Energy Efficiency Assessment of the Electrodialysis Process in Desalinating Rest Area Water Runoff
Abstract
1. Introduction
2. Materials and Methods
2.1. Description of the Analysed Rest Area (RA)
2.2. Course of the Study
3. Results and Discussion
3.1. RA Runoff Quality Analysis
3.2. Analysis of Pollutant Removal from RA Runoff in the Electrodialysis Process
3.3. Energy Efficiency of the Electrodialysis Process
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- European Commission. Commission Notice—The ‘Blue Guide’ on the Implementation of EU Product Rules 2016. Off. J. Eur. Union 2016, C272, 1–148. [Google Scholar]
- Directive 2012/27/EU of the European Parliament and of the Council of 25 October 2012 on Energy Efficiency, Amending Directives 2009/125/EC and 2010/30/EU and Repealing Directives 2004/8/EC and 2006/32/EC. Available online: http://data.europa.eu/eli/dir/2012/27/2023-05-04 (accessed on 13 May 2025).
- Regulation (EU) 2017/1369 of the European Parliament and of the Council of 4 July 2017 Setting a Framework for Energy Labelling and Repealing Directive 2010/30/EU. Available online: http://data.europa.eu/eli/reg/2017/1369/oj (accessed on 13 May 2025).
- United Nations. Goals of Sustainable Development of the 2030 Agenda for Sustainable Development. Available online: https://sdgs.un.org/goals (accessed on 13 May 2025).
- ISO 14067:2018; Greenhouse Gases—Carbon Footprint of Products—Requirements and Guidelines for Quantification. International Organization for Standardization: Geneva, Switzerland, 2018.
- Wiedmann, T.; Minx, J. A Definition of ‘Carbon Footprint’. In Ecological Economics Research Trends, Chapter 1; Pertsova, C.C., Ed.; Nova Science Publishers: Hauppauge, NY, USA, 2008; pp. 1–11. [Google Scholar]
- Shang, W.L.; Chen, Y.; Yu, Q.; Song, X.; Chen, Y.; Ma, X.; Ochieng, W. Spatio-temporal Analysis of Carbon Footprints for Urban Public Transport Systems Based on Smart Card Data. Appl. Energy 2023, 352, 121859. [Google Scholar] [CrossRef]
- Boulos, P.F.; Bros, C.M. Assessing the Carbon Footprint of Water Supply and Distribution Systems. J. AWWA 2010, 102, 47–54. [Google Scholar] [CrossRef]
- Galli, A.; Wiedmann, T.; Ercin, E.; Knoblauch, D.; Ewing, B.; Giljum, S. Integrating Ecological, Carbon and Water Footprint into a “Footprint Family” of Indicators: Definition and Role in Tracking Human Pressure on the Planet. Ecol. Indic. 2012, 16, 100–112. [Google Scholar] [CrossRef]
- Gómez-Llanos, E.; Matías-Sánchez, A.; Durán-Barroso, P. Wastewater Treatment Plant Assessment by Quantifying the Carbon and Water Footprint. Water 2020, 12, 3204. [Google Scholar] [CrossRef]
- Zaborowska, E.; Czerwionka, K.; Mąkinia, J. Integrated Plant-Wide Modelling for Evaluation of the Energy Balance and Greenhouse Gas Footprint in Large Wastewater Treatment Plants. Appl. Energy 2021, 282, 116126. [Google Scholar] [CrossRef]
- Maktabifard, M.; Awaitey, A.; Merta, E.; Haimi, H.; Zaborowska, E.; Mikola, A.; Mąkinia, J. Comprehensive Evaluation of the Carbon Footprint Components of Wastewater Treatment Plants Located in the Baltic Sea Region. Sci. Total Environ. 2022, 806, 150436. [Google Scholar] [CrossRef] [PubMed]
- European Parliament; Council of the European Union. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 Establishing a Framework for Community Action in the Field of Water Policy. Off. J. Eur. Communities 2000, 327, 1–73. [Google Scholar]
- Plappally, A.K.; Lienhard, J.H. Energy Requirements for Water Production, Treatment, End Use, Reclamation, and Disposal. Renew. Sustain. Energy Rev. 2012, 16, 4818–4848. [Google Scholar] [CrossRef]
- Flörke, M.; Schneider, C.; McDonald, R.I. Water Competition between Cities and Agriculture Driven by Climate Change and Urban Growth. Nat. Sustain. 2018, 1, 51–58. [Google Scholar] [CrossRef]
- Ayele, G.T. Review of Climate Change Impacts on Water Quantity and Quality in the Murray–Darling Basin, Australia. Water 2024, 16, 3506. [Google Scholar] [CrossRef]
- Yateh, M.; Li, F.; Tang, Y.; Li, C.; Xu, B. Energy Consumption and Carbon Emissions Management in Drinking Water Treatment Plants: A Systematic Review. J. Clean. Prod. 2024, 437, 140688. [Google Scholar] [CrossRef]
- Grzegorzek, M.; Wartalska, K.; Kaźmierczak, B. Review of Water Treatment Methods with a Focus on Energy Consumption. Int. Commun. Heat. Mass. Transf. 2023, 143, 106674. [Google Scholar] [CrossRef]
- Guptha, G.C.; Swain, S.; Al-Ansari, N.; Taloor, A.K.; Dayal, D. Assessing the Role of SuDS in Resilience Enhancement of Urban Drainage System: A Case Study of Gurugram City, India. Urban Clim. 2022, 41, 101075. [Google Scholar] [CrossRef]
- Mosleh, L.; Negahban-Azar, M.; Pavao-Zuckerman, M. Stormwater Green Infrastructure Resilience Assessment: A Social-Ecological Framework for Urban Stormwater Management. Water 2023, 15, 1786. [Google Scholar] [CrossRef]
- Karami, M.; Behzadian, K.; Ardeshir, A.; Hosseinzadeh, A.; Kapelan, Z. A Multi-Criteria Risk-Based Approach for Optimal Planning of SuDS Solutions in Urban Flood Management. Urban Water J. 2022, 19, 1066–1079. [Google Scholar] [CrossRef]
- Ferrans, P.; Reyes-Silva, J.D.; Krebs, P.; Temprano, J. Flood Management with SUDS: A Simulation–Optimization Framework. Water 2023, 15, 426. [Google Scholar] [CrossRef]
- Mondal, A.; Garg, R.D. Assessing the Role of Sustainable Water Bodies in Urban Drainage Systems to Mitigate Urban Flooding: A Case Study of Gurgaon, Haryana, India. Phys. Chem. Earth Parts A/B/C 2025, 137, 103803. [Google Scholar] [CrossRef]
- Webber, J.L.; Fletcher, T.; Farmani, R.; Butler, D.; Melville-Shreeve, P. Moving to a Future of Smart Stormwater Management: A Review and Framework for Terminology, Research, and Future Perspectives. Water Res. 2022, 218, 118409. [Google Scholar] [CrossRef]
- Sweetapple, C.; Webber, J.; Hastings, A.; Melville-Shreeve, P. Realising Smarter Stormwater Management: A Review of the Barriers and a Roadmap for Real World Application. Water Res. 2023, 244, 120505. [Google Scholar] [CrossRef]
- Islam, M.M.; Afrin, S.; Tarek, M.H.; Rahman, M.M. Reliability and Financial Feasibility Assessment of a Community Rainwater Harvesting System Considering Precipitation Variability Due to Climate Change. J. Environ. Manag. 2021, 289, 112507. [Google Scholar] [CrossRef]
- de Sá Silva, A.C.R.; Bimbato, A.M.; Balestieri, J.A.P.; Vilanova, M.R.N. Exploring Environmental, Economic and Social Aspects of Rainwater Harvesting Systems: A Review. Sustain. Cities Soc. 2022, 76, 103475. [Google Scholar] [CrossRef]
- Oladunjoye, O.; Proverbs, D.; Xiao, H. Retrofitting Sustainable Urban Drainage Systems (SuDS): A Cost-Benefit Analysis Appraisal. Water 2022, 14, 2521. [Google Scholar] [CrossRef]
- Matta-Ortíz, A.F.; Güiza-Valdes, I.A.; Trujillo-González, J.M.; Rojas-Peña, J.I.; Torres-Mora, M.A.; García-Navarro, F.J.; Jiménez-Ballesta, R. Assessing Rainwater Quality and Harvesting Potential: A Spatial Analysis in a Medium-Sized City of Colombia. Water 2024, 16, 3411. [Google Scholar] [CrossRef]
- Zdeb, M.; Papciak, D.; Zamorska, J. An Assessment of the Quality and Use of Rainwater as the Basis for Sustainable Water Management in Suburban Areas. E3S Web Conf. 2018, 45, 00111. [Google Scholar] [CrossRef]
- Abdemanafi, D.; Meshkatee, A.; Hejam, S. The Study of pH, Total Dissolved Solids (TDS), Electrical Conductivity (EC), Total Alkalinity and Total Hardness of Rain Water over Tehran City. J. Clim. Res. 2021, 1399, 1–14. [Google Scholar]
- Wartalska, K.; Grzegorzek, M.; Bełcik, M.; Wdowikowski, M.; Kolanek, A.; Niemierka, E.; Kaźmierczak, B. The Potential of RainWater Harvesting Systems in Europe–Current State of Art and Future Perspectives. Water Resour. Manag. 2024, 38, 4657–4683. [Google Scholar] [CrossRef]
- Chughtai, M.; Mustafa, S.; Mumtaz, M. Study of Physicochemical Parameters of Rainwater: A Case Study of Karachi, Pakistan. Am. J. Anal. Chem. 2014, 5, 235–242. [Google Scholar] [CrossRef]
- Słyś, D.; Stec, A. The Analysis of Variants of Water Supply Systems in Multi-Family Residential Building. Ecol. Chem. Eng. S 2014, 21, 623–635. [Google Scholar] [CrossRef]
- Stec, A.; Zeleňáková, M. An Analysis of the Effectiveness of Two Rainwater Harvesting Systems Located in Central Eastern Europe. Water 2019, 11, 458. [Google Scholar] [CrossRef]
- Mazurkiewicz, K.; Jeż-Walkowiak, J.; Michałkiewicz, M. Physicochemical and Microbiological Quality of Rainwater Harvested in Underground Retention Tanks. Sci. Total Environ. 2022, 814, 152701. [Google Scholar] [CrossRef] [PubMed]
- Gwoździej-Mazur, J.; Jadwiszczak, P.; Kaźmierczak, B.; Kózka, K.; Struk-Sokołowska, J.; Wartalska, K.; Wdowikowski, M. The Impact of Climate Change on Rainwater Harvesting in Households in Poland. Appl. Water Sci. 2022, 12, 15. [Google Scholar] [CrossRef]
- Gupta, S.; Mishra, P.K.; Khare, D. Advancements and Challenges in Roof-Top Harvested Rainwater Filtration: A Review. Environ. Process. 2025, 12, 7. [Google Scholar] [CrossRef]
- Müller, A.; Österlund, H.; Marsalek, J.; Viklander, M. The Pollution Conveyed by Urban Runoff: A Review of Sources. Sci. Total Environ. 2020, 709, 136125. [Google Scholar] [CrossRef] [PubMed]
- Zubala, T.; Patro, M. Time and Spatial Variability in Concentrations of Selected Pollutants in the New Bypass Rainwater Harvesting System. Water Air Soil. Pollut. 2021, 232, 211. [Google Scholar] [CrossRef]
- Dia, M.; Peyneau, P.E.; Courtier-Murias, D.; Bechet, B. Detection and Quantification of Nanoparticles in Runoff from a Highly Trafficked Urban Motorway. Environ. Sci. Nano 2025, 12, 1993–2007. [Google Scholar] [CrossRef]
- Opher, T.; Friedler, E. Factors Affecting Highway Runoff Quality. Urban Water J. 2010, 7, 155–172. [Google Scholar] [CrossRef]
- Huber, M.; Helmreich, B. Stormwater Management: Calculation of Traffic Area Runoff Loads and Traffic Related Emissions. Water 2016, 8, 294. [Google Scholar] [CrossRef]
- Huber, M.; Welker, A.; Helmreich, B. Critical Review of Heavy Metal Pollution of Traffic Area Runoff: Occurrence, Influencing Factors, and Partitioning. Sci. Total Environ. 2016, 541, 895–919. [Google Scholar] [CrossRef]
- Revitt, D.M.; Lundy, L.; Coulon, F.; Fairley, M. The Sources, Impact and Management of Car Park Runoff Pollution: A Review. J. Environ. Manag. 2014, 146, 552–567. [Google Scholar] [CrossRef]
- Schiff, K.C.; Tiefenthaler, L.L.; Bay, S.M.; Greenstein, D.J. Effects of Rainfall Intensity and Duration on the First Flush from Parking Lots. Water 2016, 8, 320. [Google Scholar] [CrossRef]
- Suripin, S.; Sangkawati, S.S.; Pranoto, S.A.; Sutarto, E.; Hary, B.; Dwi, K. Reducing Stormwater Runoff from Parking Lot with Permeable Pavement. E3S Web Conf. 2018, 73, 05016. [Google Scholar] [CrossRef]
- Charters, F.J.; Cochrane, T.A.; O’Sullivan, A.D. The Influence of Urban Surface Type and Characteristics on Runoff Water Quality. Sci. Total Environ. 2021, 755, 142470. [Google Scholar] [CrossRef]
- Choi, H.; Geronimo, F.K.F.; Jeon, M.; Kim, L.H. Investigation of the Factors Affecting the Treatment Performance of a Stormwater Horizontal Subsurface Flow Constructed Wetland Treating Road and Parking Lot Runoff. Water 2021, 13, 1242. [Google Scholar] [CrossRef]
- James, W.; Thompson, M.K. Contaminants from Four New Pervious and Impervious Pavements in a Parking-Lot. In Advances in Modeling the Management of Stormwater Impacts; CRC Press: Boca Raton, FL, USA, 2021; pp. 207–222. [Google Scholar]
- Poudyal, S.; Cochrane, T.A.; Bello-Mendoza, R. Carpark Pollutant Yields from First Flush Stormwater Runoff. Environ. Chall. 2021, 5, 100301. [Google Scholar] [CrossRef]
- Lembcke, D.; Thompson, B.; Read, K.; Betts, A.; Singaraja, D. Reducing Road Salt Application by Considering Winter Maintenance Needs in Parking Lot Design. J. Green. Build. 2017, 12, 1–12. [Google Scholar] [CrossRef]
- Tirpak, A.; Winston, R.J.; Feliciano, M.; Dorsey, J.D. Stormwater Quality Performance of Permeable Interlocking Concrete Pavement Receiving Run-On from an Asphalt Traffic Lane in a Cold Climate. Environ. Sci. Pollut. Res. 2020, 27, 21716–21732. [Google Scholar] [CrossRef]
- Mundahl, N.D.; Howard, J. Stormwater Management and Late-Winter Chloride Runoff into an Urban Lake in Minnesota, USA. Hydrology 2025, 12, 76. [Google Scholar] [CrossRef]
- Juve, J.M.A.; Christensen, F.M.S.; Wang, Y.; Wei, Z. Electrodialysis for Metal Removal and Recovery: A Review. Chem. Eng. J. 2022, 435, 134857. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, J.; Shen, F.; Wang, D.; Zhang, S. Efficient Removal of Metal Ions from the Ionic Liquid Aqueous Solution by Selective Electrodialysis. Sep. Purif. Technol. 2022, 295, 121322. [Google Scholar] [CrossRef]
- Cerrillo-Gonzalez, M.D.M.; Villen-Guzman, M.; Rodriguez-Maroto, J.M.; Paz-Garcia, J.M. Metal Recovery from Wastewater Using Electrodialysis Separation. Metals 2023, 14, 38. [Google Scholar] [CrossRef]
- Valero, F.; Barceló, A.; Arbós, R. Electrodialysis Technology: Theory and Applications. In Desalination, Trends and Technologies; Schorr, M., Ed.; IntechOpen: London, UK, 2011; pp. 3–20. [Google Scholar] [CrossRef]
- Google Maps. Available online: https://www.google.pl/maps (accessed on 13 May 2025).
- IMGW-PIB. Charakterystyka Wybranych Elementów Klimatu w Polsce w 2024 Roku—Podsumowanie (Characteristics of Selected Climate Elements in Poland in 2024—Summary). Available online: https://imgw.pl/charakterystyka-wybranych-elementow-klimatu-w-polsce-w-2024-roku-podsumowanie/ (accessed on 13 May 2025).
- ISO 15705:2002; Water Quality—Determination of the Chemical Oxygen Demand Index (ST-COD)—Small-Scale Sealed-Tube Method. International Organization for Standardization: Geneva, Switzerland, 2002.
- Hach. Water Analysis Methods and Procedures. Available online: https://www.hach.com/resources/water-analysis-handbook?srsltid=AfmBOooOpfToSh_h1SlqESqfZAMj-Q0670EpFtFshoJOsoHhfaeexK02#T (accessed on 13 May 2025).
- USEPA. Method 9060A (SW-846): Total Organic Carbon, Part of Test Methods for Evaluating Solid Waste, Physical/Chemical Methods; Revision 1; U.S. Environmental Protection Agency: Washington, DC, USA, 2004. Available online: https://www.epa.gov/hw-sw846/sw-846-test-method-9060a-total-organic-carbon (accessed on 13 May 2025).
- ISO 7027-1:2016; Water Quality—Determination of Turbidity—Part 1: Quantitative Methods. International Organization for Standardization: Geneva, Switzerland, 2016.
- ISO 7888:1985; Water Quality—Determination of Electrical Conductivity. International Organization for Standardization: Geneva, Switzerland, 1985.
- ISO 10523:2008; Water Quality—Determination of pH. International Organization for Standardization: Geneva, Switzerland, 2008.
- ISO 23696-1:2023; Water Quality—Determination of Nitrate in Water Using Small-Scale Sealed Tubes—Part 1: Dimethylphenol Colour Reaction. International Organization for Standardization: Geneva, Switzerland, 2023.
- ISO 7150-1:1984; Water Quality—Determination of Ammonium—Part 1: Manual Spectrometric Method. International Organization for Standardization: Geneva, Switzerland, 1984.
- ISO 9297:1989; Water Quality—Determination of Chloride—Silver Nitrate Titration with Chromate Indicator (Mohr’s Method). International Organization for Standardization: Geneva, Switzerland, 1989.
- USEPA. Method 6020B (SW-846): Inductively Coupled Plasma-Mass Spectrometry; Revision 2; U.S. Environmental Protection Agency: Washington, DC, USA, 2014. Available online: https://www.epa.gov/hw-sw846/sw-846-test-method-6020b-inductively-coupled-plasma-mass-spectrometry (accessed on 13 May 2025).
- PN-C-04643:1994; Water and Waste Water. Tests for Aliphatic Hydrocarbons Contents. Determination of Total of C7–C30 Hydrocarbons by Gas Chromatography. Polish Committee for Standardization: Warsaw, Poland, 1994. (In Polish)
- The Council of The European Union. Council Directive 98/83/EC of 3 November 1998 on the Quality of Water Intended for Human Consumption. Off. J. Eur. Communities 1998, L 330, 32–54. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:31998L0083 (accessed on 13 May 2025).
- Minister of Maritime Economy and Inland Navigation. Regulation of the Minister of Maritime Economy and Inland Navigation of 12 July 2019 on Substances Particularly Harmful to the Aquatic Environment and the Conditions to Be Met When Discharging Wastewater into Water or Soil, as Well as When Discharging Stormwater or Meltwater into Water Bodies or Water Facilities. Dziennik Ustaw 2019, 1311. Available online: https://dziennikustaw.gov.pl/D2019000131101.pdf (accessed on 13 May 2025). (In Polish).
- Sadrzadeh, M.; Razmi, A.; Mohammadi, T. Separation of Different Ions from Wastewater at Various Operating Conditions Using Electrodialysis. Sep. Purif. Technol. 2007, 54, 147–156. [Google Scholar] [CrossRef]
- Dévora-Isiordia, G.E.; Ayala-Espinoza, A.; Lares-Rangel, L.A.; Encinas-Guzmán, M.I.; Sánchez-Duarte, R.G.; Álvarez-Sánchez, J.; Martínez-Macías, M.D.R. Effect of Temperature on Diluate Water in Batch Electrodialysis Reversal. Separations 2021, 8, 229. [Google Scholar] [CrossRef]
- Fuerhacker, M.; Haile, T.M.; Monai, B.; Mentler, A. Performance of a Filtration System Equipped with Filter Media for Parking Lot Runoff Treatment. Desalination 2011, 275, 118–125. [Google Scholar] [CrossRef]
- California Department of Transportation (Caltrans). Storm Water Monitoring & Data Management. Discharge Characterization Study Report; CTSW-RT-03-065.51.42; Caltrans: Sacramento, CA, USA, 2003. Available online: https://dot.ca.gov/-/media/dot-media/programs/environmental-analysis/documents/env/ctsw-rt-03-065-a11y.pdf (accessed on 13 May 2025).
- McQueen, A.D.; Johnson, B.M.; Rodgers, J.H., Jr.; English, W.R. Campus Parking Lot Stormwater Runoff: Physico-Chemical Analyses and Toxicity Tests Using Ceriodaphnia dubia and Pimephales promelas. Chemosphere 2010, 79, 561–569. [Google Scholar] [CrossRef]
- Banasiak, L.J.; Kruttschnitt, T.W.; Schäfer, A.I. Desalination Using Electrodialysis as a Function of Voltage and Salt Concentration. Desalination 2007, 205, 38–46. [Google Scholar] [CrossRef]
Indicator or Chemical Parameter | Method | Standard/Justifying |
---|---|---|
COD | Spectrophotometric using the Hach Lange application (Method 8000), range 15–150 mg/L | ISO 15705 [61] www.hach.com [62] |
TOC | Spectrometric with IR detection | USEPA 9060A [63] |
TSS | Photometric using the Hach Lange application (Method 8006), range 5–750 mg/L | www.hach.com [62] |
Turbidity | Nephelometric method | ISO 7027 [64] |
EC | Conductometric method | ISO 7888 [65] |
pH | Potentiometric method | ISO 10523 [66] |
N–NO3 | Spectrophotometric using the Hach Lange application (Method LCK 339), range 0.23–13.5 mg/L | ISO 23696-1:2023 [67] www.hach.com [62] |
N–NH4 | Spectrophotometric using the Hach Lange application (Method LCK 304), range 0.15–2.50 mg/L | ISO 7150-1 [68] www.hach.com [62] |
Cl− | Titrimetric Mohr’s method | ISO 9297 [69] |
Metals * | ICP-MS technique | USEPA 6020B [70] |
Sulfates | Spectrophotometric using the Hach Lange application (Method LCK 8051), range 2–70 mg/L | www.hach.com [62] |
TPH | GC-MS technique | PN-C-04643: 1994 [71] |
Analyte | Internal Standard | IDL | BEC | R |
---|---|---|---|---|
Be2+ | Sc | 0.004462 µg/L | 0.01462 µg/L | 0.9999 |
Na+ | Sc | 0.01062 mg/L | 0.1362 mg/L | 0,9999 |
Mg2+ | Sc | 0.00311 mg/L | 0.0173 mg/L | 0.9998 |
Ca2+ | Sc | 0.02098 mg/L | 0.1181 mg/L | 0.9999 |
V3+ | Sc | 0.005996 µg/L | 0.004636 µg/L | 0.9997 |
CrT | Sc | 0.01423 µg/L | 0.1061 µg/L | 0.9997 |
Mn2+ | Sc | 0.03119 µg/L | 0.04061 µg/L | 0.9998 |
Cu2+ | Sc | 0.03279 µg/L | 0.4696 µg/L | 0.9997 |
Zn2+ | Y | 3.919 µg/L | 4.241 µg/L | 1.0000 |
MoT | Y | 0.0209 µg/L | 0.1261 µg/L | 0.9999 |
Cd2+ | Y | 0.009593 µg/L | 0.00777 µg/L | 0.9998 |
Pb2+ | Lu | 0.003996 µg/L | 0.03893 µg/L | 0.9997 |
Variant | I | II | III | IV | V | VI |
---|---|---|---|---|---|---|
Temperature (°C) | 20 | 20 | 20 | 30 | 30 | 30 |
voltage (V) | 30 | 20 | 10 | 30 | 20 | 10 |
Preparatory activities |
| |||||
Pretreatment (activities performed every 3 min for 45 min test duration) |
|
Indicator | EC | pH | T * | TSS | Cl− | N–NH4+ | N–NO3− | Turbidity | COD | TC | IC | TOC | SO42− | TPH |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Unit | μS/cm | pH | °C | mg/L | mg/L | mg/L | mg/L | NTU | mgO2/L | mg/L | mg/L | mg/L | mg/L | μg/L |
Measured data | ||||||||||||||
Rainwater runoff | ||||||||||||||
Min | 826 | 6.58 | 14.2 | 6 | 92.3 | 0.00 | 35.2 | 2.95 | 67.4 | 16.11 | 5.22 | 7.80 | 49.0 | 0.136 |
Max | 1095 | 7.64 | 19.2 | 106 | 177.5 | 19.64 | 115.1 | 31.1 | 167.0 | 74.28 | 52.55 | 23.04 | 54.0 | 18.650 |
Mean | 980 | 7.12 | 16.50 | 31.17 | 114.78 | 3.55 | 78.48 | 12.35 | 134.07 | 33.71 | 18.23 | 15.48 | 50.75 | 4.19 |
Median | 1019 | 7.07 | 16.15 | 13.00 | 104.73 | 0.41 | 81.65 | 8.08 | 152.50 | 25.60 | 12.48 | 13.97 | 50.00 | 0.92 |
Meltwater runoff | ||||||||||||||
Min | 409 | 7.19 | 867.00 | 71.00 | ||||||||||
Max | 20,100 | 8.409 | 3074.00 | 7845.50 | ||||||||||
Mean | 7738 | 7.99 | 1604.17 | 2828.17 | ||||||||||
Median | 6650 | 8.087 | 1306.00 | 2325.25 | ||||||||||
Literature data | ||||||||||||||
Road and campus parking lot (South Korea); 2010–2019 [49] | ||||||||||||||
Mean | 143.3 | 155.2 | ||||||||||||
RA next to highway A21 (Austria); Dec 2005–May 2007 [76] | ||||||||||||||
Min | 105 | 6.9 | 53 | 9.6 | 0.73 | 2.9 | ||||||||
Max | 59,800 | 12.3 | 789 | 24,700 | 17 | 113 | ||||||||
Mean | 9 | 267 | 5112 | 4.9 | 43.5 | |||||||||
Median | 9 | 188 | 89.4 | |||||||||||
RAs (California, USA); Jan 2000–Mar 2003 [77] | ||||||||||||||
Min | 9 | 5.7 | 7 | 0.2 | 2.5 | |||||||||
Max | 809 | 7.9 | 247 | 3.83 | 247 | |||||||||
Mean | 78 | 6.9 | 63.3 | 0.96 | 22.2 | |||||||||
Median | 52 | 6.8 | 44.2 | 0.69 | 15.0 | |||||||||
Two campus parking lots (South Carolina, USA); Oct 2006–Jul 2007 [78] | ||||||||||||||
Min | 20 | 3.6 | <0.1 | <3 | ||||||||||
Max | 226 | 6.7 | 584.9 | 803 | ||||||||||
Parametric values for drinking water [72] | ||||||||||||||
Max | 2500 | 9.5 | 250 | 0.50 | 50 | 250 | ||||||||
Parametric values for rain- or meltwater introduced into the soil [73] | ||||||||||||||
Max | 100.0 | 15,000 |
Metal | Na+ | Mg2+ | Ca2+ | V3+ | CrT | Mn2+ | Cu2+ | Zn2+ | MoT | Cd2+ | Pb2+ |
---|---|---|---|---|---|---|---|---|---|---|---|
Unit | mg/L | mg/L | mg/L | μg/L | μg/L | μg/L | μg/L | μg/L | μg/L | μg/L | μg/L |
Measured data | |||||||||||
Rainwater runoff | |||||||||||
Min | 55.7 | 11.18 | 92.59 | 0.30 | 0.51 | 16 | 8.55 | 66.93 | 0.76 | 0.05 | 0.31 |
RSD | 15.31% | 1.54% | 2.41% | 2.48% | 19.40% | 2.08% | 4.45% | 3.28% | 32.43% | 11.81% | 14.57% |
Max | 113.0 | 14.33 | 127.92 | 1.95 | 4.39 | 1391 | 40.00 | 340.00 | 1.97 | 0.19 | 4.29 |
RSD | 2.68% | 0.93% | 0.38% | 22.7% | 24.94% | 2.01% | 3.46% | 24.21% | 64.7% | 39.92% | 23.47% |
Mean | 71.6 | 12.58 | 109.71 | 0.81 | 1.97 | 290 | 17.12 | 154.04 | 1.18 | 0.11 | 1.84 |
Median | 64.4 | 12.25 | 109.14 | 0.49 | 1.56 | 49 | 11.55 | 110.27 | 0.90 | 0.11 | 1.62 |
Meltwater runoff | |||||||||||
Min | 65.8 | 24.92 | 57.18 | 75.72 | 101.73 | 515 | 206.39 | 604.39 | 4.07 | 0.44 | 28.22 |
RSD | 2.49% | 0.34% | 1.37% | 2.71% | 1.01% | 1.65% | 2.34% | 3.12% | 7.20% | 28.85% | 3.33% |
Max | 4655.6 | 194.87 | 657.41 | 402.93 | 624.10 | 3524 | 1299.43 | 4754.18 | 17.56 | 3.03 | 204.05 |
RSD | 0.63% | 5.32% | 5.46% | 6.21% | 7.51% | 5.98% | 5.08% | 2.76% | 1.70% | 7.70% | 6.18% |
Mean | 1688.0 | 60.65 | 199.40 | 161.72 | 225.21 | 1279 | 575.72 | 2422.87 | 9.32 | 1.15 | 77.96 |
Median | 1273.5 | 35.91 | 132.71 | 125.10 | 157.01 | 939 | 523.38 | 2551.52 | 7.45 | 0.81 | 59.95 |
Literature data | |||||||||||
Road and campus parking lot (South Korea); 2010–2019 [49] | |||||||||||
Mean | 0.16 | 0.15 | 0.53 | 0.10 | 0.18 | ||||||
RA next to highway A21 (Austria); Dec 2005–May 2007 [76] | |||||||||||
Min | 40 | <10 | <0.2 | ||||||||
Max | 430 | 1000 | <0.2 | ||||||||
Mean | 205 | 360 | |||||||||
Median | 182 | 294 | |||||||||
RAs (California, USA); Jan 2000–Mar 2003 [77] | |||||||||||
Min | 1.0 | 4.6 | 0.2 | 1.1 | |||||||
Max | 18.0 | 89.0 | 2.8 | 32.0 | |||||||
Mean | 4.8 | 16.0 | 0.32 | 7.7 | |||||||
Median | 3.8 | 13.1 | 0.17 | 5.1 | |||||||
2 campus parking lots (South Carolina, USA); Oct 2006–Jul 2007 [78] | |||||||||||
Min | <6 | <2 | <5 | <2 | <3 | <59 | |||||
Max | 42.0 | 833 | 53.0 | 908 | 5 | 130 | |||||
Parametric values for drinking water [72] | |||||||||||
Max | 200 | 50 | 50 | 2 | 5 | 10 |
Variant | Parameter | Cl− | Na+ | Mg2+ | Ca2+ | CrT | Mn2+ | Cu2+ | Zn2+ | Cd2+ | Pb2+ |
---|---|---|---|---|---|---|---|---|---|---|---|
mg/L | mg/L | mg/L | mg/L | μg/L | μg/L | μg/L | μg/L | μg/L | μg/L | ||
I | C0 | 923.0 | 668.95 | 0.88 | 1.71 | 17.34 | 16.35 | 350.15 | 416.00 | 14.91 | 36.01 |
RSD for C0 | 1.32% | 1.15% | 0.44% | 1.30% | 3.32% | 1.37% | 1.54% | 1.19% | 2.66% | 0.75% | |
C45 | 35.5 | 58.62 | 0.15 | 0.56 | 1.74 | 2.15 | 61.83 | 249.00 | 2.01 | 12.64 | |
RSD for C45 | 4.81% | 0.58% | 3.02% | 4.92% | 3.58% | 2.58% | 1.27% | 1.64% | 0.60% | 2.24% | |
RE45, % | 96 | 91 | 83 | 67 | 90 | 87 | 82 | 40 | 87 | 65 | |
II | C0 | 1029.5 | 700.45 | 0.45 | 0.95 | 3.16 | 6.61 | 414.71 | 756.00 | 6.99 | 33.41 |
RSD for C0 | 1.21% | 0.69% | 2.10% | 2.13% | 3.39% | 1.14% | 1.54% | 0.26% | 2.13% | 0.78% | |
C45 | 71.0 | 69.61 | 0.09 | 0.56 | 0.70 | 2.33 | 95.00 | 321.00 | 1.97 | 13.04 | |
RSD for C45 | 4.15% | 1.37% | 5.13% | 1.21% | 7.13% | 2.95% | 1.53% | 1.36% | 14.37% | 1.84% | |
RE45, % | 93 | 90 | 80 | 41 | 78 | 65 | 77 | 57 | 72 | 61 | |
III | C0 | 1029.5 | 663.59 | 1.03 | 1.28 | 8.80 | 16.09 | 348.21 | 535.00 | 10.82 | 41.95 |
RSD for C0 | 1.23% | 3.29% | 2.68% | 2.44% | 1.14% | 1.07% | 0.53% | 3.16% | 1.48% | 0.20% | |
C45 | 284.0 | 191.41 | 0.21 | 0.76 | 2.38 | 14.53 | 124.00 | 381.00 | 3.67 | 12.60 | |
RSD for C45 | 1.89% | 1.45% | 3.57% | 1.57% | 3.65% | 1.95% | 0.38% | 1.62% | 1.74% | 2.00% | |
RE45, % | 72 | 71 | 80 | 41 | 73 | 10 | 64 | 29 | 66 | 70 | |
IV | C0 | 994.0 | 663.65 | 0.51 | 1.18 | 5.51 | 10.38 | 519.65 | 839.00 | 7.73 | 43.30 |
RSD for C0 | 0.46% | 1.11% | 0.34% | 1.85% | 0.77% | 2.63% | 1.49% | 0.74% | 0.48% | 0.55% | |
C45 | 0.0 | 29.49 | 0.03 | 0.07 | 0.58 | 0.74 | 44.49 | 209.00 | 0.69 | 8.60 | |
RSD for C45 | - | 2.25% | 11.27% | 12.10% | 5.10% | 5.27% | 0.27% | 0.75% | 7.67% | 1.29% | |
RE45, % | 100 | 96 | 94 | 94 | 89 | 93 | 91 | 75 | 91 | 80 | |
V | C0 | 1029.5 | 532.80 | 0.46 | 0.96 | 8.70 | 8.76 | 418.95 | 782.25 | 8.50 | 39.36 |
RSD for C0 | 0.32% | 2.09% | 1.71% | 2.53% | 0.98% | 1.73% | 2.07% | 1.97% | 6.78% | 2.20% | |
C45 | 39.4 | 49.68 | 0.08 | 0.35 | 1.05 | 1.23 | 64.92 | 493.73 | 1.28 | 6.56 | |
RSD for C45 | 6.34% | 0.59% | 0.74% | 2.53% | 2.87% | 1.11% | 1.30% | 0.94% | 6.17% | 1.09% | |
RE45, % | 96 | 91 | 83 | 64 | 88 | 86 | 85 | 37 | 85 | 83 | |
VI | C0 | 1065 | 739.22 | 0.33 | 0.75 | 3.69 | 6.27 | 492.96 | 597.70 | 7.38 | 40.34 |
RSD for C0 | 3.08% | 0.48% | 3.52% | 4.02% | 1.23% | 2.43% | 0.70% | 0.98% | 3.46% | 0.77% | |
C45 | 177.5 | 128.38 | 0.09 | 0.37 | 2.10 | 4.60 | 99.99 | 259.59 | 1.61 | 7.21 | |
RSD for C45 | 2.96% | 1.25% | 7.84% | 1.70% | 2.23% | 1.91% | 1.23% | 1.58% | 7.27% | 0.61% | |
RE45, % | 83 | 83 | 73 | 51 | 43 | 27 | 80 | 57 | 78 | 82 | |
Mean RE45 for all variants, % | 90 | 87 | 82 | 60 | 77 | 61 | 80 | 49 | 80 | 74 |
I | II | III | IV | V | VI | ||
---|---|---|---|---|---|---|---|
Cl− | t, min | 27 | 27 | >45 | 18 | 24 | 36 |
C, mg/L | 213 | 248.5 | - | 231 | 213 | 248.5 | |
Na+ | t, min | 24 | 27 | 42 | 18 | 24 | 36 |
C, mg/L | 182.75 | 187.26 | 199.56 | 182.22 | 169.21 | 188.71 |
Variant | I | II | III | IV | V | VI |
---|---|---|---|---|---|---|
t (min) | 27 | 27 | >45 | 18 | 24 | 36 |
Energy consumption (Wh) | ||||||
Pumps | 36 | 36 | >61 | 24 | 33 | 49 |
Power supply | 24 | 21 | >26 | 18 | 19 | 23 |
Heaters | - | - | - | 24 | 33 | 51 |
Total | 60 | 57 | >87 | 66 | 85 | 123 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iwanek, M.; Suchorab, P.; Czerwiński, J.; Kowalski, D.; Hołota, E.; Kowalska, B.; Słyś, D.; Stec, A.; Tałałaj, I.A.; Biedka, P. Energy Efficiency Assessment of the Electrodialysis Process in Desalinating Rest Area Water Runoff. Energies 2025, 18, 3424. https://doi.org/10.3390/en18133424
Iwanek M, Suchorab P, Czerwiński J, Kowalski D, Hołota E, Kowalska B, Słyś D, Stec A, Tałałaj IA, Biedka P. Energy Efficiency Assessment of the Electrodialysis Process in Desalinating Rest Area Water Runoff. Energies. 2025; 18(13):3424. https://doi.org/10.3390/en18133424
Chicago/Turabian StyleIwanek, Małgorzata, Paweł Suchorab, Jacek Czerwiński, Dariusz Kowalski, Ewa Hołota, Beata Kowalska, Daniel Słyś, Agnieszka Stec, Izabela Anna Tałałaj, and Paweł Biedka. 2025. "Energy Efficiency Assessment of the Electrodialysis Process in Desalinating Rest Area Water Runoff" Energies 18, no. 13: 3424. https://doi.org/10.3390/en18133424
APA StyleIwanek, M., Suchorab, P., Czerwiński, J., Kowalski, D., Hołota, E., Kowalska, B., Słyś, D., Stec, A., Tałałaj, I. A., & Biedka, P. (2025). Energy Efficiency Assessment of the Electrodialysis Process in Desalinating Rest Area Water Runoff. Energies, 18(13), 3424. https://doi.org/10.3390/en18133424