Safety Concerns for Ammonia as a Green Energy Vector and the Role of Spray Curtains for Its Accidental Release Mitigation
Abstract
1. Introduction
1.1. Ammonia’s Energy Potential
1.2. The Need of Risk Mitigation Research
2. Ammonia Use Evolution and Safety Implications
3. Statistical Analysis of Accidents
4. Materials and Methods
4.1. Experimental Apparatus and Release Tests
4.2. Analytical Measures
4.3. Theoretical Model
5. Results and Discussion
5.1. Experimental Results and Theoretical Model
5.2. Curtain Design and Operation
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
A | entrainment constant |
CAES | compressed air energy storage |
CHCl | concentration of the absorbing solution |
CLAS | chemical looping ammonia synthesis |
Da | diffusivity of gas in liquid |
EDTA | ethylenediaminetetraacetic acid |
GHG | greenhouse gases |
h | curtain height |
HB | Haber–Bosch process |
hr | release height |
HSE | Health and Safety Executive |
kgp | mass transfer coefficient in the gas phase |
L | curtain length |
Ma | mean molar mass of the gas phase (NH3) |
mass flow rate of the release in downwind immediacy by mixing effect with air | |
absorption flow rate | |
air flow rate entrained by the curtain | |
air flow rate induced by the curtain | |
ammonia release flow rate after curtain absorption | |
curtain flow rate | |
release flow rate | |
N | number of nozzles |
r | Pearson coefficient |
SMR | steam reforming |
SN | nozzle pitch |
STEL | short-term exposure limit |
T | temperature |
tr | release duration |
TWA | time-weighted average |
v0 | spray exit velocity |
vw | mean wind velocity |
vw | wind velocity |
WGS | water gas shift |
Xg | intrinsic single-pass absorption efficiency of ammonia |
δ | mean diameter of drops |
ϕ | spray angle |
ηabs | absorption efficiency |
ηdil | dilution efficiency |
ν∞ | terminal velocity of liquid phase |
νj | spray velocity at the end of the jet phase |
ρa | density of the gas phase |
ρl | density of the liquid phase |
ωd | concentration of released substance downwind the curtain |
References
- Mikulčić, H.; Baleta, J.; Klemeš, J.J.; Wang, X. Energy Transition and the Role of System Integration of the Energy, Water and Environmental Systems. J. Clean. Prod. 2021, 292, 126027. [Google Scholar] [CrossRef]
- Lamb, W.F.; Wiedmann, T.; Pongratz, J.; Andrew, R.; Crippa, M.; Olivier, J.G.J.; Wiedenhofer, D.; Mattioli, G.; Al Khourdajie, A.; House, J.; et al. A Review of Trends and Drivers of Greenhouse Gas Emissions by Sector from 1990 to 2018. Environ. Res. Lett. 2021, 16, 073005. [Google Scholar] [CrossRef]
- Marazziti, D.; Cianconi, P.; Mucci, F.; Foresi, L.; Chiarantini, I.; Della Vecchia, A. Climate Change, Environment Pollution, COVID-19 Pandemic and Mental Health. Sci. Total Environ. 2021, 773, 145182. [Google Scholar] [CrossRef]
- Pettinato, M.; Mukherjee, D.; Andreoli, S.; Minardi, E.R.; Calabro, V.; Curcio, S.; Chakraborty, S. Industrial Waste-an Economical Approach for Adsorption of Heavy Metals from Ground Water. Am. J. Eng. Appl. Sci. 2015, 8, 48–56. [Google Scholar] [CrossRef]
- Biswas, B.; Qi, F.; Biswas, J.K.; Wijayawardena, A.; Khan, M.A.I.; Naidu, R. The Fate of Chemical Pollutants with Soil Properties and Processes in the Climate Change Paradigm—A Review. Soil Syst. 2018, 2, 51. [Google Scholar] [CrossRef]
- Jankowski, M.; Pałac, A.; Sornek, K.; Goryl, W.; Żołądek, M.; Homa, M.; Filipowicz, M. Status and Development Perspectives of the Compressed Air Energy Storage (CAES) Technologies—A Literature Review. Energies 2024, 17, 2064. [Google Scholar] [CrossRef]
- Javed, M.S.; Ma, T.; Jurasz, J.; Amin, M.Y. Solar and Wind Power Generation Systems with Pumped Hydro Storage: Review and Future Perspectives. Renew. Energy 2020, 148, 176–192. [Google Scholar] [CrossRef]
- Fortunato, M.; Reverberi, A.P.; Fabiano, B.; Cardinale, A.M. Thermal Evolution of NiFe-NO3 LDH and Its Application in Energy Storage Systems. Energies 2024, 17, 1035. [Google Scholar] [CrossRef]
- Mao, R.; Lei, Z.; Di, J.; Shang, Y.; Bai, R.; Yan, C. Composite Structural Battery: A Review. J. Electrochem. Energy Convers. Storage 2025, 22, 010801. [Google Scholar] [CrossRef]
- Pasman, H.; Sripaul, E.; Khan, F.; Fabiano, B. Energy Transition Technology Comes with New Process Safety Challenges and Risks—What Does It Mean? Process Saf. Prog. 2024, 43, 226–230. [Google Scholar] [CrossRef]
- Kovač, A.; Paranos, M.; Marciuš, D. Hydrogen in Energy Transition: A Review. Int. J. Hydrogen Energy 2021, 46, 10016–10035. [Google Scholar] [CrossRef]
- Noussan, M.; Raimondi, P.P.; Scita, R.; Hafner, M. The Role of Green and Blue Hydrogen in the Energy Transition—A Technological and Geopolitical Perspective. Sustainability 2021, 13, 298. [Google Scholar] [CrossRef]
- Zanobetti, F.; Pio, G.; Jafarzadeh, S.; Ortiz, M.M.; Cozzani, V. Inherent Safety of Clean Fuels for Maritime Transport. Process Saf. Environ. Prot. 2023, 174, 1044–1055. [Google Scholar] [CrossRef]
- Osman, A.I.; Mehta, N.; Elgarahy, A.M.; Hefny, M.; Al-Hinai, A.; Al-Muhtaseb, A.H.; Rooney, D.W. Hydrogen Production, Storage, Utilisation and Environmental Impacts: A Review; Springer International Publishing: Berlin/Heidelberg, Germany, 2022; Volume 20, ISBN 0123456789. [Google Scholar]
- Bassani, A.; Vianello, C.; Mocellin, P.; Dell’Angelo, A.; Spigno, G.; Fabiano, B.; Maschio, G.; Manenti, F. Aprioristic Integration of Process Operations and Risk Analysis: Definition of the Weighted F&EI-Based Concept and Application to AG2S Technology. Ind. Eng. Chem. Res. 2023, 62, 500–510. [Google Scholar] [CrossRef]
- Sage, V.; Patel, J.; Hazewinkel, P.; Yasin, Q.U.A.; Wang, F.; Yang, Y.; Kozielski, K.; Li, C. Recent Progress and Techno-Economic Analysis of Liquid Organic Hydrogen Carriers for Australian Renewable Energy Export—A Critical Review. Int. J. Hydrogen Energy 2024, 56, 1419–1434. [Google Scholar] [CrossRef]
- Kojima, Y. Hydrogen Storage Materials for Hydrogen and Energy Carriers. Int. J. Hydrogen Energy 2019, 44, 18179–18192. [Google Scholar] [CrossRef]
- Massarweh, O.; Al-khuzaei, M.; Al-Shafi, M.; Bicer, Y.; Abushaikha, A.S. Blue Hydrogen Production from Natural Gas Reservoirs: A Review of Application and Feasibility. J. CO2 Util. 2023, 70, 102438. [Google Scholar] [CrossRef]
- Clematis, D.; Bellotti, D.; Rivarolo, M.; Magistri, L.; Barbucci, A. Hydrogen Carriers: Scientific Limits and Challenges for the Supply Chain, and Key Factors for Techno-Economic Analysis. Energies 2023, 15, 6035. [Google Scholar] [CrossRef]
- Chai, W.S.; Bao, Y.; Jin, P.; Tang, G.; Zhou, L. A Review on Ammonia, Ammonia-Hydrogen and Ammonia-Methane Fuels. Renew. Sustain. Energy Rev. 2021, 147, 111254. [Google Scholar] [CrossRef]
- Valera-Medina, A.; Xiao, H.; Owen-Jones, M.; David, W.I.F.; Bowen, P.J. Ammonia for Power. Prog. Energy Combust. Sci. 2018, 69, 63–102. [Google Scholar] [CrossRef]
- Zamfirescu, C.; Dincer, I. Using Ammonia as a Sustainable Fuel. J. Power Sources 2008, 185, 459–465. [Google Scholar] [CrossRef]
- Faria, J.A. Renaissance of Ammonia Synthesis for Sustainable Production of Energy and Fertilizers. Curr. Opin. Green Sustain. Chem. 2021, 29, 100466. [Google Scholar] [CrossRef]
- Griffiths, R.F.; Kaiser, G.D. Production of Dense Gas Mixtures from Ammonia Releases—A Review. J. Hazard. Mater. 1982, 6, 197–212. [Google Scholar] [CrossRef]
- Cardoso, J.S.; Silva, V.; Rocha, R.C.; Hall, M.J.; Costa, M.; Eusébio, D. Ammonia as an Energy Vector: Current and Future Prospects for Low-Carbon Fuel Applications in Internal Combustion Engines. J. Clean. Prod. 2021, 296, 126562. [Google Scholar] [CrossRef]
- Wang, M.; Khan, M.A.; Mohsin, I.; Wicks, J.; Ip, A.H.; Sumon, K.Z.; Dinh, C.T.; Sargent, E.H.; Gates, I.D.; Kibria, M.G. Can Sustainable Ammonia Synthesis Pathways Compete with Fossil-Fuel Based Haber-Bosch Processes? Energy Environ. Sci. 2021, 14, 2535–2548. [Google Scholar] [CrossRef]
- Tan, W.; Lv, D.; Guo, X.; Du, H.; Liu, L.; Wang, Y. Accident Consequence Calculation of Ammonia Dispersion in Factory Area. J. Loss Prev. Process Ind. 2020, 67, 104271. [Google Scholar] [CrossRef]
- Mastellone, M.L.; Ponte, M.; Arena, U. Design of Mitigation Systems for Indoor and Outdoor Ammonia Releases. J. Loss Prev. Process Ind. 2003, 16, 93–101. [Google Scholar] [CrossRef]
- Palazzi, E.; Currò, F.; Fabiano, B. Low Rate Releases of Hazardous Light Gases under Semi-Confined Geometry: A Consequence Based Approach and Case-Study Application. J. Loss Prev. Process Ind. 2020, 63, 104038. [Google Scholar] [CrossRef]
- Driscoll, H.; Salmon, N.; Bañares-Alcántara, R. Technoeconomic Evaluation of Offshore Green Ammonia Production Using Tidal and Wind Energy: A Case Study. Energy Sources Part A Recovery Util. Environ. Eff. 2023, 45, 7222–7244. [Google Scholar] [CrossRef]
- Van Duc Long, N.; Pourali, N.; Lamichhane, P.; Mohsen Sarafraz, M.; Nghiep Tran, N.; Rebrov, E.; Kim, H.H.; Hessel, V. Catalytic Ammonia Formation in a Microreaction Chamber with Electrically Intensified Arc Plasma. ChemCatChem 2024, 16, e202400005. [Google Scholar] [CrossRef]
- Shahed Gharahshiran, V.; Zheng, Y. Sustainable Ammonia Synthesis: An in-Depth Review of Non-Thermal Plasma Technologies. J. Energy Chem. 2024, 96, 1–38. [Google Scholar] [CrossRef]
- Xu, H.; Ithisuphalap, K.; Li, Y.; Mukherjee, S.; Lattimer, J.; Soloveichik, G.; Wu, G. Electrochemical Ammonia Synthesis through N2 and H2O under Ambient Conditions: Theory, Practices, and Challenges for Catalysts and Electrolytes. Nano Energy 2020, 69, 104469. [Google Scholar] [CrossRef]
- El-Shafie, M.; Kambara, S. Recent Advances in Ammonia Synthesis Technologies: Toward Future Zero Carbon Emissions. Int. J. Hydrogen Energy 2023, 48, 11237–11273. [Google Scholar] [CrossRef]
- Brown, S.; Hu, J. Review of Chemical Looping Ammonia Synthesis Materials. Chem. Eng. Sci. 2023, 280, 119063. [Google Scholar] [CrossRef]
- Spatolisano, E.; Pellegrini, L.A.; de Angelis, A.R.; Cattaneo, S.; Roccaro, E. Ammonia as a Carbon-Free Energy Carrier: NH3 Cracking to H2. Ind. Eng. Chem. Res. 2023, 62, 10813–10827. [Google Scholar] [CrossRef]
- Valera-Medina, A.; Amer-Hatem, F.; Azad, A.K.; Dedoussi, I.C.; De Joannon, M.; Fernandes, R.X.; Glarborg, P.; Hashemi, H.; He, X.; Mashruk, S.; et al. Review on Ammonia as a Potential Fuel: From Synthesis to Economics. Energy Fuels 2021, 35, 6964–7029. [Google Scholar] [CrossRef]
- Chen, X.; Guivarch, T.; Lulic, H.; Hasse, C.; Chen, Z.; Ferraro, F.; Scholtissek, A. Evaluation of Hydrogen/Ammonia Substitute Fuel Mixtures for Methane: Effect of Differential Diffusion. Int. J. Hydrogen Energy 2024, 69, 1056–1068. [Google Scholar] [CrossRef]
- Ariemma, G.B.; Sorrentino, G.; Ragucci, R.; de Joannon, M.; Sabia, P. Ammonia/Methane Combustion: Stability and NOx Emissions. Combust. Flame 2022, 241, 112071. [Google Scholar] [CrossRef]
- Mong, G.R.; Chiong, M.C.; Chong, C.T.; Ng, J.H.; Mashruk, S.; Tran, M.V.; Lee, K.M.; Samiran, N.A.; Wong, K.Y.; Valera-Medina, A. Fuel-Lean Ammonia/Biogas Combustion Characteristics under the Reacting Swirl Flow Conditions. Fuel 2023, 331, 125983. [Google Scholar] [CrossRef]
- Xu, L.; Chang, Y.; Treacy, M.; Zhou, Y.; Jia, M.; Bai, X.S. A Skeletal Chemical Kinetic Mechanism for Ammonia/n-Heptane Combustion. Fuel 2023, 331, 125830. [Google Scholar] [CrossRef]
- Guan, W.; Abdelsamie, A.; Chi, C.; He, Z.; Thévenin, D. A Dedicated Reduced Kinetic Model for Ammonia/Dimethyl-Ether Turbulent Premixed Flames. Combust. Flame 2023, 257, 113002. [Google Scholar] [CrossRef]
- Jayabal, R. Ammonia as a Potential Green Dual Fuel in Diesel Engines: A Review. Process Saf. Environ. Prot. 2024, 188, 1346–1354. [Google Scholar] [CrossRef]
- American Bureau of Shipping (ABS). Ammonia Bunkering: Technical and Operational Advisory; American Bureau of Shipping: Spring, TX, USA, 2024. [Google Scholar]
- Abubakirov, R.; Yang, M.; Scarponi, G.E.; Moreno, V.C.; Reniers, G. Towards Risk-Informed Design and Operation of Ammonia-Powered Ships: Critical Aspects and Prospective Solutions. Ocean. Eng. 2024, 314, 119753. [Google Scholar] [CrossRef]
- Salmon, N.; Bañares-Alcántara, R. Green Ammonia as a Spatial Energy Vector: A Review. Sustain. Energy Fuels 2021, 5, 2814–2839. [Google Scholar] [CrossRef]
- Schoten, H.H.; Molag, M.; Duffield, J.S.; Powell-Price, M. Use of Fluid Curtains for Post-Release Mitigation of Gas Dispersion. Inst. Chem. Eng. Symp. Ser. 2000, 147, 287–298. [Google Scholar]
- Yildirim, Ö.; Kiss, A.A.; Hüser, N.; Leßmann, K.; Kenig, E.Y. Reactive Absorption in Chemical Process Industry: A Review on Current Activities. Chem. Eng. J. 2012, 213, 371–391. [Google Scholar] [CrossRef]
- Palazzi, E.; Curro, F.; Fabiano, B. Mathematical Modeling of Fluid Spray Curtains for Mitigation of Accidental Releases. Chem. Eng. Commun. 2007, 194, 446–463. [Google Scholar] [CrossRef]
- Palazzi, E.; Curro, F.; Fabiano, B. N-Compartment Mathematical Model for Transient Evaluation of Fluid Curtains in Mitigating Chlorine Releases. J. Loss Prev. Process Ind. 2007, 20, 135–143. [Google Scholar] [CrossRef]
- Palazzi, E.; Curro’, F.; Pastorino, R.; Fabiano, B. Effectiveness of Reacting Spray Curtains Mitigating Toxic Releases of High Solubility Gases. In Chemical Engineering Transactions 11, Proceedings of the 8th International Conference on Chemical & Process Engineering, Ischia (NA), Italy, 24-27 June 2007; Pierucci, S., Ed.; AIDIC: Milano, Italy, 2007; pp. 407–412. [Google Scholar]
- Crolius, S.; Pugh, D.; Morris, S.; Velera-Medina, A. Safety Aspects. Techno-Economic Challenges of Green Ammonia as an Energy Vector; Elsevier Inc.: London, UK, 2021. [Google Scholar]
- Tan, W.; Du, H.; Liu, L.; Su, T.; Liu, X. Experimental and Numerical Study of Ammonia Leakage and Dispersion in a Food Factory. J Loss Prev Process Ind 2017, 47, 129–139. [Google Scholar] [CrossRef]
- European Major Accident Hazards Bureau. 2023. Available online: https://emars.jrc.ec.europa.eu/en/emars/accident/search (accessed on 17 June 2025).
- Institution of Chemical Engineers. 2000. Available online: https://www.icheme.org/knowledge-networks/knowledge-resources/safety-centre/resources/accident-data/ (accessed on 17 June 2025).
- Liang, Y.; Xiang, Q. Occupational Health Services in PR China. Toxicology 2004, 198, 45–54. [Google Scholar] [CrossRef]
- Luo, C.; Zhao, Y.; Xu, K. Study on the Regularity of Ammonia-Related Refrigeration Accidents in China from 2010 to 2020. Int. J. Environ. Res. Public Health 2022, 19, 8230. [Google Scholar] [CrossRef] [PubMed]
- Special Report. Burns, Blindness and Agonising Deaths: Is It Safe to Ship Hydrogen-Derived Ammonia Around the World? Recharge. Available online: https://www.rechargenews.com/energy-transition/special-report-burns-blindness-and-agonising-deaths-is-it-safe-to-ship-hydrogen-derived-ammonia-around-the-world-/2-1-1267513 (accessed on 17 April 2025).
- International Maritime Organization Resolution MSC.391(95) (Adopted on 11 June 2015) Adoption of the International Code of Safety for Ships Using Gases or Other Low-Flashpoint Fuels (IGF Code). 2015. Available online: https://wwwcdn.imo.org/localresources/en/KnowledgeCentre/IndexofIMOResolutions/MSCResolutions/MSC.391(95).pdf (accessed on 17 June 2025).
- International Maritime Organization Interim Guidelines for the Safety of Ships Using Ammonia as Fuel. 2025. Available online: https://www.bimco.org/media/bxvcygg1/msc1-circ1687-interim-guidelines-for-the-safety-of-ships-using-ammonia-as-fuel-secretariat.pdf (accessed on 17 June 2025).
- International Maritime Organization Amendments to the International Code for the Construction and Equipment of Ships Carrying Dangerous Chemicals in Bulk (IBC Code). 2004. Available online: https://wwwcdn.imo.org/localresources/en/KnowledgeCentre/IndexofIMOResolutions/MEPCDocuments/MEPC.119(52).pdf (accessed on 17 June 2025).
- International Maritime Organization Resolution MSC.370(93) (Adopted on 22 May 2014) Amendments to the International Code for the Construction and Equipment of Ships Carrying Liquefied Gases in Bulk (IGC Code). 2014. Available online: https://wwwcdn.imo.org/localresources/en/KnowledgeCentre/IndexofIMOResolutions/MSCResolutions/MSC.370(93).pdf (accessed on 17 June 2025).
- Ng, C.K.L.; Liu, M.; Lam, J.S.L.; Yang, M. Accidental Release of Ammonia during Ammonia Bunkering: Dispersion Behaviour under the Influence of Operational and Weather Conditions in Singapore. J. Hazard. Mater. 2023, 452, 131281. [Google Scholar] [CrossRef] [PubMed]
- Foust, A.S. Principles of Unit Operations, 2nd ed.; Wiley: Hoboken, NJ, USA, 1980. [Google Scholar]
- Azim, A.A.A.; Sanad, S.H. Effects of Acid Concentration, C-Content and Temperature on the Corrosion Rate of Steel in HCI; Pergamon Press: Oxford, UK, 1972; Volume 12. [Google Scholar]
- Noor, E.A.; Al-Moubaraki, A.H. Corrosion Behavior of Mild Steel in Hydrochloric Acid Solutions. Int. J. Electrochem. Sci. 2008, 3, 806–818. [Google Scholar] [CrossRef]
- Dandrieux, A.; Dusserre, G.; Ollivier, J.; Fournet, H. Effectiveness of Water Curtains to Protect Firemen in Case of an Accidental Release of Ammonia: Comparison of the Effectiveness for Two Different Release Rates of Ammonia. J. Loss Prev. Process Ind. 2001, 14, 349–355. [Google Scholar] [CrossRef]
- Abbas, A.; Adesina, A.Y.; Suleiman, R.K. Influence of Organic Acids and Related Organic Compounds on Corrosion Behavior of Stainless Steel—A Critical Review. Metals 2023, 13, 1479. [Google Scholar] [CrossRef]
- Medupin, R.O.; Ukoba, K.O.; Yoro, K.O.; Jen, T.C. Sustainable Approach for Corrosion Control in Mild Steel Using Plant-Based Inhibitors: A Review. Mater. Today Sustain. 2023, 22, 100373. [Google Scholar] [CrossRef]
- Parangusan, H.; Sliem, M.H.; Abdullah, A.M.; Elhaddad, M.; Al-Thani, N.; Bhadra, J. Plant Extract as Green Corrosion Inhibitors for Carbon Steel Substrate in Different Environments: A Systematic Review. Int. J. Electrochem. Sci. 2025, 20, 100919. [Google Scholar] [CrossRef]
- Casanova, L.; Ceriani, F.; Messinese, E.; Paterlini, L.; Beretta, S.; Bolzoni, F.M.; Brenna, A.; Diamanti, M.V.; Ormellese, M.; Pedeferri, M.P. Recent Advances in the Use of Green Corrosion Inhibitors to Prevent Chloride-Induced Corrosion in Reinforced Concrete. Materials 2023, 16, 7462. [Google Scholar] [CrossRef]
- Sabiha, M.; Kerroum, Y.; El Hawary, M.; Boudalia, M.; Bellaouchou, A.; Hammani, O.; Amin, H.M.A. Investigating the Adsorption and Corrosion Protection Efficacy and Mechanism of Marjoram Extract on Mild Steel in HCl Medium. Molecules 2025, 30, 272. [Google Scholar] [CrossRef]
- Fabiano, B.; Currò, F.; Reverberi, A.; Palazzi, E. Generalized Mathematical Modelling of Spray Barriers. Chem. Eng. J. 2019, 377, 120108. [Google Scholar] [CrossRef]
- Roscoe, H.E.; Dittimar, W. On the Absorption of Hydrochloric Acid and Ammonia in Water. Q. J. Chem. Soc. Lond. 1860, 12, 128–151. [Google Scholar] [CrossRef]
- Kojima, Y. Safety of Ammonia as a Hydrogen Energy Carrier. Int. J. Hydrogen Energy 2024, 50, 732–739. [Google Scholar] [CrossRef]
- Buchlin, J.M. Mitigation of Problem Clouds. J. Loss Prev. Process Ind. 1994, 7, 167–174. [Google Scholar] [CrossRef]
- Min, D.S.; Choi, S.; Oh, E.Y.; Lee, J.; Lee, C.G.; Choi, K.Y.; Jung, S. Numerical Modelling for Effect of Water Curtain in Mitigating Toxic Gas Release. J. Loss Prev. Process Ind. 2020, 63, 103972. [Google Scholar] [CrossRef]
- Hua, M.; Shen, X.; Zhang, J.; Pan, X. Protective Water Curtain Ammonia Absorption Efficiency Enhancement by Inorganic and Surfactant Additives. Process Saf. Environ. Prot. 2018, 116, 737–744. [Google Scholar] [CrossRef]
Process/Plant Causes (PPR) | |
---|---|
PPR01 | Failure/damage to reactors, vessels, equipment |
PPR02 | Components failure/malfunction |
PPR03 | Loss of process control |
PPR04 | Corrosion, fatigue, wear |
PPR05 | Failure/malfunction of equipment and control system |
PPR06 | Piping loss of containment |
PPR07 | Unexpected/uncontrolled reaction or transition phase |
PPR08 | Plant block |
PPR09 | Electrostatic charge |
PPR10 | Loading and unloading operations of road tankers/barge |
Environmental Causes (ENV) | |
ENV01 | Natural event |
ENV02 | Domino effect from other events |
ENV03 | Transport accident |
ENV04 | Hit by objects/fall of objects |
ENV05 | Building/facility failure |
ENV06 | Security lack |
Human Factor/Organizational Causes (ORG) | |
ORG01 | Inappropriate management/planning policy |
ORG02 | Absent, inadequate, unclear procedures |
ORG03 | Absent, inadequate job/safety training |
ORG04 | Absent, inadequate supervision |
ORG05 | Absent, inadequate staffing |
ORG06 | Uncorrect process analysis |
ORG07 | Inappropriate/inadequate plant design |
ORG08 | Equipment and instruments non-user-friendly |
ORG09 | Unsuitability of manufacturing/construction |
ORG10 | Inappropriate/inadequate installation |
ORG11 | Insufficient isolation of equipment |
ORG12 | Maintenance |
ORG13 | Inspection |
ORG14 | Worker error |
ORG15 | Worker health |
ORG16 | Non observation of procedures and rules |
ORG17 | Intentional act/attack |
Parameter | Symbol | Units | Value |
---|---|---|---|
Height of the curtain | h | [m] | 0.61 |
Length of the curtain | L | [m] | 0.90 |
Number of nozzles | N | [-] | 19 |
Nozzle pitch | SN | [m] | 0.04 |
Drop mean diameter | δ | [m] | 2 × 10−4 |
Spray angle | ϕ | [°] | 110 |
Spray exit velocity | v0 | [m·s−1] | 9 |
Flow rate of release | [l·h−1] | 30–200 | |
Duration of release | tr | [s] | 300 |
Curtain flow rate | [kg·s−1] | 0.15 | |
Mean wind velocity | vw | [m·s−1] | 0.1–1 |
Concentration of the absorbing solution | CHCl | [kmol·m−3] | 0–0.55 |
Temperature | T | [K] | 298 |
Parameter | Symbol | Water Barrier | HCl Solution Barrier |
---|---|---|---|
Single pass absorption efficiency (-) | Xg | 0.48 | 0.62 |
Absorption efficiency (-) | ηabs | 0.65 | 0.80 |
Mass transfer coefficient in the gas-phase (kmol·m−2·s−1) | kgp | 0.006 | 0.009 |
Condition | x/h | h/hr |
---|---|---|
Vortex interaction and curtain by-pass minimization | >1 | >2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fabiano, B.; Pettinato, M.; Currò, F.; Reverberi, A.P. Safety Concerns for Ammonia as a Green Energy Vector and the Role of Spray Curtains for Its Accidental Release Mitigation. Energies 2025, 18, 3412. https://doi.org/10.3390/en18133412
Fabiano B, Pettinato M, Currò F, Reverberi AP. Safety Concerns for Ammonia as a Green Energy Vector and the Role of Spray Curtains for Its Accidental Release Mitigation. Energies. 2025; 18(13):3412. https://doi.org/10.3390/en18133412
Chicago/Turabian StyleFabiano, Bruno, Margherita Pettinato, Fabio Currò, and Andrea P. Reverberi. 2025. "Safety Concerns for Ammonia as a Green Energy Vector and the Role of Spray Curtains for Its Accidental Release Mitigation" Energies 18, no. 13: 3412. https://doi.org/10.3390/en18133412
APA StyleFabiano, B., Pettinato, M., Currò, F., & Reverberi, A. P. (2025). Safety Concerns for Ammonia as a Green Energy Vector and the Role of Spray Curtains for Its Accidental Release Mitigation. Energies, 18(13), 3412. https://doi.org/10.3390/en18133412