Performance Comparison of PV Module Configurations in a Fixed-Load P2H System Considering Regional and Seasonal Solar Irradiance in Korea
Abstract
1. Introduction
2. Characteristics of P2H Systems
2.1. P2H System Configuration
2.2. Characteristics of PV Output Under Fixed-Load Conditions
2.3. PV Module Configuration Procedure
3. Simulation and Experimental Results
3.1. Simulation Results of the P2H System
3.2. PV Simulator Experimental Results
3.3. Testbed Experimental Results
4. Performance Comparison Considering Regional Solar Irradiance in Korea
4.1. Regional Solar Irradiance Characteristics in Korea
- Spring: March to May;
- Summer: June to August;
- Autumn: September to November;
- Winter: December to February.
4.2. Analysis of Output Based on Adaptive PV Configuration
4.3. Seasonal Output and Regional Insights
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Breyer, C.; Khalili, S.; Bogdanov, D.; Ram, M.; Oyewo, A.S.; Aghahosseini, A.; Gulagi, A.; Solomon, A.A.; Keiner, D.; Lopez, G.; et al. On the History and Future of 100% Renewable Energy Systems Research. IEEE Access 2022, 10, 78176–78218. [Google Scholar] [CrossRef]
- Liang, X. Emerging Power Quality Challenges Due to Integration of Renewable Energy Sources. IEEE Trans. Ind. Appl. 2017, 53, 855–866. [Google Scholar] [CrossRef]
- Al-Ghussain, L.; Ahmad, A.D.; Abubaker, A.M.; Abujubbeh, M.; Almalaq, A.; Mohamed, M.A. A Demand-Supply Matching-Based Approach for Mapping Renewable Resources Towards 100% Renewable Grids in 2050. IEEE Access 2021, 9, 58634–58651. [Google Scholar] [CrossRef]
- Koh, L.H.; Wang, P.; Choo, F.H.; Tseng, K.-J.; Gao, Z.; Püttgen, H.B. Operational Adequacy Studies of a PV-Based and Energy Storage Stand-Alone Microgrid. IEEE Trans. Power Syst. 2015, 30, 892–900. [Google Scholar] [CrossRef]
- Park, K.-M.; Kim, J.-H.; Park, J.-Y.; Bang, S.-B. A Study on the Fire Risk of ESS through Fire Status and Field Investigation. Fire Sci. Eng. 2018, 32, 91–99. [Google Scholar] [CrossRef]
- Li, Z.; Wu, W.; Shahidehpour, M.; Wang, J.; Zhang, B. Combined Heat and Power Dispatch Considering Pipeline Energy Storage of District Heating Network. IEEE Trans. Sustain. Energy 2016, 7, 12–22. [Google Scholar] [CrossRef]
- Bloess, A.; Schill, W.P.; Zerrahn, A. Power-to-heat for renewable energy integration: A review of technologies, modeling approaches, and flexibility potentials. Appl. Energy 2018, 212, 1611–1626. [Google Scholar] [CrossRef]
- Ramsebner, J.; Haas, R.; Ajanovic, A.; Wietschel, M. The sector coupling concept: A critical review. WIREs Energy Environ. 2021, 10, e396. [Google Scholar] [CrossRef]
- Manni, M.; Nicolini, A.; Cotana, F. Performance assessment of an electrode boiler for power-to-heat conversion in sustainable energy districts. Energy Build. 2022, 277, 112569. [Google Scholar] [CrossRef]
- Ivanova, P.; Sauhats, A.; Linkevics, O. District Heating Technologies: Is it Chance for CHP Plants in Variable and Competitive Operation Conditions? IEEE Trans. Ind. Appl. 2018, 55, 35–42. [Google Scholar] [CrossRef]
- Badami, M.; Fambri, G.; Mancò, S.; Martino, M.; Damousis, I.G.; Agtzidis, D.; Tzovaras, D. A Decision Support System Tool to Manage the Flexibility in Renewable Energy-Based Power Systems. Energies 2020, 13, 153. [Google Scholar] [CrossRef]
- Khatibi, M.; Bendtsen, J.D.; Stoustrup, J.; Molbak, T. Exploiting Power-to-Heat Assets in District Heating Networks to Regulate Electric Power Network. IEEE Trans. Smart Grid 2020, 12, 2048–2059. [Google Scholar] [CrossRef]
- Gjorgievski, V.Z.; Markovska, N.; Abazi, A.; Duić, N. The potential of power-to-heat demand response to improve the flexibility of the energy system: An empirical review. Renew. Sustain. Energy Rev. 2021, 138, 110489. [Google Scholar] [CrossRef]
- Simone, C. Flexibility for the Power Grid Through District Heating Networks in a Decarbonization Scenario. 2021. Available online: https://www.politesi.polimi.it/handle/10589/203316 (accessed on 1 August 2024).
- Cámara-Díaz, L.; Ramírez-Faz, J.; López-Luque, R.; Casares, F.J. A Cost-Effective and Efficient Electronic Design for Photovoltaic Systems for Solar Hot Water Production. Sustainability 2021, 13, 10270. [Google Scholar] [CrossRef]
- Babu, T.S.; Ram, J.P.; Dragicevic, T.; Miyatake, M.; Blaabjerg, F.; Rajasekar, N. Particle Swarm Optimization Based Solar PV Array Reconfiguration of the Maximum Power Extraction Under Partial Shading Conditions. IEEE Trans. Sustain. Energy 2017, 9, 74–85. [Google Scholar] [CrossRef]
- Premkumar, M.; Subramaniam, U.; Babu, T.S.; Elavarasan, R.M.; Mihet-Popa, L. Evaluation of Mathematical Model to Characterize the Performance of Conventional and Hybrid PV Array Topologies under Static and Dynamic Shading Patterns. Energies 2020, 13, 3216. [Google Scholar] [CrossRef]
- Pachauri, R.K.; Kansal, I.; Babu, T.S.; Alhelou, H.H. Power Losses Reduction of Solar PV Systems Under Partial Shading Conditions Using Re-Allocation of PV Module-Fixed Electrical Connections. IEEE Access 2021, 9, 94789–94812. [Google Scholar] [CrossRef]
- Fang, X.; Yang, Q.; Yan, W. Switching Matrix Enabled Optimal Topology Reconfiguration for Maximizing Power Generation in Series–Parallel Organized Photovoltaic Systems. IEEE Syst. J. 2021, 16, 2765–2775. [Google Scholar] [CrossRef]
- Diaz-Dorado, E.; Suarez-Garcia, A.; Carrillo, C.; Cidras, J. Influence of the shadows in photovoltaic systems with different configurations of bypass diodes. In Proceedings of the SPEEDAM 2010, Pisa, Italy, 14–16 June 2010; pp. 134–139. [Google Scholar]
- Mahto, R.V.; Sharma, D.K.; Xavier, D.X.; Raghavan, R.N. Improving performance of photovoltaic panel by reconfigurability in partial shading condition. J. Photonics Energy 2020, 10, 042004. [Google Scholar] [CrossRef]
- Pensini, A.; Rasmussen, C.N.; Kempton, W. Economic analysis of using excess renewable electricity to displace heating fuels. Appl. Energy 2014, 131, 530–543. [Google Scholar] [CrossRef]
- Li, J.; Lin, J.; Song, Y.; Xing, X.; Fu, C. Operation Optimization of Power to Hydrogen and Heat (P2HH) in ADN Coordinated with the District Heating Network. IEEE Trans. Sustain. Energy 2018, 10, 1672–1683. [Google Scholar] [CrossRef]
- Ding, H.; Hu, Q.; Qian, T.; Wu, Z. Modeling and Optimization Operation of Improved Power-to-Hydrogen-and-Heat Method at Low Temperature for Reducing Carbon Emissions. IEEE Trans. Sustain. Energy 2024, 16, 189–200. [Google Scholar] [CrossRef]
- Farahat, M.A.; Metwally, H.M.; Mohamed, A.A. Optimal choice and design of different topologies of DC–DC converter used in PV systems, at different climatic conditions in Egypt. Renew. Energy 2012, 43, 393–402. [Google Scholar] [CrossRef]
- Kato, T.; Kumazawa, S.; Suzuoki, Y.; Honda, N.; Koaizawa, M.; Nishino, S. Evaluation of long-cycle fluctuation of spatial average insolation in electric utility service area. In Proceedings of the 2012 IEEE Power and Energy Society General Meeting, San Diego, CA, USA, 22–26 July 2012; pp. 1–6. [Google Scholar]
- KAnderson, K.; Perry, K. Estimating Subhourly Inverter Clipping Loss From Satellite-Derived Irradiance Data. In Proceedings of the 2020 47th IEEE Photovoltaic Specialists Conference (PVSC), Calgary, AB, Canada, 15 June–21 August 2020; pp. 1433–1438. [Google Scholar]
- Korea Meteorological Administration. API Hub. Available online: https://apihub.kma.go.kr/ (accessed on 1 February 2025).
PV Module Configuration | Irradiance [W/m2] | |||||||
---|---|---|---|---|---|---|---|---|
1000 | 700 | 400 | 150 | |||||
6S | 27.17 | 0.753 | 39.47 | 0.616 | 66.27 | 0.491 | 238.2 | 0.259 |
3S2P | 7.04 | 1 | 9.86 | 1 | 16.56 | 0.982 | 41.13 | 0.623 |
2S3P | 3.12 | 1 | 4.39 | 1 | 7.36 | 1 | 18.27 | 0.935 |
6P | 0.78 | 1 | 1.09 | 1 | 1.84 | 1 | 4.56 | 1 |
Equipment Name | Manufacturer | Model Number |
---|---|---|
PV simulator | Faith (Shenzhen, China) | FTB9120-1000-40 |
DC load | Faith (Shenzhen, China) | FT68026AL-1200-180 |
Power analyzer | N4L (Leicester, UK) | PPA 4530 |
Equipment Name | Manufacturer | Model Number |
---|---|---|
PV module | Trinasolar (Changzhou, China) | TSM-NEGR.28 |
Heater | Daesung Rheem (Eumseong, Republic of Korea) | 82V66-2 |
Irradiance sensor | Apogee (South Jordan, UT, USA) | SP-110 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, C.-W.; Chang, K.-T.; Park, G.-T.; Lee, S.-H.; Jeong, S.-Y.; Kang, Y.-S.; Ko, J.-S.; Kim, D.-K. Performance Comparison of PV Module Configurations in a Fixed-Load P2H System Considering Regional and Seasonal Solar Irradiance in Korea. Energies 2025, 18, 3446. https://doi.org/10.3390/en18133446
Choi C-W, Chang K-T, Park G-T, Lee S-H, Jeong S-Y, Kang Y-S, Ko J-S, Kim D-K. Performance Comparison of PV Module Configurations in a Fixed-Load P2H System Considering Regional and Seasonal Solar Irradiance in Korea. Energies. 2025; 18(13):3446. https://doi.org/10.3390/en18133446
Chicago/Turabian StyleChoi, Cheol-Woong, Kuk-Tai Chang, Gi-Tae Park, Seung-Hoon Lee, Su-Youn Jeong, Yun-Soo Kang, Jae-Sub Ko, and Dae-Kyong Kim. 2025. "Performance Comparison of PV Module Configurations in a Fixed-Load P2H System Considering Regional and Seasonal Solar Irradiance in Korea" Energies 18, no. 13: 3446. https://doi.org/10.3390/en18133446
APA StyleChoi, C.-W., Chang, K.-T., Park, G.-T., Lee, S.-H., Jeong, S.-Y., Kang, Y.-S., Ko, J.-S., & Kim, D.-K. (2025). Performance Comparison of PV Module Configurations in a Fixed-Load P2H System Considering Regional and Seasonal Solar Irradiance in Korea. Energies, 18(13), 3446. https://doi.org/10.3390/en18133446