Energy and Environmental Benefits of In-Motion Charging Trolleybuses: A Case Study of Vilnius
Abstract
1. Introduction
2. Literature Review
2.1. In-Motion Charging (IMC)
2.2. Battery Electric Buses (BEB)
2.3. Hydrogen Fuel Cell Buses (FCEB)
2.4. City Choice and Baltic Countries Applications
2.5. IMC Trolleybus Implementation in European Cities
3. Materials and Methods
3.1. Vilnius Trolleybus System
3.2. Emissions of CO2 by the Bus Service of Vilnius (Trolleybus × Diesel Buses)
3.3. Emissions of CO2 to Atmosphere by Diesel Engines
- Cetane number coefficient KLC
- Density of the fuel
- CO2 emission
- Viscosity and sulfur content
- CO2 emissions extended Formula
- Flash point
- Fractional composition
3.4. Emissions of CO2 by Electricity Source
4. Results and Discussion
4.1. Comparision Emission CO2 Trolleybus × Diesel Buses
4.2. Emission of CO2 by Diesel Buses
4.3. Emission of CO2 by Electricty Sources
4.4. Additional Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Žvirblis, T.; Hunicz, J.; Matijošius, J.; Rimkus, A.; Kilikevičius, A.; Gęca, M. Improving Diesel Engine Reliability Using an Optimal Prognostic Model to Predict Diesel Engine Emissions and Performance Using Pure Diesel and Hydrogenated Vegetable Oil. Eksploat. Niezawodn.–Maint. Reliab. 2023, 25. [Google Scholar] [CrossRef]
- Fuc, P.; Lijewski, P.; Ziolkowski, A.; Dobrzynski, M. Development of a method of calculation of energy balance in exhaust systems in terms of energy recovery. In Proceedings of the ASME International Mechanical Engineering Congress and Exposition, Tampa, FL, USA, 3–9 November 2017; ASME: New York, NY, USA, 2018; Volume 8. [Google Scholar]
- Warguła, Ł.; Kukla, M.; Lijewski, P.; Dobrzyński, M.; Markiewicz, F. Influence of Innovative Woodchipper Speed Control Systems on Exhaust Gas Emissions and Fuel Consumption in Urban Areas. Energies 2020, 13, 3330. [Google Scholar] [CrossRef]
- Feng, R.; Yu, J.; Shu, X.; Deng, B.; Hua, Z. Can the World Harmonized Steady Cycle (WHSC) Accurately Reflect Real-World Driving Conditions for Heavy-Duty Diesel Engine Emission Valuations? A Comprehensive Experimental Study. Therm. Sci. Eng. Prog. 2025, 59, 103321. [Google Scholar] [CrossRef]
- Zoldy, M.; Szalmane Csete, M.; Kolozsi, P.P.; Bordas, P.; Torok, A. Cognitive Sustainability. Cogn. Sustain. 2022, 1. [Google Scholar] [CrossRef]
- Zefreh, M.M.; Saif, M.A.; Esztergar-Kiss, D.; Torok, A. A Data-Driven Decision Support Tool for Public Transport Service Analysis and Provision. Transp. Policy 2023, 135, 82–90. [Google Scholar] [CrossRef]
- Bereczky, A. The Past, Present and Future of the Training of Internal Combustion Engines at the Department of Energy Engineering of BME. In Proceedings of the Vehicle and Automotive Engineering; Jarmai, K., Bollo, B., Eds.; Springer: Cham, Switzerland, 2017; pp. 225–234. [Google Scholar]
- Laskowski, P.; Zimakowska-Laskowska, M. Emission from Internal Combustion Engines and Battery Electric Vehicles: Case Study for Poland. Atmosphere 2022, 13, 401. [Google Scholar] [CrossRef]
- Małek, A.; Caban, J.; Dudziak, A.; Marciniak, A.; Ignaciuk, P. A Method of Assessing the Selection of Carport Power for an Electric Vehicle Using the Metalog Probability Distribution Family. Energies 2023, 16, 5077. [Google Scholar] [CrossRef]
- Yu, T.; Liu, S.; Li, X.; Shi, W. Optimization of Objective Temperature for Battery Heating at Low Temperatures to Improve Driving Range and Battery Lifetime of Battery Electric Vehicles. Appl. Therm. Eng. 2025, 270, 126119. [Google Scholar] [CrossRef]
- Óvári, Á.; Kovács, A.D.; Farkas, J.Z. Assessment of Local Climate Strategies in Hungarian Cities. Urban Clim. 2023, 49, 101465. [Google Scholar] [CrossRef]
- Borowik, L.; Cywiński, A. Modernization of a Trolleybus Line System in Tychy as an Example of Eco-Efficient Initiative towards a Sustainable Transport System. J. Clean. Prod. 2016, 117, 188–198. [Google Scholar] [CrossRef]
- Wołek, M.; Wolański, M.; Bartłomiejczyk, M.; Wyszomirski, O.; Grzelec, K.; Hebel, K. Ensuring Sustainable Development of Urban Public Transport: A Case Study of the Trolleybus System in Gdynia and Sopot (Poland). J. Clean. Prod. 2021, 279, 123807. [Google Scholar] [CrossRef]
- Christidis, P.; Ulpiani, G.; Stepniak, M.; Vetters, N. Research and Innovation Paving the Way for Climate Neutrality in Urban Transport: Analysis of 362 Cities on Their Journey to Zero Emissions. Transp. Policy 2024, 148, 107–123. [Google Scholar] [CrossRef] [PubMed]
- Połom, M. E-Revolution in Post-Communist Country? A Critical Review of Electric Public Transport Development in Poland. Energy Res. Soc. Sci. 2021, 80, 102227. [Google Scholar] [CrossRef]
- Kozera, A.; Satoła, Ł.; Standar, A. European Union Co-Funded Investments in Low-Emission and Green Energy in Urban Public Transport in Poland. Renew. Sustain. Energy Rev. 2024, 200, 114530. [Google Scholar] [CrossRef]
- Yang, Y.; Morotomi, T. When Can Green Public Procurement Really Stimulate Eco-Innovation? Considering the Role of Intellectual Capital. J. Clean. Prod. 2025, 492, 144841. [Google Scholar] [CrossRef]
- Si, L.; Cao, H.; Wang, J. The Impact of a Low-Carbon Transport System Policy on Total Factor Carbon Emission Performance: Evidence from 283 Cities in China. Socioecon. Plann. Sci. 2024, 96, 102091. [Google Scholar] [CrossRef]
- Corazza, M.V.; Guida, U.; Musso, A.; Tozzi, M. A New Generation of Buses to Support More Sustainable Urban Transport Policies: A Path towards “Greener” Awareness among Bus Stakeholders in Europe. Res. Transp. Econ. 2016, 55, 20–29. [Google Scholar] [CrossRef]
- Bartłomiejczyk, M.; Caliandro, P. Electrifying the Bus Network with Trolleybus: Analyzing the in Motion Charging Technology. Appl. Energy 2025, 377, 124585. [Google Scholar] [CrossRef]
- Iliopoulou, C.; Tassopoulos, I.X.; Kepaptsoglou, K. Multi-Objective Planning of Electric Bus Systems in Cities with Trolleybus Infrastructure Networks. Sustain. Cities Soc. 2024, 103, 105227. [Google Scholar] [CrossRef]
- Ševčík, J.; Přikryl, J.; Peroutka, Z. In-Motion Charged Vehicle Simulation Considering Traffic and Power Grid Interactions. Transp. Res. Part Transp. Environ. 2022, 109, 103322. [Google Scholar] [CrossRef]
- Haywood, L.; Jakob, M. The Role of the Emissions Trading Scheme 2 in the Policy Mix to Decarbonize Road Transport in the European Union. Transp. Policy 2023, 139, 99–108. [Google Scholar] [CrossRef]
- Papa, G.; Santo Zarnik, M.; Vukašinović, V. Electric-Bus Routes in Hilly Urban Areas: Overview and Challenges. Renew. Sustain. Energy Rev. 2022, 165, 112555. [Google Scholar] [CrossRef]
- Gil Ribeiro, C.; Silveira, S. The Impact of Financial Incentives on the Total Cost of Ownership of Electric Light Commercial Vehicles in EU Countries. Transp. Res. Part Policy Pract. 2024, 179, 103936. [Google Scholar] [CrossRef]
- Hoch, O.; Schulze, S.; Rauer, J.; Borger, C.; Lohrer, M.; Renkert, M.; Siemen, M.; Müller, E. Applications—Transportation Applications | Electric Buses—Fuel Cells. In Encyclopedia of Electrochemical Power Sources; Elsevier: Amsterdam, The Netherlands, 2025; pp. 215–226. ISBN 978-0-323-95822-6. [Google Scholar]
- Andrzejczak, K.; Selech, J. Quantile analysis of the operating costs of the public transport fleet. Transp. Probl. 2017, 12, 103–111. [Google Scholar] [CrossRef]
- Kozłowski, E.; Zimakowska-Laskowska, M.; Dudziak, A.; Wiśniowski, P.; Laskowski, P.; Stankiewicz, M.; Šnauko, B.; Lech, N.; Gis, M.; Matijošius, J. Analysis of Instantaneous Energy Consumption and Recuperation Based on Measurements from SORT Runs. Appl. Sci. 2025, 15, 1681. [Google Scholar] [CrossRef]
- Li, X.; Liu, Y.; Qu, Y.; Ding, L.; Yan, X. Effect of Electric Vehicles and Renewable Electricity on Future Life Cycle Air Emissions from China’s Road Transport Fleet. Energy 2025, 318. [Google Scholar] [CrossRef]
- Bolgova, E.; Koroleva, E.; Bolgov, S. Smart Transport in a Smart City: European and Russian Development Management Track. Transp. Res. Procedia 2022, 63, 844–852. [Google Scholar] [CrossRef]
- Liebuvienė, J.; Čižiūnienė, K. Comparative Analysis of Ports on the Eastern Baltic Sea Coast. Logistics 2022, 6, 1. [Google Scholar] [CrossRef]
- Chodakowska, E.; Nazarko, J.; Nazarko, Ł. Efficiency of Renewable Energy Potential Utilization in European Union: Towards Responsible Net-Zero Policy. Energies 2025, 18, 1175. [Google Scholar] [CrossRef]
- Mejía Dorantes, L.; Allen, H. A Review of the Future Transport Labour Market: An EU Approach. Eur. Transp. Stud. 2024, 1, 100007. [Google Scholar] [CrossRef]
- Sokolovskij, E.; Małek, A.; Caban, J.; Dudziak, A.; Matijošius, J.; Marciniak, A. Selection of a Photovoltaic Carport Power for an Electric Vehicle. Energies 2023, 16, 3126. [Google Scholar] [CrossRef]
- Małek, A.; Marciniak, A.; Kroczyński, D. Defining Signatures for Intelligent Vehicles with Different Types of Powertrains. World Electr. Veh. J. 2025, 16, 135. [Google Scholar] [CrossRef]
- Chodakowska, E.; Nazarko, J.; Nazarko, Ł.; Rabayah, H.S. Solar Radiation Forecasting: A Systematic Meta-Review of Current Methods and Emerging Trends. Energies 2024, 17, 3156. [Google Scholar] [CrossRef]
- Chodakowska, E.; Nazarko, J.; Nazarko, Ł. Arima Models in Electrical Load Forecasting and Their Robustness to Noise. Energies 2021, 14, 7952. [Google Scholar] [CrossRef]
- Arowolo, W.; Perez, Y. Electric Mobility Investment in the Power and Transport Sector Coupling Context: Lessons from Argentina, the Philippines, Poland and Romania. Transp. Res. Interdiscip. Perspect. 2024, 28, 101256. [Google Scholar] [CrossRef]
- AbdulRafiu, A.; Sovacool, B.K.; Daniels, C. The Dynamics of Global Public Research Funding on Climate Change, Energy, Transport, and Industrial Decarbonisation. Renew. Sustain. Energy Rev. 2022, 162, 112420. [Google Scholar] [CrossRef]
- Fragkos, P.; Fragkiadakis, K.; Sovacool, B.; Paroussos, L.; Vrontisi, Z.; Charalampidis, I. Equity Implications of Climate Policy: Assessing the Social and Distributional Impacts of Emission Reduction Targets in the European Union. Energy 2021, 237, 121591. [Google Scholar] [CrossRef]
- Tucki, K.; Orynycz, O.; Mieszkalski, L.; Mendes dos Reis, J.G.; Matijošius, J.; Wocial, M.; Kuric, I.; Pascuzzi, S. Analysis of the Influence of the Spark Plug on Exhaust Gas Composition. Energies 2023, 16, 4381. [Google Scholar] [CrossRef]
- Rodrigues, G.S.; dos Reis, J.G.M.; Orynycz, O.; Tucki, K.; Machado, S.T.; Raymundo, H. A Study on the Viability of Adopting Battery Electric Vehicles in Bus Rapid Transit in Brazil Using the AHP Method. Energies 2023, 16, 4858. [Google Scholar] [CrossRef]
- Rodrigues, G.S.; dos Reis, J.G.M.; Orynycz, O.; Tucki, K.; Matijošius, J.; Machado, S.T. Environmental Impact Reduction of a Trolleybus System in the City of São Paulo, Brazil. Energies 2024, 17, 1377. [Google Scholar] [CrossRef]
- Orynycz, O. Cognitive Tools for Enhancing Sustainability in Liquid Fuel and Internal Combustion Engine Development. Cogn. Sustain. 2024, 3. [Google Scholar] [CrossRef]
- Bitsanis, E.; Broekaert, S.; Tansini, A.; Savvidis, D.; Fontaras, G. Experimental Evaluation of VECTO Hybrid Electric Truck Simulations; SAE International: Detroit, MI, USA, 2023; p. 2023-01-0485. [Google Scholar]
- Lu, C.; Xie, D.-F.; Zhao, X.-M.; Qu, X. The Role of Alternative Fuel Buses in the Transition Period of Public Transport Electrification in Europe: A Lifecycle Perspective. Int. J. Sustain. Transp. 2022, 17, 626–638. [Google Scholar] [CrossRef]
- Petrović, N.; Jovanović, V.; Marinković, D.; Marković, S.; Nikolić, B. Measuring the Efficiency of Rail Freight Transport—A Case Study. Acta Polytech. Hung. 2025, 22, 126–136. [Google Scholar] [CrossRef]
- Petrović, N.; Jovanović, V.; Marković, S.; Marinković, D.; Nikolić, B. Multi-Criteria Decision-Making Approach for Choising e-Bus for Urban Public Transport in the City of Niš. Acta Tech. Jaurinensis 2025, 18, 1–8. [Google Scholar] [CrossRef]
- Selech, J.; Matijosius, J.; Kilikevicius, A.; Marinkovic, D. Reliability Analysis and the Costs of Corrective Maintenance for a Component of a Fleet of Trams. Teh. Vjesn. 2025, 32, 205–216. [Google Scholar]
- Matijošius, J.; Kilikevičius, A.; Vaičiūnas, G.; Bureika, G.; Steišūnas, S.; Marinkovic, D. Estimation of Vertical Forces and Track Degradation Considering, Wheel-Rail Interaction, Railway Traffic Severity and Seasonal Conditions. Acta Polytech. Hung. 2025, 22, 285–306. [Google Scholar] [CrossRef]
- Mirbabaeva, N. Vilnius Gets Modern, Green Trolleybuses with Support from the EBRD; EBRD: London, UK, 2023. [Google Scholar]
- Buch, E. 91 Skoda Trolleybuses for Vilnius. Urban Transport Magazine, 15 May 2023. [Google Scholar]
- Solaris Solaris to Deliver 41 Trolleybuses. Available online: https://www.solarisbus.com/en/press/solaris-to-deliver-41-trolleybuses-to-lithuania-s-capital-887 (accessed on 7 March 2025).
- Carvalho, C.H. Emissões Relativas de Poluentes Do Transporte Motorizado de Passageiros Nos Grandes Centros Urbanos Brasileiros; IPEA: Rio de Janeiro, Brazil, 2011. [Google Scholar]
- JUDU—Vilniaus Transportas. JUDU-Susisiekimo Paslaugos. 2025. Available online: https://judu.lt/ (accessed on 7 March 2025).
- Wikiroutes: Seu Banco de Dados de Transporte Público. 2024. Available online: https://wikiroutes.info/pt/?c=54.654664;25.206706&z=12.6 (accessed on 7 March 2025).
- Gases de Efeito Estufa—GEE. Prateleira Ambient. Portal Educ. Ambient. 2025. Available online: https://semil.sp.gov.br/educacaoambiental/prateleira-ambiental/gases-de-efeito-estufa-gee/ (accessed on 7 March 2025).
- Raymundo, H.; Reis, J.G.M. dos Measures for Passenger-Transport Performance Evaluation in Urban Areas. J. Urban Plan. Dev. 2018, 144, 04018023. [Google Scholar] [CrossRef]
- Raymundo, H.; dos Reis, J.G.M. How to Measure Performance Evaluation in Urban Passenger Transportation by Disutilities: Model and Application in the Ten Largest US Cities. J. Urban Plan. Dev. 2023, 149, 04023007. [Google Scholar] [CrossRef]
- PN-EN 590:2022-08; Fuels for Motor Vehicles—Diesel Fuels—Requireme. PKN: Warsaw, Poland, 2022. Available online: https://www.intertekinform.com/en-au/standards/pn-en-590-2022-08-942051_saig_pkn_pkn_3184703/?srsltid=AfmBOooj0NrHFW1apTK2unQfGp-fR8s3y7ikSi27OrvJt5pWFWfLidr3 (accessed on 7 March 2025).
- Yu, W.; Chen, G.; Huang, Z. Influence of Cetane Number Improver on Performance and Emissions of a Common-Rail Diesel Engine Fueled with Biodiesel-Methanol Blend. Front. Energy 2011, 5, 412–418. [Google Scholar] [CrossRef]
- Kowalewicz, A.; Wojtyniak, M. Alternative Fuels and Their Application to Combustion Engines. Proc. Inst. Mech. Eng. Part J. Automob. Eng. 2005, 219, 103–125. [Google Scholar] [CrossRef]
- US EPA. Diesel Fuel Standards. Available online: https://www.epa.gov/diesel-fuel-standards (accessed on 21 April 2025).
- Toscano, G.; Leoni, E.; Feliciangeli, G.; Duca, D.; Mancini, M. Application of ISO Standards on Sampling and Effects on the Quality Assessment of Solid Biofuel Employed in a Real Power Plant. Fuel 2020, 278, 118142. [Google Scholar] [CrossRef]
- Candan, F.; Ciniviz, M.; Ors, I. Effect of Cetane Improver Addition into Diesel Fuel: Methanol Mixtures on Performance and Emissions at Different Injection Pressures. Therm. Sci. 2017, 21, 555–566. [Google Scholar] [CrossRef]
- Dernotte, J.; Hespel, C.; Houille, S.; Foucher, F.; Mounaim-Rousselle, C. Influence of Fuel Properties on the Diesel Injection Process in Nonvaporizing Conditions. At. Sprays 2012, 22, 461–492. [Google Scholar] [CrossRef]
- Chamakhi, H.; Almusfar, L.; Teka, H.; Kouki, S.; Selmi, N.; Elgarna, A. United States Transportation, Economic Growth, and CO2 Emissions: A Kernel Transfer Entropy Analysis. Energy 2025, 322, 135169. [Google Scholar] [CrossRef]
- Investing Histórico de Preços Crédito Carbono—Investing.com. Available online: https://br.investing.com/commodities/carbon-emissions-historical-data (accessed on 30 January 2024).
- Yu, L.; Ding, Y.; Jian, S. Managing Carbon Emissions in Urban Mobility System: A Credit-Based Reservation Scheme. Transp. Res. Part Transp. Environ. 2024, 130, 104197. [Google Scholar] [CrossRef]
- Henke, I.; Cartenì, A.; Beatrice, C.; Di Domenico, D.; Marzano, V.; Patella, S.M.; Picone, M.; Tocchi, D.; Cascetta, E. Fit for 2030? Possible Scenarios of Road Transport Demand, Energy Consumption and Greenhouse Gas Emissions for Italy. Transp. Policy 2024, 159, 67–82. [Google Scholar] [CrossRef]
- Jarkoni, M.N.K.; Wan Mansor, W.N.; Abdullah, S.; Che Wan Othman, C.W.M.N.; Abu Bakar, A.; Ali, S.A.; Chao, H.-R.; Lin, S.-L.; Jalaludin, J. Effects of Exhaust Emissions from Diesel Engine Applications on Environment and Health: A Review. J. Sustain. Sci. Manag. 2022, 17, 281–301. [Google Scholar] [CrossRef]
- Nazarko, Ł.; Žemaitis, E.; Wróblewski, Ł.K.; Šuhajda, K.; Zajączkowska, M. The Impact of Energy Development of the European Union Euro Area Countries on CO2 Emissions Level. Energies 2022, 15, 1425. [Google Scholar] [CrossRef]
- Breuer, J.L.; Samsun, R.C.; Stolten, D.; Peters, R. How to Reduce the Greenhouse Gas Emissions and Air Pollution Caused by Light and Heavy Duty Vehicles with Battery-Electric, Fuel Cell-Electric and Catenary Trucks. Environ. Int. 2021, 152, 106474. [Google Scholar] [CrossRef]
- Khan, D.; Burdzik, R. Measurement and Analysis of Transport Noise and Vibration: A Review of Techniques, Case Studies, and Future Directions. Measurement 2023, 220, 113354. [Google Scholar] [CrossRef]
- Borucka, A.; Kozlowski, E.; Oleszczuk, P.; Mazurkiewicz, D. The Use of Mathematical Models Describing the Spread of Covid-19 in Strategic State Security Management. Eur. Res. Stud. J. 2020, XXIII, 82–98. [Google Scholar] [CrossRef]
Route | Distance | Number of Services | Total km (Month) | |||
---|---|---|---|---|---|---|
Weekdays | Sat | Sun | ||||
1 | Pasakų parkas → Stotis (A) | 9.05 | 42 | 27 | 26 | 859.75 |
Stotis (A) → Pasakų parkas | 8.60 | 41 | 27 | 16 | 722.40 | |
2 | Senoji plytinė → Stotis (A) | 9.81 | 106 | 99 | 96 | 2952.81 |
Stotis (A) → Senoji plytinė | 9.63 | 108 | 99 | 96 | 2917.89 | |
3 | Pasakų parkas → Povilo Lukšio st. | 12.40 | 26 | 25 | 24 | 930.00 |
Povilo Lukšio st. → Pasakų parkas | 12.08 | 27 | 24 | 24 | 906.00 | |
4 | Antakalnio žiedas → Valkininkų st. | 13.60 | 102 | 0 | 0 | 1387.20 |
Valkininkų st. → Antakalnio žiedas | 13.52 | 101 | 0 | 0 | 1365.52 | |
Antakalnio žiedas → Gerosios Vilties st. | 9.36 | 0 | 84 | 83 | 1563.12 | |
Gerosios Vilties st. → Antakalnio žiedas | 9.22 | 0 | 84 | 82 | 1530.52 | |
6 | Šaltinėlio st. → Valkininkų st. | 13.29 | 110 | 87 | 86 | 3761.07 |
Valkininkų st. → Žirmūnų žiedas | 12.94 | 111 | 88 | 86 | 3687.90 | |
7 | Skalvių st. → Stotis (A) | 11.12 | 149 | 112 | 110 | 4125.52 |
Stotis (A) → Skalvių st. | 10.90 | 153 | 112 | 111 | 4098.40 | |
9 | Pasakų parkas → Žirmūnų žiedas | 11.42 | 67 | 45 | 44 | 1781.52 |
Šaltinėlio st. → Pasakų parkas | 10.99 | 67 | 45 | 44 | 1714.44 | |
10 | Senoji plytinė → Naujininkai | 12.26 | 71 | 45 | 43 | 1949.34 |
Naujininkai → Senoji plytinė | 11.80 | 73 | 43 | 42 | 1864.40 | |
12 | Šaltinėlio st. → Valkininkų st. | 13.78 | 60 | 29 | 28 | 1612.26 |
Valkininkų st. → Žirmūnų žiedas | 13.77 | 60 | 29 | 28 | 1611.09 | |
15 | Stotis (F) → Titnago st. | 9.17 | 18 | 0 | 0 | 165.06 |
Titnago st. → Stotis (F) | 8.84 | 18 | 0 | 0 | 159.12 | |
16 | Pašilaičių žiedas → Stotis (F) | 11.95 | 88 | 74 | 73 | 2808.25 |
Stotis (F) → Pašilaičių žiedas | 12.30 | 91 | 74 | 73 | 2927.40 | |
17 | Šaltinėlio st. → Naujininkai | 10.28 | 120 | 82 | 81 | 2909.24 |
Naujininkai → Žirmūnų žiedas | 10.21 | 119 | 83 | 82 | 2899.64 | |
18 | Skalvių st. → Titnago st. | 14.49 | 95 | 40 | 39 | 2521.26 |
Titnago st. → Skalvių st. | 14.89 | 97 | 40 | 40 | 2635.53 | |
19 | Pašilaičių žiedas → Senoji plytinė | 14.15 | 84 | 59 | 57 | 2830.00 |
Senoji plytinė → Pašilaičių žiedas | 14.21 | 83 | 59 | 58 | 2842.00 | |
20 | Šaltinėlio st. → Stotis (A) | 8.96 | 48 | 36 | 36 | 1075.20 |
Stotis (A) → Žirmūnų žiedas | 8.70 | 48 | 36 | 36 | 1044.00 | |
21 | Antakalnio žiedas → Žirmūnų žiedas | 5.25 | 24 | 0 | 0 | 126.00 |
Šaltinėlio st. → Antakalnio žiedas | 4.98 | 24 | 0 | 0 | 119.52 | |
Total | 66,403.37 |
Mode of Transportation | Fuel Type | Size (Engine Cubic Capacity or Vehicle Dimension) | Emission Class | Value (EUR/Pass × km) |
---|---|---|---|---|
Bus (Ordinary Bus) | Diesel | 15 to 18 tonnes | Euro 6 | 0.0012 |
Bus (Coach) | Diesel | >18 tonnes | Euro 6 | 0.0014 |
Mode of Transportation | Fuel Type | Size (Engine Cubic Capacity or Vehicle Dimension | Emission Class | Value (EUR/Pass × km) |
---|---|---|---|---|
Bus (Ordinary Bus) | Diesel | 15 to 18 tonnes | Euro 6 | 0.0061 |
Bus (Coach) | Diesel | >18 tonnes | Euro 6 | 0.0062 |
Indicator Name | Value Fuel 1 (Class B0) | Value the Fuel Test Meets the Requirements of the Standard PN-EN 590:2022-08 [60] |
---|---|---|
Cetane number not less than (test method PN-EN ISO 5165) | 52.6 | 51 |
Fractional composition | ||
up to 65% distilled at a temperature of °C, not higher (test method PN-EN ISO 3405) | 250 | 250 |
minimum 5% to a temperature of °C | ||
95% distilled to a temperature of °C | 350 Max. 360 | 350 Max. 360 |
Kinematic viscosity at 40° (mm2/s) (test method PN-EN ISO 3104) | 2.0–4.5 | 2.15 |
Sulfur content [mg/kg] (test method according to PN-EN ISO 20846, PN-EN ISO 20884 standards | Max. 10 | 8.8 |
Ash content [%], not more than (test method PN-EN ISO 6245) | 0.01 | 0.01 |
Coking residue in 10% distillation residue (test method PN-EN ISO 10370) | 0.30 | 0.27 |
Density at 15 °C, kg/m3 (test method according to PN EN ISO 12185, PN EN ISO 3675 standards | 820–845 | 833.6 |
Flash point [°C] (test method PN-EN ISO 2719) | Minimm 56 | 61 |
Water content mg/kg/% (test method PN-EN ISO 12937) | Max. 200/0.02 | 22 |
Technology | CO2 Emissions (gCO2/kWh) |
---|---|
Coal | 820 |
Oil shale | 820 |
Biomass co-fired with coal | 740 |
Natural gas | 490 |
Biomass | 230 |
Photovoltaics (ground-mounted) | 48 |
Photovoltaics (roof-mounted) | 41 |
Geothermal energy | 38 |
Concentrated solar energy | 27 |
Hydropower | 24 |
Wind energy (offshore) | 12 |
Nuclear energy | 12 |
Wind energy (onshore) | 11 |
Lithuania (2023) | Latvia (2023) | Estonia (2021) |
---|---|---|
Natural gas: ~50% | Hydropower: ~40% | Oil shale: ~60% |
Renewable energy sources (RES): ~30% (mainly biomass and wind) | Natural gas: ~35% | Renewable energy sources: ~25% (mainly wind) |
Energy import: ~20% | Renewable energy sources: ~15% (mainly biomass) | Energy import: ~15% |
Energy import: ~10% |
Variable | Fleet Mileage per Month in km (Fm) | Emissions of CO2 (kg)/km for Bus Service (Ekm(bus)) | Total (kg of CO2) |
---|---|---|---|
Emissions of CO2 avoided by trolleybus in kg (Emat) | 66,403.37 | 1.28 | 84,996.32 |
Variable | Value of Carbon Credits in EUR per Ton (VCC) 1 | Emissions of CO2 Are Avoided by Trolleybus in Ton. (Emta/1000) | Total EUR |
---|---|---|---|
Carbon Credits (CC) | 69.56 | 84,996.32 | 5912.34 |
Variable | EUR Pass./km | Passengers (Month) | Distance (Month) | Factor Passenger per km | Total (EUR per Month) |
---|---|---|---|---|---|
Local Gases Cost (LGC) | 0.0116 | 6,000,000 | 66,403.37 | 90.36 | 69,602.42 |
Greenhouse Gases (GHG) | 0.006 | 6,000,000 | 66,403.37 | 90.36 | 36,001.25 |
Total (EUR per Month) | 105,603.67 |
Variable | Carbon Credits (CC) | Negative Impact on Communities | Total (EUR per Month) |
---|---|---|---|
Benefits of no Emissions | 5012.34 | 105,603.67 | 110,616.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orynycz, O.; Rodrigues, G.S.; Mendes dos Reis, J.G.; Kulesza, E.; Matijošius, J.; Teixeira Machado, S. Energy and Environmental Benefits of In-Motion Charging Trolleybuses: A Case Study of Vilnius. Energies 2025, 18, 3015. https://doi.org/10.3390/en18123015
Orynycz O, Rodrigues GS, Mendes dos Reis JG, Kulesza E, Matijošius J, Teixeira Machado S. Energy and Environmental Benefits of In-Motion Charging Trolleybuses: A Case Study of Vilnius. Energies. 2025; 18(12):3015. https://doi.org/10.3390/en18123015
Chicago/Turabian StyleOrynycz, Olga, Gabriel Santos Rodrigues, João Gilberto Mendes dos Reis, Ewa Kulesza, Jonas Matijošius, and Sivanilza Teixeira Machado. 2025. "Energy and Environmental Benefits of In-Motion Charging Trolleybuses: A Case Study of Vilnius" Energies 18, no. 12: 3015. https://doi.org/10.3390/en18123015
APA StyleOrynycz, O., Rodrigues, G. S., Mendes dos Reis, J. G., Kulesza, E., Matijošius, J., & Teixeira Machado, S. (2025). Energy and Environmental Benefits of In-Motion Charging Trolleybuses: A Case Study of Vilnius. Energies, 18(12), 3015. https://doi.org/10.3390/en18123015