Battery Energy Storage System Strategy for Island System Based on Reliability Assessment
Abstract
1. Introduction
2. Mathematical Modelling of RES in DC OPF
2.1. RES
2.1.1. Wind Energy
2.1.2. Photovoltaic Energy
2.1.3. BESS
2.2. DC OPF
3. Reliability Assessment
4. Isolated Node Analysis Strategy
5. Numerical Examples
5.1. Six-Bus RBTS
5.1.1. Case 1
5.1.2. Case 2
5.1.3. Case 3
5.2. 118-Bus System
6. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
BESS | Battery-Based Energy Storage Systems |
PS | Power Systems |
SO | System Operator |
SoC | State of Charge |
LOLP | Loss Of Load Probability |
DR | Demand Response |
DCOPF | Direct-Current Optimal Power Flow |
OPF | Optimal Power Flow |
UN | United Nations |
RES | Renewable Energy Source |
PV | Photovoltaic |
RBTS | Roy Billinton Test System |
Variables | |
Production cost in MW for generator i | |
Power generation of element i | |
, | Min and max power generation of element i |
Value of Lost Load of bus i | |
Energy Not Supplied | |
Power flow transmission of element connected in node i-m | |
Power demand in period t | |
Max power flow transmission of element connected in node i-m | |
Max Energy Not Supplied in node i | |
Energy stored in BESS | |
EBattMax/EBattmin | Max and min limits for stored energy in the BESS |
, | Efficiency of battery for charge and discharge of the BESS |
State charge and discharge of the BESS | |
Charge and discharge schedule of the unit within t periods of the system | |
Discharging and charging status of the BESS, respectively | |
Nominal power output | |
Wind turbine power | |
Constant voltage of the turbine | |
Wind speed for operation input, nominal wind speed, wind speed for operation output | |
Wind speed | |
PV generation | |
, | Reference voltage and current of the PV array |
Nominal solar insolation | |
Actual solar insolation | |
Area of the PV array | |
Probability of failure element j | |
Unavailability | |
Availability | |
Number of annual repairs of such element | |
Failure rate of the connected element | |
r | Resistance of transmission element |
x | Reactance of transmission element |
Sets | |
Buses with capacity to be interrupted | |
Nc | Independent components |
Ng | Number of generators |
LB | Load buses |
B | Nodes with batteries |
G | Set of generator |
Nt | Number of period of time |
References
- Zhang, N.; Kang, C.; Xiao, J.; Li, H.; Wang, S. Review and prospect of wind power capacity credit. Proc. CSEE 2015, 35, 82–94. [Google Scholar] [CrossRef]
- Parvini, Z.; Abbaspour, A.; Fotuhi-Firuzabad, M.; Moeini-Aghtaie, M. Operational Reliability Studies of Power Systems in the Presence of Energy Storage Systems. IEEE Trans. Power Syst. 2018, 33, 3691–3700. [Google Scholar] [CrossRef]
- Maeyaert, L.; Vandevelde, L.; Döring, T. Battery Storage for Ancillary Services in Smart Distribution Grids. J. Energy Storage 2020, 30, 101524. [Google Scholar] [CrossRef]
- Jeong, H.-W.; Cha, J.-M.; Oh, U.; Choi, J. Reliability Assessment of BESS integrated with PCS by Using Operation Data. IFAC Pap. 2016, 49, 235–237. [Google Scholar] [CrossRef]
- Xu, Q.; Hu, X.; Wang, P.; Xiao, J.; Tu, P.; Wen, C.; Lee, M.Y. A Decentralized Dynamic Power Sharing Strategy for Hybrid Energy Storage System in Autonomous DC Microgrid. IEEE Trans. Ind. Electron. 2017, 64, 5930–5941. [Google Scholar] [CrossRef]
- Xu, X.; Bishop, M.; Oikarinen, D.G.; Hao, C. Application and modeling of battery energy storage in power systems. CSEE J. Power Energy Syst. 2016, 2, 82–90. [Google Scholar] [CrossRef]
- Xiao, J.; Wang, P.; Setyawan, L. Hierarchical Control of Hybrid Energy Storage System in DC Microgrids. IEEE Trans. Ind. Electron. 2015, 62, 4915–4924. [Google Scholar] [CrossRef]
- Billinton, R.; Allan, R.N. Reliability Evaluation of Power Systems 2013; Plenum: New York, NY, USA, 1984. [Google Scholar]
- Dubarry, M.; Devie, A.; Stein, K.; Tun, M.; Matsuura, M.; Rocheleau, R. Battery Energy Storage System battery durability and reliability under electric utility grid operations: Analysis of 3 years of real usage. J. Power Sources 2017, 338, 65–73. [Google Scholar] [CrossRef]
- Koh, H.; Wang, P.; Choo, F.H.; Tseng, K.; Gao, Z.; Püttgen, H.B. Operational Adequacy Studies of a PV-Based and Energy Storage Stand-Alone Microgrid. IEEE Trans. Power Syst. 2015, 30, 892–900. [Google Scholar] [CrossRef]
- Gong; Wang, X.; Jiang, C.; Shahidehpour, M.; Liu, X.; Zhu, Z. Security-Constrained Optimal Sizing and Siting of BESS in Hybrid AC/DC Microgrid Considering Post-Contingency Corrective Rescheduling. IEEE Trans. Sustain. Energy 2021, 12, 2110–2122. [Google Scholar] [CrossRef]
- Yuan, X.; Yang, F.; Xu, J.; Liu, H. Configuration Optimization of Wind-Solar-Storage System considering Demand Response. In Proceedings of the 2018 5th International Conference on Electric Power and Energy Conversion Systems (EPECS), Kitakyushu, Japan, 23–25 April 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Metwaly, M.K.; Teh, J. Probabilistic Peak Demand Matching by Battery Energy Storage Alongside Dynamic Thermal Ratings and Demand Response for Enhanced Network Reliability. IEEE Access 2020, 8, 181547–181559. [Google Scholar] [CrossRef]
- Qi, X.; Ji, Z.; Wu, H.; Zhang, J.; Wang, L. Short-Term Reliability Assessment of Generating Systems Considering Demand Response Reliability. IEEE Access 2020, 8, 74371–74384. [Google Scholar] [CrossRef]
- González-Cabrera, N.; Gutiérrez-Alcaraz, G. Nodal user’s demand response based on incentive-based programs. J. Mod. Power Syst. Clean Energy 2017, 5, 79–90. [Google Scholar] [CrossRef]
- Cabrera, N.G.; Alcaraz, G.G.; Hernández, H.T. Structural ENS decomposition based on nodal reliability assessment approach. IEEE Lat. Am. Trans. 2016, 14, 3738–3745. [Google Scholar] [CrossRef]
- Shushpanov, I.; Suslov, K.; Ilyushin, P.; Sidorov, D.N. Towards the Flexible Distribution Networks Design Using the Reliability Performance Metric. Energies 2021, 14, 6193. [Google Scholar] [CrossRef]
- Teh, J.; Lai, C.M. Reliability impacts of the dynamic thermal rating and battery energy storage systems on wind-integrated power networks. Sustain. Energy Grids Netw. 2019, 20, 100268. [Google Scholar] [CrossRef]
- Hooshmand, E.; Rabiee, A. Energy management in distribution systems, considering the impact of reconfiguration, RESs, ESSs and DR: A trade-off between cost and reliability. Renew. Energy 2019, 139, 346–358. [Google Scholar] [CrossRef]
- Mohamad, F.; Teh, J.; Lai, C.M.; Chen, L.R. Development of Energy Storage Systems for Power Network Reliability: A Review. Energ. J. 2018, 11, 2278. [Google Scholar] [CrossRef]
- Junior, P.R.; Rocha, L.C.S.; Morioka, S.N.; Bolis, I.; Chicco, G.; Mazza, A.; Janda, K. Economic Analysis of the Investments in Battery Energy Storage Systems: Review and Current Perspectives. Energ. J. 2021, 14, 2503. [Google Scholar] [CrossRef]
- Dratsas, P.A.; Psarros, G.N.; Papathanassiou, S.A. Battery Energy Storage Contribution to System Adequacy. Energies 2021, 14, 5146. [Google Scholar] [CrossRef]
- Kim, Y.C.; Ahn, B.H. Multicriteria Generation-Expansion Planning with Global Environmental Considerations. IEEE Trans. Eng. Manag. 1993, 40, 154–161. [Google Scholar] [CrossRef]
- Park, Y.M.; Lee, K.Y.; Youn, L.T.O. New analytical approach for long-term generation expansion planning based on maximum principle and gaussian distribution function. IEEE Trans. Appar. Syst. 1985, 104, 390–397. [Google Scholar] [CrossRef]
- IBM. IBM ILOG CPLEX Optimization Studio Getting Started with CPLEX for MATLAB, Version 12 Release 6.0; IBM: Armonk, NY, USA, 2013. [Google Scholar]
- CPLEX. Software CPLEX. Available online: https://www.ibm.com/mx-es/products/ilog-cplex-optimization-studio (accessed on 23 January 2022).
- Billinton, R.; Kumar, S.; Chowdhury, N.; Chu, K.; Debnath, K.; Goel, L.; Khan, E.; Kos, P.; Nourbakhsh, G.; Oteng-Adjei, J. A reliability test system for educational purposes. IEEE Trans. Power Syst. 1989, 4, 1238–1244. [Google Scholar] [CrossRef]
- Grigg, C.; Wong, P.; Albrecht, P.; Allan, R.; Bhavaraju, M.; Billinton, R.; Chen, Q.; Fong, C.; Haddad, S.; Kuruganty, S.; et al. The IEEE reliability test system-1996: A report prepared by the reliability test system task force of the application of probability methods subcommittee. IEEE Trans. Power Syst. 1999, 14, 1010–1020. [Google Scholar] [CrossRef]
- Wang, P.; Ding, Y.; Xiao, Y. Technique to evaluate nodal reliability indices and nodal prices of restructured power systems. IEE Proc. Gener. Transm. Distrib. 2005, 152, 390–396. [Google Scholar] [CrossRef]
- Gonzalez-Cabrera, N.; Martínez-Lara, L.O.; Torres-García, V.; Salgado-Herrera, N.; Rodriguez-Rodriguez, J.R. Método eficiente para integrar los costos de la generación eólica en el modelado de la expansión de la capacidad de generación. Ing. Investig. Y Tecnol. 2022, 4, 1–11. [Google Scholar] [CrossRef]
- Zimmerman, R.D.; Murillo-Sanchez, C.E. MATPOWER (Version 7.0) [Software]. 2019. Available online: https://matpower.org (accessed on 4 August 2023). [CrossRef]
PG | Bus | PGMin [MW] | PGMax [MW] | C(PG) [$/MWh] | Type |
---|---|---|---|---|---|
1 | 1 | 0 | 110 | 12 | Thermal |
2 | 2 | 0 | 130 | 0.5 | Thermal |
3 | 5 | 0 | 25 | NA | Wind |
4 | 6 | 0 | 15 | NA | Wind |
5 | 6 | 0 | 2.5 | NA | Solar |
Line | From | To | Capacity [MW] | r [p.u.] | x [p.u] | Ac | Uc |
---|---|---|---|---|---|---|---|
L1 | 1 | 3 | 85 | 0.0342 | 0.18 | 0.998288 | 0.0017123 |
L2 | 2 | 4 | 71 | 0.114 | 0.6 | 0.994292 | 0.0057078 |
L3 | 1 | 2 | 71 | 0.0912 | 0.48 | 0.995434 | 0.0045662 |
L4 | 3 | 4 | 71 | 0.0228 | 0.12 | 0.998858 | 0.0011416 |
L5 | 3 | 5 | 71 | 0.0228 | 0.12 | 0.998858 | 0.0011416 |
L6 | 1 | 3 | 85 | 0.0342 | 0.18 | 0.998288 | 0.0017123 |
L7 | 2 | 4 | 71 | 0.114 | 0.6 | 0.994292 | 0.0057078 |
L8 | 4 | 5 | 71 | 0.0228 | 0.12 | 0.998858 | 0.0011416 |
L9 | 5 | 6 | 71 | 0.0228 | 0.12 | 0.998858 | 0.0011416 |
Bus | PD [MW] |
---|---|
2 | 40 |
3 | 85 |
4 | 40 |
5 | 20 |
6 | 20 |
Outage | Island Nodes | Pj | ENS [MW] | Time [s] | Solution Value [$] | Convergence |
---|---|---|---|---|---|---|
0 | NA | 0.9763 | 0 | 2.43 | 1978.72 | Optimal |
L5 | NA | 0.0017 | 0 | 2.86 | 1978.73 | Optimal |
L9 | N6 | 0.00111573 | 20 | 4.31 | 62,016.21 | Global |
L5 L8 | N5, N6 | 1.91 × 10−6 | 40 | 12.04 | 124,001.30 | Global |
L5 L9 | N6 | 1.91 × 10−6 | 20 | 12.21 | 162,016.21 | Global |
L8 L9 | N6 | 1.27 × 10−6 | 20 | 12.16 | 162,016.72 | Global |
Bus | ENENS [MW/yr] |
---|---|
2 | 3.65 |
3 | 10.43 |
4 | 9.89 |
5 | 11.28 |
6 | 29.07 |
Node | ENENS [MW/yr] |
---|---|
2 | 2.83 |
3 | 6.35 |
4 | 5.69 |
5 | 6.09 |
6 | 26.94 |
Case 1 | Case 2 | Case 3 | |
---|---|---|---|
Bus | ENENS [MW/yr] | ||
2 | 3.65 | 2.83 | 2.64 |
3 | 10.43 | 6.35 | 5.93 |
4 | 11.28 | 5.69 | 5.31 |
5 | 9.89 | 6.09 | 5.69 |
6 | 29.07 | 26.94 | 25.16 |
Bus | PGMin [MW] | PGMax [MW] | C(PG) [$/MWh] | Type |
---|---|---|---|---|
2 | 0 | 25 | NA | PV |
33 | 0 | 15 | NA | Wt |
117 | 0 | 2.5 | NA | PV |
Outage | Island Node | pj | ENS [MW] |
---|---|---|---|
183 | 116 | 0.000280 | 51.916 |
184 | 117 | 0.000695 | 14.43 |
183,184 | 116, 117 | 0.00000317 | 66.38 |
183,121 | 78, 79 | 0.00000317 | 53.83 |
184,125 | 79 | 0.000000793 | 16.31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gonzalez Cabrera, N. Battery Energy Storage System Strategy for Island System Based on Reliability Assessment. Energies 2025, 18, 3509. https://doi.org/10.3390/en18133509
Gonzalez Cabrera N. Battery Energy Storage System Strategy for Island System Based on Reliability Assessment. Energies. 2025; 18(13):3509. https://doi.org/10.3390/en18133509
Chicago/Turabian StyleGonzalez Cabrera, Nestor. 2025. "Battery Energy Storage System Strategy for Island System Based on Reliability Assessment" Energies 18, no. 13: 3509. https://doi.org/10.3390/en18133509
APA StyleGonzalez Cabrera, N. (2025). Battery Energy Storage System Strategy for Island System Based on Reliability Assessment. Energies, 18(13), 3509. https://doi.org/10.3390/en18133509