A Comprehensive Analysis of Integrating Blockchain Technology into the Energy Supply Chain for the Enhancement of Transparency and Sustainability
Abstract
:1. Introduction
2. Literature Review
2.1. Challenges and Opportunities in Traditional ESC
2.2. Blockchain Technology and Its Potential in ESC
3. Transparency and Sustainability
3.1. Transparency in Energy Transactions
3.2. Sustainability in Energy Transactions
4. Challenges in Implementing Blockchain
5. Future Directions and Opportunities
5.1. Future Development in Blockchain
5.2. Emerging Trends
5.3. Opportunities for Research and Industry Adoption
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Junne, T.; Xiao, M.; Xu, L.; Wang, Z.; Jochem, P.; Pregger, T. How to assess the quality and transparency of energy scenarios: Results of a case study. Energy Strategy. Rev. 2019, 26, 100380. [Google Scholar] [CrossRef]
- Pahle, M.; Schaeffer, R.; Pachauri, S.; Eom, J.; Awasthy, A.; Chen, W.; Di Maria, C.; Jiang, K.; He, C.; Portugal-Pereira, J.; et al. The crucial role of complementarity, transparency and adaptability for designing energy policies for sustainable development. Energy Policy 2021, 159, 112662. [Google Scholar] [CrossRef]
- Dixit, S.; Wagle, S.; Sant, G. The real challenge in power sector restructuring: Instilling public control through transparency, accountability and public participation (TAP). Energy Sustain. Dev. 2001, 5, 95–102. [Google Scholar] [CrossRef]
- Dorian, J.P.; Franssen, H.T.; Simbeck, D.R. Global challenges in energy. Energy Policy 2006, 34, 1984–1991. [Google Scholar] [CrossRef]
- Andoni, M.; Robu, V.; Flynn, D.; Abram, S.; Geach, D.; Jenkins, D.; McCallum, P.; Peacock, A. Blockchain technology in the energy sector: A systematic review of challenges and opportunities. Renew. Sustain. Energy Rev. 2019, 100, 143–174. [Google Scholar] [CrossRef]
- Wang, Q.; Su, M. Integrating blockchain technology into the energy sector—From theory of blockchain to research and application of energy blockchain. Comput. Sci. Rev. 2020, 37, 100275. [Google Scholar] [CrossRef]
- Yli-Huumo, J.; Ko, D.; Choi, S.; Park, S.; Smolander, K. Where is current research on blockchain technology?—A systematic review. PLoS ONE 2016, 11, e0163477. [Google Scholar] [CrossRef]
- Zheng, Z.; Xie, S.; Dai, H.; Chen, X.; Wang, H. An overview of blockchain technology: Architecture, consensus, and future trends. In Proceedings of the 2017 IEEE International Congress on Big Data (BigData Congress), Honolulu, HI, USA, 25–30 June 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 557–564. [Google Scholar]
- Esfahani, M.M.; Mohammed, O.A. Secure blockchain-based energy transaction framework in smart power systems. In Proceedings of the IECON 2018-44th Annual Conference of the IEEE Industrial Electronics Society, Washington, DC, USA, 21–23 October 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 260–264. [Google Scholar]
- Wu, J.; Tran, N.K. Application of blockchain technology in sustainable energy systems: An overview. Sustainability 2018, 10, 3067. [Google Scholar] [CrossRef]
- Pieroni, A.; Scarpato, N.; Di Nunzio, L.; Fallucchi, F.; Raso, M. Smarter city: Smart energy grid based on blockchain technology. Int. J. Adv. Sci. Eng. Inf. Technol 2018, 8, 298–306. [Google Scholar] [CrossRef]
- Almutairi, K.; Hosseini Dehshiri, S.J.; Hosseini Dehshiri, S.S.; Hoa, A.X.; Arockia Dhanraj, J.; Mostafaeipour, A.; Issakhov, A.; Techato, K. Blockchain Technology application challenges in renewable energy supply chain management. Environ. Sci. Pollut. Res. 2023, 30, 72041–72058. [Google Scholar] [CrossRef]
- Sahebi, I.G.; Mosayebi, A.; Masoomi, B.; Marandi, F. Modeling the enablers for blockchain technology adoption in renewable energy supply chain. Technol. Soc. 2022, 68, 101871. [Google Scholar] [CrossRef]
- Cali, U.; Kuzlu, M.; Sebastian-Cardenas, D.J.; Elma, O.; Pipattanasomporn, M.; Reddi, R. Cybersecure and scalable, token-based renewable energy certificate framework using blockchain-enabled trading platform. Electr. Eng. 2022, 106, 1841–1852. [Google Scholar] [CrossRef]
- Aklilu, Y.T.; Ding, J. Survey on blockchain for smart grid management, control, and operation. Energies 2021, 15, 193. [Google Scholar] [CrossRef]
- Miglani, A.; Kumar, N.; Chamola, V.; Zeadally, S. Blockchain for Internet of Energy management: Review, solutions, and challenges. Comput. Commun. 2020, 151, 395–418. [Google Scholar] [CrossRef]
- Molyneaux, L.; Head, B. Why information and transparency about electricity matter: Fragmentation of governance and accountability under New Public Management. Aust. J. Public Adm. 2020, 79, 143–164. [Google Scholar] [CrossRef]
- Fontaine, G.; Carrasco, C.; Rodrigues, C. How transparency enhances public accountability: The case of environmental governance in Chile. Extr. Ind. Soc. 2022, 9, 101040. [Google Scholar] [CrossRef]
- Lopez, L.; Fontaine, G. How transparency improves public accountability: The extractive industries transparency initiative in Mexico. Extr. Ind. Soc. 2019, 6, 1156–1167. [Google Scholar] [CrossRef]
- Mika, B.; Goudz, A. Blockchain-technology in the energy industry: Blockchain as a driver of the energy revolution? With focus on the situation in Germany. Energy Syst. 2021, 12, 285–355. [Google Scholar] [CrossRef]
- Cong, Y.; Hou, Y.; Jiang, J.; Chen, S.; Cai, X. Features and evolution of global energy trade patterns from the perspective of complex networks. Energies 2023, 16, 5677. [Google Scholar] [CrossRef]
- Hao, X.; An, H.; Qi, H.; Gao, X. Evolution of the exergy flow network embodied in the global fossil energy trade: Based on complex network. Appl. Energy 2016, 162, 1515–1522. [Google Scholar] [CrossRef]
- Sharma, P.K.; Kumar, N.; Park, J.H. Blockchain technology toward green IoT: Opportunities and challenges. IEEE Netw. 2020, 34, 263–269. [Google Scholar] [CrossRef]
- Teufel, B.; Sentic, A.; Barmet, M. Blockchain energy: Blockchain in future energy systems. J. Electron. Sci. Technol. 2019, 17, 100011. [Google Scholar] [CrossRef]
- Mik, E. Smart contracts: Terminology, technical limitations and real world complexity. Law Innov. Technol. 2017, 9, 269–300. [Google Scholar] [CrossRef]
- Hanada, Y.; Hsiao, L.; Levis, P. Smart contracts for machine-to-machine communication: Possibilities and limitations. In Proceedings of the 2018 IEEE International Conference on Internet of Things and Intelligence System (IOTAIS), Bali, Indonesia, 1–3 November 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 130–136. [Google Scholar]
- Wognum, P.N.; Bremmers, H.; Trienekens, J.H.; Van Der Vorst, J.G.; Bloemhof, J.M. Systems for sustainability and transparency of food supply chains—Current status and challenges. Adv. Eng. Inform. 2011, 25, 65–76. [Google Scholar] [CrossRef]
- Gardner, T.A.; Benzie, M.; Börner, J.; Dawkins, E.; Fick, S.; Garrett, R.; Godar, J.; Grimard, A.; Lake, S.; Larsen, R.K.; et al. Transparency and sustainability in global commodity supply chains. World Dev. 2019, 121, 163–177. [Google Scholar] [CrossRef]
- Jabbar, S.; Lloyd, H.; Hammoudeh, M.; Adebisi, B.; Raza, U. Blockchain-enabled supply chain: Analysis, challenges, and future directions. Multimed. Syst. 2021, 27, 787–806. [Google Scholar] [CrossRef]
- Khisro, J.; Sundberg, H. Enterprise interoperability development in multi relation collaborations: Success factors from the Danish electricity market. Enterp. Inf. Syst. 2020, 14, 1172–1193. [Google Scholar] [CrossRef]
- Aly, M.; Khomh, F.; Guéhéneuc, Y.G.; Washizaki, H.; Yacout, S. Is Fragmentation a Threat to the Success of the Internet of Things? IEEE Internet Things J. 2018, 6, 472–487. [Google Scholar] [CrossRef]
- Obser, S. Facing the Challenge of Supply Chain Traceability. Master’s Thesis, Niederrhein University of Applied Sciences in Mönchengladbach, Mönchengladbach, Germany, 2015. [Google Scholar]
- Mol, A.P. Transparency and value chain sustainability. J. Clean. Prod. 2015, 107, 154–161. [Google Scholar] [CrossRef]
- Rekkavik, M.E.; Andreassen, P.H. Transparency in Global Energy Supply Chains. Master’s Thesis, Handelshøyskolen BI, Oslo, Norway, 2022. [Google Scholar]
- Hasanuzzaman, M.; Kumar, L. Energy supply. In Energy for Sustainable Development; Academic Press: Cambridge, MA, USA, 2020; pp. 89–104. [Google Scholar]
- Mafakheri, F.; Nasiri, F. Modeling of biomass-to-energy supply chain operations: Applications, challenges and research directions. Energy Policy 2014, 67, 116–126. [Google Scholar] [CrossRef]
- Wang, W.; Fan, L.W.; Zhou, P. Evolution of global fossil fuel trade dependencies. Energy 2022, 238, 121924. [Google Scholar] [CrossRef]
- Bailey, T.; Maruyama, A.; Wallance, D. The Energy-Sector Threat: How to Address Cybersecurity Vulnerabilities; McKinsey & Company: New York, NY, USA, 2020. [Google Scholar]
- Zografopoulos, I.; Ospina, J.; Liu, X.; Konstantinou, C. Cyber-physical energy systems security: Threat modeling, risk assessment, resources, metrics, and case studies. IEEE Access 2021, 9, 29775–29818. [Google Scholar] [CrossRef]
- Huang, X.; Qin, Z.; Liu, H. A survey on power grid cyber security: From component-wise vulnerability assessment to system-wide impact analysis. IEEE Access 2018, 6, 69023–69035. [Google Scholar] [CrossRef]
- Cherp, A.; Jewell, J.; Goldthau, A. Governing global energy: Systems, transitions, complexity. Glob. Policy 2011, 2, 75–88. [Google Scholar] [CrossRef]
- Koliba, C.; DeMenno, M.; Brune, N.; Zia, A. The salience and complexity of building, regulating, and governing the smart grid: Lessons from a statewide public–private partnership. Energy Policy 2014, 74, 243–252. [Google Scholar] [CrossRef]
- Doern, G.B.; Gattinger, M. Power Switch: Energy Regulatory Governance in the Twenty-First Century; University of Toronto Press: Toronto, ON, Canada, 2003. [Google Scholar]
- Wee, H.M.; Yang, W.H.; Chou, C.W.; Padilan, M.V. Renewable energy supply chains, performance, application barriers, and strategies for further development. Renew. Sustain. Energy Rev. 2012, 16, 5451–5465. [Google Scholar] [CrossRef]
- Fontes, C.H.D.O.; Freires, F.G.M. Sustainable and renewable energy supply chain: A system dynamics overview. Renew. Sustain. Energy Rev. 2018, 82, 247–259. [Google Scholar]
- Fattahi, M.; Mosadegh, H.; Hasani, A. Sustainable planning in mining supply chains with renewable energy integration: A real-life case study. Resour. Policy 2021, 74, 101296. [Google Scholar] [CrossRef]
- Ahmad, T.; Zhang, D. Using the internet of things in smart energy systems and networks. Sustain. Cities Soc. 2021, 68, 102783. [Google Scholar] [CrossRef]
- Kabalci, Y.; Kabalci, E.; Padmanaban, S.; Holm-Nielsen, J.B.; Blaabjerg, F. Internet of things applications as energy internet in smart grids and smart environments. Electronics 2019, 8, 972. [Google Scholar] [CrossRef]
- Saleem, M.U.; Shakir, M.; Usman, M.R.; Bajwa, M.H.T.; Shabbir, N.; Shams Ghahfarokhi, P.; Daniel, K. Integrating smart energy management system with internet of things and cloud computing for efficient demand side management in smart grids. Energies 2023, 16, 4835. [Google Scholar] [CrossRef]
- Ponnaganti, P.; Pillai, J.R.; Bak-Jensen, B. Opportunities and challenges of demand response in active distribution networks. Wiley Interdiscip. Rev. Energy Environ. 2018, 7, e271. [Google Scholar] [CrossRef]
- Ebrahimi, H.; Yazdaninejadi, A.; Golshannavaz, S. Demand response programs in power systems with energy storage system-coordinated wind energy sources: A security-constrained problem. J. Clean. Prod. 2022, 335, 130342. [Google Scholar] [CrossRef]
- Hamidpour, H.; Aghaei, J.; Pirouzi, S.; Niknam, T.; Nikoobakht, A.; Lehtonen, M.; Shafie-khah, M.; Catalão, J.P. Coordinated expansion planning problem considering wind farms, energy storage systems and demand response. Energy 2022, 239, 122321. [Google Scholar] [CrossRef]
- Fernando, Y.; Bee, P.S.; Jabbour, C.J.C.; Thomé, A.M.T. Understanding the effects of energy management practices on renewable energy supply chains: Implications for energy policy in emerging economies. Energy Policy 2018, 118, 418–428. [Google Scholar] [CrossRef]
- Zampou, E.; Mourtos, I.; Pramatari, K.; Seidel, S. A design theory for energy and carbon management systems in the supply chain. J. Assoc. Inf. Syst. 2022, 23, 329–371. [Google Scholar]
- Bagby, J.W. How standardization will balance sustainability goals in the transport component of energy supply chains: Efficiency versus environmental safety. Transp. J. 2015, 54, 136–149. [Google Scholar] [CrossRef]
- Tariq, U.; Ibrahim, A.; Ahmad, T.; Bouteraa, Y.; Elmogy, A. Blockchain in internet-of-things: A necessity framework for security, reliability, transparency, immutability and liability. IET Commun. 2019, 13, 3187–3192. [Google Scholar] [CrossRef]
- Ahmad, D.; Lutfiani, N.; Ahmad, A.D.A.R.; Rahardja, U.; Aini, Q. Blockchain technology immutability framework design in e-government. J. Adm. Publik (Public Adm. J.) 2021, 11, 32–41. [Google Scholar] [CrossRef]
- Wang, W.; Hoang, D.T.; Hu, P.; Xiong, Z.; Niyato, D.; Wang, P.; Wen, Y.; Kim, D.I. A survey on consensus mechanisms and mining strategy management in blockchain networks. IEEE Access 2019, 7, 22328–22370. [Google Scholar] [CrossRef]
- Lashkari, B.; Musilek, P. A comprehensive review of blockchain consensus mechanisms. IEEE Access 2021, 9, 43620–43652. [Google Scholar] [CrossRef]
- Centobelli, P.; Cerchione, R.; Del Vecchio, P.; Oropallo, E.; Secundo, G. Blockchain technology for bridging trust, traceability and transparency in circular supply chain. Inf. Manag. 2022, 59, 103508. [Google Scholar] [CrossRef]
- Zhang, A.; Zhong, R.Y.; Farooque, M.; Kang, K.; Venkatesh, V.G. Blockchain-based life cycle assessment: An implementation framework and system architecture. Resour. Conserv. Recycl. 2020, 152, 104512. [Google Scholar] [CrossRef]
- Downes, L.; Reed, C. Distributed ledger technology for governance of sustainability transparency in the global energy value chain. Glob. Energy Law Sustain. 2020, 1, 55–100. [Google Scholar] [CrossRef]
- Seven, S.; Yao, G.; Soran, A.; Onen, A.; Muyeen, S.M. Peer-to-peer energy trading in virtual power plant based on blockchain smart contracts. IEEE Access 2020, 8, 175713–175726. [Google Scholar] [CrossRef]
- De Giovanni, P. Blockchain and smart contracts in supply chain management: A game theoretic model. Int. J. Prod. Econ. 2020, 228, 107855. [Google Scholar] [CrossRef]
- Kshetri, N. Blockchain’s roles in strengthening cybersecurity and protecting privacy. Telecommun. Policy 2017, 41, 1027–1038. [Google Scholar] [CrossRef]
- Taylor, P.J.; Dargahi, T.; Dehghantanha, A.; Parizi, R.M.; Choo, K.K.R. A systematic literature review of blockchain cyber security. Digit. Commun. Netw. 2020, 6, 147–156. [Google Scholar] [CrossRef]
- Akiladevi, R.; Sardha, S.; Shruthi, R. Tokenization of energy assets: A multichain blockchain approach. In Proceedings of the 2024 5th International Conference on Mobile Computing and Sustainable Informatics (ICMCSI), Kirtipur, Nepal, 18–19 January 2024; IEEE: Piscataway, NJ, USA; pp. 702–709. [Google Scholar]
- Ali, L.; Azim, M.I.; Peters, J.; Bhandari, V.; Menon, A.; Tiwari, V.; Green, J.; Muyeen, S.M. Blockchain-based local energy market enabling P2P trading: An Australian collated case study on energy users, retailers and utilities. IEEE Access 2022, 10, 124429–124447. [Google Scholar] [CrossRef]
- Ivanov, M.; Johnson, E. A Comprehensive Review of Decentralization Technologies in Bitcoin, Ethereum, and Solana. Adv. Comput. Sci. 2024, 7, 1–8. [Google Scholar]
- Tang, Y.; Yan, J.; Chakraborty, C.; Sun, Y. Hedera: A permissionless and scalable hybrid blockchain consensus algorithm in multiaccess edge computing for IoT. IEEE Internet Things J. 2023, 10, 21187–21202. [Google Scholar] [CrossRef]
- Eickhoff, M.; Exner, A.; Busboom, A. Energy consumption tokens for blockchain-based end-to-end trading of green energy certificates. In Proceedings of the 2023 IEEE PES GTD International Conference and Exposition (GTD), Istanbul, Turkey, 22–25 May 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1–5. [Google Scholar]
- Available online: https://solana.com/news/solanas-energy-use-report-march-2022 (accessed on 20 May 2025).
- UCL Centre for Blockchain Technologies Discussion Paper. Available online: https://www.academia.edu/127784827/UCL_Centre_for_Blockchain_Technologies (accessed on 20 May 2025).
- De Vries, A. Cryptocurrencies on the road to sustainability: Ethereum paving the way for Bitcoin. Patterns 2023, 4, 100633. [Google Scholar] [CrossRef] [PubMed]
- Jones, N. How to stop data centres from gobbling up the world’s electricity. Nature 2018, 561, 163–166. [Google Scholar] [CrossRef]
- Powerledger’s Peer-to-Peer Energy Trading Trial in Fremantle Extended. Available online: https://powerledger.io/media/powerledgers-peer-to-peer-energy-trading-trial-in-fremantle-extended/ (accessed on 20 May 2025).
- Mengelkamp, E.; Notheisen, B.; Beer, C.; Dauer, D.; Weinhardt, C. A blockchain-based smart grid: Towards sustainable local energy markets. Comput. Sci.-Res. Dev. 2018, 33, 207–214. [Google Scholar] [CrossRef]
- Lund, H. Renewable Energy Systems: A Smart Energy Systems Approach to the Choice and Modeling of Fully Decarbonized Societies; Elsevier: Amsterdam, The Netherlands, 2024. [Google Scholar]
- Koukaras, P.; Afentoulis, K.D.; Gkaidatzis, P.A.; Mystakidis, A.; Ioannidis, D.; Vagropoulos, S.I.; Tjortjis, C. Integrating blockchain in smart grids for enhanced demand response: Challenges, strategies, and future directions. Energies 2024, 17, 1007. [Google Scholar] [CrossRef]
- Khattak, H.A.; Tehreem, K.; Almogren, A.; Ameer, Z.; Din, I.U.; Adnan, M. Dynamic pricing in industrial internet of things: Blockchain application for energy management in smart cities. J. Inf. Secur. Appl. 2020, 55, 102615. [Google Scholar] [CrossRef]
- Khan, S.N.; Loukil, F.; Ghedira-Guegan, C.; Benkhelifa, E.; Bani-Hani, A. Blockchain smart contracts: Applications, challenges, and future trends. Peer Peer Netw. Appl. 2021, 14, 2901–2925. [Google Scholar] [CrossRef]
- Ante, L. Smart contracts on the blockchain—A bibliometric analysis and review. Telemat. Inform. 2021, 57, 101519. [Google Scholar] [CrossRef]
- Luo, H.; Das, M.; Wang, J.; Cheng, J.C. Construction payment automation through smart contract-based blockchain framework. In Proceedings of the International Symposium on Automation and Robotics in Construction, Banff, AB, Canada, 21–24 May 2025; IAARC: Washington, DC, USA, 2019; Volume 36, pp. 1254–1260. [Google Scholar]
- Egelund-Müller, B.; Elsman, M.; Henglein, F.; Ross, O. Automated execution of financial contracts on blockchains. Bus. Inf. Syst. Eng. 2017, 59, 457–467. [Google Scholar] [CrossRef]
- Trivedi, C.; Rao, U.P.; Parmar, K.; Bhattacharya, P.; Tanwar, S.; Sharma, R. A transformative shift toward blockchain-based IoT environments: Consensus, smart contracts, and future directions. Secur. Priv. 2023, 6, e308. [Google Scholar] [CrossRef]
- Pranto, T.H.; Noman, A.A.; Mahmud, A.; Haque, A.B. Blockchain and smart contract for IoT enabled smart agriculture. PeerJ Comput. Sci. 2021, 7, e407. [Google Scholar] [CrossRef] [PubMed]
- Mengelkamp, E.; Gärttner, J.; Rock, K.; Kessler, S.; Orsini, L.; Weinhardt, C. Designing microgrid energy markets: A case study: The Brooklyn Microgrid. Appl. Energy 2018, 210, 870–880. [Google Scholar] [CrossRef]
- Vieira, G.; Zhang, J. Peer-to-peer energy trading in a microgrid leveraged by smart contracts. Renew. Sustain. Energy Rev. 2021, 143, 110900. [Google Scholar] [CrossRef]
- Energy Web Foundation Whitepaper. Available online: https://www.energyweb.org/ (accessed on 20 May 2025).
- Power Ledger Whitepaper. Available online: https://powerledger.io/media/what-is-powerledger-a-guide-to-blockchain-based-energy-solutions/ (accessed on 20 May 2025).
- Singh, A.; Parizi, R.M.; Zhang, Q.; Choo, K.K.R.; Dehghantanha, A. Blockchain smart contracts formalization: Approaches and challenges to address vulnerabilities. Comput. Secur. 2020, 88, 101654. [Google Scholar] [CrossRef]
- Kamal, M.; Tariq, M. Light-weight security and blockchain based provenance for advanced metering infrastructure. IEEE Access 2019, 7, 87345–87356. [Google Scholar] [CrossRef]
- Bandara, E.; Shetty, S.; Tosh, D.; Liang, X. Vind: A Blockchain-Enabled Supply Chain Provenance Framework for Energy Delivery Systems. Front. Blockchain 2021, 4, 607320. [Google Scholar] [CrossRef]
- Wan, P.K.; Huang, L. Energy Tracing and Blockchain Technology: A Primary Review. In Proceedings of the International Conference on Intelligent Technologies and Applications, Grimstad, Norway, 11–13 October 2021; Springer International Publishing: Cham, Switzerland, 2021; pp. 223–231. [Google Scholar]
- Tosh, D.; Shetty, S.; Liang, X.; Kamhoua, C.; Njilla, L.L. Data provenance in the cloud: A blockchain-based approach. IEEE Consum. Electron. Mag. 2019, 8, 38–44. [Google Scholar] [CrossRef]
- Babaei, A.; Tirkolaee, E.B.; Ali, S.S. Assessing the viability of blockchain technology in renewable energy supply chains: A consolidation framework. Renew. Sustain. Energy Rev. 2025, 212, 115444. [Google Scholar] [CrossRef]
- Chauhan, A.; Malviya, O.P.; Verma, M.; Mor, T.S. Blockchain and scalability. In Proceedings of the 2018 IEEE International Conference on Software Quality, Reliability and Security Companion (QRS-C), Lisboa, Portugal, 16–20 July 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 122–128. [Google Scholar]
- Kohad, H.; Kumar, S.; Ambhaikar, A. Scalability issues of blockchain technology. Int. J. Eng. Adv. Technol. 2020, 9, 2385–2391. [Google Scholar]
- Reegu, F.; Daud, S.M.; Alam, S. Interoperability challenges in healthcare blockchain system—A systematic review. Ann. Rom. Soc. Cell Biol. 2021, 25, 15487–15499. [Google Scholar]
- Spouse, T.; Green, B. How distributed ledger technology could solve regulatory problems. J. Financ. Compliance 2019, 3, 60–66. [Google Scholar] [CrossRef]
- Mohanta, B.K.; Jena, D.; Panda, S.S.; Sobhanayak, S. Blockchain technology: A survey on applications and security privacy challenges. Internet Things 2019, 8, 100107. [Google Scholar] [CrossRef]
- Ghosh, E.; Das, B. A study on the issue of blockchain’s energy consumption. In Proceedings of the International Ethical Hacking Conference 2019: eHaCON 2019; Springer: Singapore, 2020; pp. 63–75. [Google Scholar]
- Mohammad, A.; Vargas, S. Barriers affecting Higher Education Institutions’ adoption of blockchain technology: A qualitative study. Informatics 2022, 9, 64. [Google Scholar] [CrossRef]
- Kushwaha, S.S.; Joshi, S.; Singh, D.; Kaur, M.; Lee, H.N. Systematic review of security vulnerabilities in ethereum blockchain smart contract. IEEE Access 2022, 10, 6605–6621. [Google Scholar] [CrossRef]
- Dwivedi, Y.K.; Balakrishnan, J.; Das, R.; Dutot, V. Resistance to innovation: A dynamic capability model based enquiry into retailers’ resistance to blockchain adaptation. J. Bus. Res. 2023, 157, 113632. [Google Scholar] [CrossRef]
- Choi, D.; Chung, C.Y.; Seyha, T.; Young, J. Factors affecting organizations’ resistance to the adoption of blockchain technology in supply networks. Sustainability 2020, 12, 8882. [Google Scholar] [CrossRef]
- Schletz, M.; Nassiry, D.; Lee, M.K. Blockchain and Tokenized Securities: The Potential for Green Finance (No. 1079); ADBI Working Paper Series; Asian Development Bank Institute: Chiyoda, Tokyo, Japan, 2020. [Google Scholar]
- Fetting, C. The European Green Deal; ESDN Report; European Commission: Brussels, Belgium, 2020; Volume 2, p. 53. [Google Scholar]
- Debnath, R.; Mittal, V.; Jindal, A. A review of challenges from increasing renewable generation in the Indian Power Sector: Way forward for Electricity (Amendment) Bill 2020. Energy Environ. 2022, 33, 3–40. [Google Scholar] [CrossRef]
- Buterin, V. A next-generation smart contract and decentralized application platform. White Pap. 2014, 3. [Google Scholar] [CrossRef]
- Sutopo, A.H. Blockchain Programming Smart Contract on Polygon; Topazart: Woodside, NY, USA, 2023. [Google Scholar]
- Androulaki, E.; Barger, A.; Bortnikov, V.; Cachin, C.; Christidis, K.; De Caro, A.; Enyeart, D.; Ferris, C.; Laventman, G.; Yellick, J. Hyperledger fabric: A distributed operating system for permissioned blockchains. In Proceedings of the Thirteenth EuroSys Conference, New York, NY, USA, 23–26 April 2018; pp. 1–15. [Google Scholar]
- Yakovenko, A. Solana: A new architecture for a high performance blockchain v0.8.13. In Solana-Whitepaper; Independently Published; 2018. [Google Scholar]
- Baird, L. The swirlds hashgraph consensus algorithm: Fair, fast, byzantine fault tolerance. In Swirlds Tech Reports SWIRLDS-TR-2016-01; Swirlds: Dallas, TX, USA, 2016; Volume 34, pp. 9–11. [Google Scholar]
- Wood, G. Polkadot: Vision for a heterogeneous multi-chain framework. White Pap. 2016, 21, 4662. [Google Scholar]
- Han, D.; Zhang, C.; Ping, J.; Yan, Z. Smart contract architecture for decentralized energy trading and management based on blockchains. Energy 2020, 199, 117417. [Google Scholar] [CrossRef]
- Zwitter, A.; Hazenberg, J. Decentralized network governance: Blockchain technology and the future of regulation. Front. Blockchain 2020, 3, 12. [Google Scholar] [CrossRef]
- Marchant, G.E.; Cooper, Z.; Gough-Stone, P.J. Bringing technological transparency to tenebrous markets: The case for using blockchain to validate carbon credit trading markets. Nat. Resour. J. 2022, 62, 159. [Google Scholar]
- Irfan, M.; Ali, S.T.; Ijlal, H.S.; Muhammad, Z.; Raza, S. Exploring The Synergistic Effects of Blockchain Integration with IOT and AI for Enhanced Transparency and Security in Global Supply Chains. Int. J. Contemp. Issues Soc. Sci. 2024, 3, 1326–1338. [Google Scholar]
- Marar, H.W.; Marar, R.W. Hybrid blockchain. Jordanian J. Comput. Inf. Technol. (JJCIT) 2020, 6, 317–325. [Google Scholar] [CrossRef]
- Tredinnick, L. Cryptocurrencies and the blockchain. Bus. Inf. Rev. 2019, 36, 39–44. [Google Scholar] [CrossRef]
- Kumar, N.M.; Chand, A.A.; Malvoni, M.; Prasad, K.A.; Mamun, K.A.; Islam, F.R.; Chopra, S.S. Distributed energy resources and the application of AI, IoT, and blockchain in smart grids. Energies 2020, 13, 5739. [Google Scholar] [CrossRef]
- Belchior, R.; Vasconcelos, A.; Guerreiro, S.; Correia, M. A survey on blockchain interoperability: Past, present, and future trends. Acm Comput. Surv. (CSUR) 2021, 54, 1–41. [Google Scholar] [CrossRef]
- Swathi, P.; Dragan, B. A survey on quantum-safe blockchain system. In Proceedings of the Annual Computer Security Applications Conference (ACSAC), Austin, TX, USA, 5–9 December 2022. [Google Scholar]
- Santana, C.; Albareda, L. Blockchain and the emergence of Decentralized Autonomous Organizations (DAOs): An integrative model and research agenda. Technol. Forecast. Soc. Change 2022, 182, 121806. [Google Scholar] [CrossRef]
S.No. | Parameters | Traditional ESC | ESC with Blockchain | Energy Consumption (Per Transaction) |
---|---|---|---|---|
1 | Transaction speed | 5 to 10 min (centralized) | 2 to 3 s (Solana, Hedera) | Solana~0.00051 kWh Hedera~0.000003 kWh Traditional~1.0 kW/h |
2 | Transaction cost | High (due to intermediaries) | 20–30% reduction (Power Ledger, EWF) | Lower operational costs from reduced intermediary steps |
3 | Scalability | Low | High (Solana, Hedera) | Solana and Hedera optimized for large-scale and low-energy operations |
4 | Environmental impact | High (energy consumption) | 99.9% lower (Solana vs. Ethereum) | Ethereum (PoW)~60–100 kW/h and Solana/Hedera is negligible in comparison |
5 | Grid stability | Low (centralized) | 10% improvement (Power Ledger) | Efficient energy flow reduces load spikes and energy wastage |
6 | Energy trading efficiency | Low (limited P2P capabilities) | High (Power Ledger, EWT, Solana) | Lower transaction energy footprint due to streamlined direct transactions |
S. No. | Parameters | Traditional ESC | ESC with Blockchain |
---|---|---|---|
1 | Transparency | Often opaque and difficult to trace energy origin | Highly transparent and immutable record of transactions and energy origin |
2 | Data management | Centralized and potential for data manipulation and errors | Distributed, consensus-based validation, and enhanced data integrity |
3 | Transaction costs | May be high due to intermediaries and manual processes | Potentially lower due to automation and disintermediation |
4 | Sustainability tracking | Difficult to verify renewable energy claims effectively | Transparent tracking of RECs and verifiable origin of green energy |
5 | Security | Vulnerable to single points of failure and cyber threats | Decentralized, cryptographically secured, and tamper-resistant |
6 | P2P trading | Limited and often requires complex infrastructure | Facilitated through decentralized platforms and smart contracts |
7 | Efficiency | Can involve intermediaries and manual processes | Streamlined processes through smart contracts and reduced intermediaries |
S.No. | Use Case | Blockchain Platform | Network Model | Scalability Feature |
---|---|---|---|---|
1 | P2P energy trading | Polygon/Ethereum | Public | Polygon Layer-2 scaling for fast and low-cost transactions |
2 | Community-based renewable energy markets | Polygon/Ethereum | Public | High throughput and decentralized network |
3 | Carbon credit tracking | Hyperledger Fabric | Private/Permissioned | Modular consensus and improved privacy controls |
4 | Real-time energy data management | Hedera Hashgraph | Public/Permissioned | Gossip-about-gossip protocol and virtual voting |
5 | IoT-integrated smart grids | Solana | Public | Sea-level parallel transaction processing (65,000 TPS) |
6 | Cross-grid interoperability (local, national, international) | Polkadot | Hybrid | Parachain interoperability across different blockchains |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gariya, N.; Asrani, A.; Mandal, A.; Shaikh, A.; Cha, D. A Comprehensive Analysis of Integrating Blockchain Technology into the Energy Supply Chain for the Enhancement of Transparency and Sustainability. Energies 2025, 18, 2951. https://doi.org/10.3390/en18112951
Gariya N, Asrani A, Mandal A, Shaikh A, Cha D. A Comprehensive Analysis of Integrating Blockchain Technology into the Energy Supply Chain for the Enhancement of Transparency and Sustainability. Energies. 2025; 18(11):2951. https://doi.org/10.3390/en18112951
Chicago/Turabian StyleGariya, Narendra, Anjas Asrani, Adhirath Mandal, Amir Shaikh, and Dowan Cha. 2025. "A Comprehensive Analysis of Integrating Blockchain Technology into the Energy Supply Chain for the Enhancement of Transparency and Sustainability" Energies 18, no. 11: 2951. https://doi.org/10.3390/en18112951
APA StyleGariya, N., Asrani, A., Mandal, A., Shaikh, A., & Cha, D. (2025). A Comprehensive Analysis of Integrating Blockchain Technology into the Energy Supply Chain for the Enhancement of Transparency and Sustainability. Energies, 18(11), 2951. https://doi.org/10.3390/en18112951