 21.08 | 3.10 | −17.98 | −85.3 | 21.13 | 2.54 | −18.59 | −87.9 | 1.12 | 0.83 | −0.29 | −25.9 | |
at 50 °C | 64.20 | 10.05 | −54.15 | −84.3 | 63.95 | 11.17 | −52.78 | −82.5 | 4.51 | 3.33 | −1.18 | −26.2 | |
at 70 °C | 145.27 | 24.79 | −120.48 | −82.9 | 133.39 | 25.25 | −108.14 | −81.1 | 8.87 | 6.91 | −1.96 | −22.1 | |
at 90 °C | 201.42 | 39.55 | −161.87 | −80.4 | 176.24 | 38.99 | −137.25 | −77.9 | 13.63 | 11.35 | −2.28 | −16.7 | |
Power factor (PF) | - | ||||||||||||
at 20 °C | 0.9989 | 0.9517 | −0.0472 | −4.7 | 0.9889 | 0.9344 | −0.0545 | −5.5 | 0.7552 | 0.6432 | −0.112 | −14.8 | |
at 50 °C | 0.9999 | 0.9951 | −0.0048 | −0.5 | 0.9999 | 0.996 | −0.0039 | −0.4 | 0.9767 | 0.9582 | −0.0185 | −1.9 | |
at 70 °C | 1 | 0.9992 | −0.0008 | −0.08 | 1 | 0.9992 | −0.0008 | −0.08 | 0.9937 | 0.9899 | −0.0038 | −0.4 | |
at 90 °C | 1 | 0.9997 | −0.0003 | −0.03 | 1 | 0.9997 | −0.0003 | −0.03 | 0.9971 | 0.9961 | −0.001 | −0.1 | |
Resistivity ρ in 20 °C | [Ωm] | 1.38 × 107 | 1.14 × 108 | 726.09 | 1.78 × 107 | 1.08 × 107 | −39.33 | 3.02 × 108 | 4.33 × 108 | 35.31 | |||
Conductivity in 20 °C | [S/m] | 7.25 × 10−8 | 8.78 × 10−9 | −87.89 | 5.61 × 10−8 | 9.24 × 10−8 | 64.71 | 3.31 × 10−9 | 2.31 × 10−9 | −30.21 |
Oil | Phenolic Antioxidant Degradation | Change in the Structures of Associated Hydrogen Bonds | Changes in Carboxyl Structures/ Degree of Oxidation/ | Changes in C-O Structures | Degradation of EP Additives (1st Band) | Degradation of EP Additives (2nd Band) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
cm−1 | abs/0.1 mm | cm−1 | abs/0.1 mm | cm−1 | abs/0.1 mm | cm−1 | abs/0.1 mm | cm−1 | abs/0.1 mm | cm−1 | abs/0.1 mm | |
A | 3650 | −0.0195 | 3300–3600 | −0.0159 | 1728 | 0.0843 | 1191 | 0.0598 | 983 | −0.2547 | 654 | −0.1138 |
B | 3647 | −0.0103 | 3300–3600 | −0.0230 | 1703 | 0.0218 | 1152 | 0.0573 | 981 | −0.0485 | 675 | −0.0676 |
C | 3642 | −0.0023 | 3300–3600 | −0.0195 | 1716 | 0.0250 | 1150 | −0.0147 | 941 | −0.0207 | – | – |
– | – | – | – | 1734 * | −0.0353 | – | – | – | – | – | – |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barglik, E.; Skibińska, A.; Krasodomski, W.; Dybich, K.; Sacha, D. Electrical Properties of Electric Vehicle Gear Oils. Energies 2025, 18, 3579. https://doi.org/10.3390/en18133579
Barglik E, Skibińska A, Krasodomski W, Dybich K, Sacha D. Electrical Properties of Electric Vehicle Gear Oils. Energies. 2025; 18(13):3579. https://doi.org/10.3390/en18133579
Chicago/Turabian StyleBarglik, Ewa, Agnieszka Skibińska, Wojciech Krasodomski, Kornel Dybich, and Dariusz Sacha. 2025. "Electrical Properties of Electric Vehicle Gear Oils" Energies 18, no. 13: 3579. https://doi.org/10.3390/en18133579
APA StyleBarglik, E., Skibińska, A., Krasodomski, W., Dybich, K., & Sacha, D. (2025). Electrical Properties of Electric Vehicle Gear Oils. Energies, 18(13), 3579. https://doi.org/10.3390/en18133579