Impacts of Inertia and Photovoltaic Integration on Existing and Proposed Power System Transient Stability Parameters
Abstract
:1. Introduction
2. Conventional and Proposed Transient Stability Parameters
2.1. CCT
2.2. Weighted Average Inertia of a System
2.3. Electrical Distance for Various Types of Fault Locations and Generator Positions
2.4. Subtransient and Transient Reactance
2.5. Short-Circuit Subtransient and Transient Time Constant
2.6. Direct-Axis Short-Circuit Current Magnitudes
3. Methodology
Proposed Sensitivity Analysis of Subtransient and Transient Reactance Concerning System Inertia and Electrical Distance
4. Transient Stability Assessment Using PowerWorld Simulator
4.1. New England IEEE Thirty-Nine-Bus System
4.2. PV Models for Replaced Generators
5. IEEE 39-Bus Performance Under Different Photovoltaic Penetration Levels
5.1. Subtransient and Transient Sensitivity Parameters for Generators When Changing PV Integration
5.2. Comparative Analysis of the Original Bus and PV-Integrated Bus
5.3. Analyzing Transient Responses for Different Outages When Bus 37 Generator Is Replaced by PVD1-Controlled PV Generators, or Case 1
5.4. Analyzing Transient Responses for Different Outages When Bus 37, 34 Generators Are Replaced by PV Generators, or Case 2
5.5. Analyzing Transient Responses for Different Outages When Bus 37, 34, 36 Generators Are Replaced by PV Generators, or Case 3
5.6. Analyzing Transient Responses for Different Outages When Bus 37, 34, 36, and 32 Generators Replaced by PV Generators, or Case 4
5.7. Analyzing Transient Responses for Different Outages When Bus 37, 34, 36, and 33 Generators Replaced by PV Generators, or Case 5
5.8. Single Generator Fault-On Current Trajectories for Different Cases with Different PV Integrations
5.9. CCT Changes for PV Bus Generator Three-Phase Faults: Cases 6 and 7 Explored
5.10. Determining Sensitivity Parameters
6. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Makolo, P.; Zamora, R.; Lie, T.T. The role of inertia for grid flexibility under high penetration of variable renewables: A review of challenges and solutions. Renew. Sustain. Energy Rev. 2021, 147, 111223. [Google Scholar] [CrossRef]
- Prabhakar, K.; Jain, S.K.; Padhy, P.K. Inertia estimation in modern power system: A comprehensive review. Electr. Power Syst. Res. 2022, 211, 108222. [Google Scholar] [CrossRef]
- Martinez-Velasco, J.A. Power System Transients: Parameter Determination; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Senyuk, M.; Safaraliev, M.; Kamalov, F.; Sulieman, H. Power system transient stability assessment based on machine learning algorithms and grid topology. Mathematics 2023, 11, 525. [Google Scholar] [CrossRef]
- Golpira, H.; Román-Messina, A.; Bevrani, H. Renewable Integrated Power System Stability and Control; John Wiley & Sons: Hoboken, NJ, USA, 2021. [Google Scholar]
- Hingu, C.; Fu, X.; Vangala, P.; Mishan, R.; Fajri, P. 32-Bit Fixed and Floating-Point Hardware Implementation for Enhanced Inverter Control: Leveraging FPGA in Recurrent Neural Network Applications. IEEE Access 2024, 12, 111097–111110. [Google Scholar] [CrossRef]
- Hingu, C.; Fu, X.; Mishan, R.; Kim, T. PWM-Based Hardware Authentication for Smart Inverters: Detecting Counterfeit Inverter through Transient Response Analysis. In Proceedings of the 2024 IEEE Energy Conversion Congress and Exposition (ECCE), Phoenix, AZ, USA, 20–24 October 2024; pp. 1–6. [Google Scholar]
- Mishan, R.; Fu, X.; Hingu, C.; Fajri, P. Analyzing frequency spectrum and Total Harmonic Distortion for high switching frequency operation of GaN-based filter-less multilevel cascaded H-bridge inverter. e-Prime-Adv. Electr. Eng. Electron. Energy 2025, 11, 100906. [Google Scholar] [CrossRef]
- Hingu, C.; Fu, X.; Saliyu, T.; Hu, R.; Mishan, R. Power-Optimized Field-Programmable Gate Array Implementation of Neural Activation Functions Using Continued Fractions for AI/ML Workloads. Electronics 2024, 13, 5026. [Google Scholar] [CrossRef]
- Yagami, M.; Kimura, N.; Tsuchimoto, M.; Tamura, J. Power system transient stability analysis in the case of high-penetration photovoltaics. In Proceedings of the 2013 IEEE Grenoble Conference, Grenoble, France, 16–20 June 2013; pp. 1–6. [Google Scholar] [CrossRef]
- Tamrakar, U.; Galipeau, D.; Tonkoski, R.; Tamrakar, I. Improving transient stability of photovoltaic-hydro microgrids using virtual synchronous machines. In Proceedings of the 2015 IEEE Eindhoven PowerTech, Eindhoven, The Netherlands, 29 June–2 July 2015; pp. 1–6. [Google Scholar]
- Eftekharnejad, S.; Vittal, V.; Heydt, G.T.; Keel, B.; Loehr, J. Impact of increased penetration of photovoltaic generation on power systems. IEEE Trans. Power Syst. 2012, 28, 893–901. [Google Scholar] [CrossRef]
- Mishan, R.; Egan, M.S.; Fu, X.; Hingu, C.; Fajri, P.; Ben-Idris, M. Assessing power profile characteristics in solar PV-storage integrated electricity markets: A quantitative study. e-Prime Adv. Electr. Eng. Electron. Energy 2024, 9, 100684. [Google Scholar] [CrossRef]
- Papadopoulos, P.N.; Milanović, J.V. Probabilistic Framework for Transient Stability Assessment of Power Systems with High Penetration of Renewable Generation. IEEE Trans. Power Syst. 2017, 32, 3078–3088. [Google Scholar] [CrossRef]
- Mohamed, S.R.; Jeyanthy, P.A.; Devaraj, D. Investigation on the impact of high-penetration of PV generation on transient stability. In Proceedings of the 2017 IEEE International Conference on Intelligent Techniques in Control, Optimization and Signal Processing (INCOS), Srivilliputtur, India, 23–25 March 2017; pp. 1–6. [Google Scholar]
- Impram, S.; Nese, S.V.; Oral, B. Challenges of variable distributed energy penetration on power system flexibility: A survey. Energy Strategy Rev. 2020, 31, 100539. [Google Scholar] [CrossRef]
- Kilgore, L.A. Calculation of Synchronous Machine Constants-Reactances and Time Constants Affecting Transient Characteristics. Trans. AIEE 1931, 50, 1201–1213. [Google Scholar] [CrossRef]
- Zhang, W.; Wen, Y.; Chung, C.Y. Inertia security evaluation and application in low-inertia power systems. IEEE Trans. Power Syst. 2024, 40, 1725–1737. [Google Scholar] [CrossRef]
- Venikov, V.A. Transient Phenomena in Electrical Power Systems: International Series of Monographs on Electronics and Instrumentation; Elsevier: Amsterdam, The Netherlands, 2014; Volume 24. [Google Scholar]
- Guo, S. Improvements to Power System Dynamic Load Model Parameter Estimation. Ph.D. Thesis, University of Illinois at Urbana-Champaign, Champaign, IL, USA, 2017. [Google Scholar]
- Yap, K.Y.; Sarimuthu, C.R.; Lim, J.M.-Y. Virtual inertia-based inverters for mitigating frequency instability in grid-connected variable distributed energy system: A review. Appl. Sci. 2019, 9, 5300. [Google Scholar] [CrossRef]
- He, C.; He, X.; Geng, H.; Sun, H.; Xu, S. Transient stability of low-inertia power systems with inverter-based generation. IEEE Trans. Energy Convers. 2022, 37, 2903–2912. [Google Scholar] [CrossRef]
- Mishan, R.; Abdelkader, A.; Egan, M.; Ben-Idris, M. Impacts of High Penetration PV Systems on Power System Stability Parameters. In Proceedings of the 2023 IEEE Industry Applications Society Annual Meeting (IAS), Nashville, TN, USA, 29 October–2 November 2023; pp. 1–7. [Google Scholar]
- Mishan, R. Angular Stability Analysis of Parallel Connected Grid-following PV Inverters. In Proceedings of the 2023 IEEE Texas Power and Energy Conference (TPEC), College Station, TX, USA, 13–14 February 2023; pp. 1–6. [Google Scholar] [CrossRef]
- Alaraifi, S.; El Moursi, M.S. Design considerations of superconducting fault current limiters for power system stability enhancement. IET Gener. Transm. Distrib. 2017, 11, 2155–2163. [Google Scholar] [CrossRef]
- Kundur, P. Power system stability. Power Syst. Stab. Control 2007, 10, 7-1. [Google Scholar]
- Athay, T.; Podmore, R.; Virmani, S. A practical method for the direct analysis of transient stability. IEEE Trans. Power Appar. Syst. 1979, PAS-98, 573–584. [Google Scholar] [CrossRef]
- Saha, S.; Saleem, M.I.; Roy, T.K. Impact of high penetration of variable distributed energy sources on grid frequency behaviour. Int. J. Electr. Power Energy Syst. 2023, 145, 108701. [Google Scholar] [CrossRef]
- Tan, B.; Zhao, J.; Netto, M.; Krishnan, V.; Terzija, V.; Zhang, Y. Power system inertia estimation: Review of methods and the impacts of converter-interfaced generations. Int. J. Electr. Power Energy Syst. 2022, 134, 107362. [Google Scholar] [CrossRef]
- Mao, X.; Zhu, W.; Wu, L.; Zhou, B. Comparative study on methods for computing electrical distance. Int. J. Electr. Power Energy Syst. 2021, 130, 106923. [Google Scholar] [CrossRef]
- Kamwa, I.; Viarouge, P.; Mahfoudi, R. Phenomenological models of large synchronous machines from short-circuit tests during commissioning-a classical/modern approach. IEEE Trans. Energy Convers. 1994, 9, 85–97. [Google Scholar] [CrossRef]
- Vittal, V.; McCalley, J.D.; Anderson, P.M.; Fouad, A.A. Power System Control and Stability; John Wiley & Sons: Hoboken, NJ, USA, 2019. [Google Scholar]
- Gibson, S. Generator Short-Circuit Current. 1973. Available online: https://service.multiquip.com/files/2-20230808-083811.pdf (accessed on 30 March 2025).
- Pai, A. Energy Function Analysis for Power System Stability; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1989. [Google Scholar]
- Yang, P.; Liu, F.; Wei, W.; Wang, Z. Approaching the transient stability boundary of a power system: Theory and applications. IEEE Trans. Autom. Sci. Eng. 2023, 20, 2268–2279. [Google Scholar] [CrossRef]
- PowerWorld Corporation. Machine Model PVD1. Available online: https://www.powerworld.com/WebHelp/Content/TransientModels_HTML/Machine%20Model%20PVD1.htm (accessed on 30 December 2024).
- Gomez Lezama, F.R. Prediction and Control of Transient Instability Using Wide Area Phasor Measurements. Ph.D. Thesis, University of Manitoba, Winnipeg, MB, Canada, 2011. [Google Scholar]
- Illinois Information Trust Institute, Grainger College of Engineering. 2025. IEEE 39-Bus System. Available online: https://icseg.iti.illinois.edu/ieee-39-bus-system/ (accessed on 20 March 2025).
GEN | BUS | |||||||
---|---|---|---|---|---|---|---|---|
(pu) | (pu) | (pu) | (pu) | (pu) | (pu) | (pu) | ||
1 | 39 | 0.03 | 0.2 | 0.06 | 0.05 | 0.19 | 0.08 | 0.05 |
2 | 31 | 0.035 | 2.95 | 0.697 | 0.5 | 2.82 | 1.7 | 0.5 |
3 | 32 | 0.304 | 2.495 | 0.531 | 0.45 | 2.37 | 0.876 | 0.45 |
4 | 33 | 0.295 | 2.62 | 0.436 | 0.35 | 2.58 | 1.66 | 0.35 |
5 | 34 | 0.54 | 6.7 | 1.32 | 0.99 | 6.2 | 1.66 | 0.99 |
6 | 35 | 0.224 | 2.54 | 0.5 | 0.4 | 2.41 | 0.814 | 0.4 |
7 | 36 | 0.322 | 2.95 | 0.49 | 0.4 | 2.92 | 1.86 | 0.4 |
8 | 37 | 0.28 | 2.9 | 0.57 | 0.45 | 2.8 | 0.911 | 0.45 |
9 | 38 | 0.298 | 2.106 | 0.57 | 0.45 | 2.05 | 0.587 | 0.45 |
10 | 30 | 0.125 | 1.0 | 0.31 | 0.25 | 0.69 | 0.3 | 0.25 |
GEN | H | ||||
---|---|---|---|---|---|
(s) | (s) | (s) | (s) | (s) | |
1 | 7.0 | 0.05 | 0.7 | 0.06 | 500.0 |
2 | 6.56 | 0.05 | 1.5 | 0.06 | 30.3 |
3 | 5.7 | 0.05 | 1.5 | 0.06 | 35.8 |
4 | 5.69 | 0.05 | 1.5 | 0.06 | 28.6 |
5 | 5.4 | 0.05 | 0.44 | 0.06 | 26.0 |
6 | 7.3 | 0.05 | 0.4 | 0.06 | 34.8 |
7 | 5.66 | 0.05 | 1.5 | 0.06 | 26.4 |
8 | 6.7 | 0.05 | 0.41 | 0.06 | 24.3 |
9 | 4.79 | 0.05 | 1.96 | 0.06 | 34.5 |
10 | 10.2 | 0.05 | 1.5 | 0.06 | 42.0 |
Bus # | Pgen | Pmax | Pmin | Qmax | Qmin | MVA Capacity |
---|---|---|---|---|---|---|
(MW) | (MW) | (MW) | (MVar) | (MVar) | (MVA) | |
30 | 250.00 | 1040 | 0 | 400 | −140 | 1111.80 |
31 | Slack | 646 | 0 | 300 | −100 | 714.94 |
32 | 650.00 | 725 | 0 | 300 | −150 | 783.04 |
33 | 632.00 | 652 | 0 | 250 | 0 | 698.99 |
34 | 508.00 | 508 | 0 | 167 | 0 | 535.67 |
35 | 650.00 | 687 | 0 | 300 | −100 | 751.19 |
36 | 560.00 | 580 | 0 | 240 | 0 | 626.80 |
37 | 540.00 | 564 | 0 | 250 | 0 | 614.90 |
38 | 830.00 | 865 | 0 | 300 | −150 | 914.09 |
39 | 1000.00 | 1100 | 0 | 300 | −100 | 1140.17 |
Case | Description | (s) | PV (%) |
---|---|---|---|
Case 0 | Original NE 39 Bus | 100.23 | 0.0 |
Case 1 | 37 Bus Gen 8 Replaced by PV | 97.82 | 8.9 |
Case 2 | 37, 34 Bus Gens 8, 5 Replaced by PVs | 95.35 | 17.3 |
Case 3 | 37, 34, 36 Bus Gens 8, 5, 7 Replaced by PVs | 93.01 | 26.5 |
Case 4 | 37, 34, 36, 32 Bus Gens 8, 5, 7, 3 Replaced by PVs | 90.22 | 34.9 |
Case 5 | 37, 34, 36, 33 Bus Gens 8, 5, 7, 4 Replaced by PVs | 87.15 | 37.2 |
Case 6 | 35 Bus Gen 8 Replaced by PV | 97.87 | - |
Case 7 | 38 Bus Gen 8 Replaced by PV | 97.11 | - |
Outage Info | Case 0 CCT | Case 1 CCT | Case 2 CCT | Case 3 CCT | Case 4 CCT | Case 5 CCT |
---|---|---|---|---|---|---|
Branch 2–3 near 2 | 0.255 | 0.247 | 0.196 | 0.177 | 0.106 | 0.084 |
Branch 4–14 | 0.250 | 0.232 | 0.183 | 0.148 | 0.109 | 0.077 |
Branch 6–11 | 0.225 | 0.212 | 0.184 | 0.165 | 0.115 | 0.091 |
Branch 15–16 | 0.231 | 0.211 | 0.186 | 0.141 | 0.132 | 0.097 |
Branch 23–24 | 0.186 | 0.173 | 0.162 | 0.129 | 0.073 | 0.096 |
Branch 25–26 | 0.198 | 0.193 | 0.135 | 0.117 | Gen 9 unstable | Gen 9 unstable |
Branch 28–29 | 0.054 | 0.050 | Unstable gens | Unstable gens | Unstable gens | Unstable gens |
Bus 31 Outage | 0.257 | 0.257 | 0.221 | 0.181 | 0.139 | 0.106 |
Bus 35 Outage | 0.246 | 0.239 | 0.184 | 0.173 | 0.096 | 0.159 |
Bus 38 Outage | 0.130 | 0.128 | 0.103 | 0.096 | 0.067 | 0.067 |
PV Generator Bus | Original Bus CCT (s) | Modified Bus CCT (s) | Percentage Change (%) |
---|---|---|---|
Bus 35 Gen | 0.246 | 0.425 | 72.76% |
Bus 37 Gen | 0.240 | 0.555 | 131.25% |
Bus 38 Gen | 0.130 | ∞ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mishan, R.; Fu, X.; Hingu, C.; Ben-Idris, M. Impacts of Inertia and Photovoltaic Integration on Existing and Proposed Power System Transient Stability Parameters. Energies 2025, 18, 2915. https://doi.org/10.3390/en18112915
Mishan R, Fu X, Hingu C, Ben-Idris M. Impacts of Inertia and Photovoltaic Integration on Existing and Proposed Power System Transient Stability Parameters. Energies. 2025; 18(11):2915. https://doi.org/10.3390/en18112915
Chicago/Turabian StyleMishan, Ramkrishna, Xingang Fu, Chanakya Hingu, and Mohammed Ben-Idris. 2025. "Impacts of Inertia and Photovoltaic Integration on Existing and Proposed Power System Transient Stability Parameters" Energies 18, no. 11: 2915. https://doi.org/10.3390/en18112915
APA StyleMishan, R., Fu, X., Hingu, C., & Ben-Idris, M. (2025). Impacts of Inertia and Photovoltaic Integration on Existing and Proposed Power System Transient Stability Parameters. Energies, 18(11), 2915. https://doi.org/10.3390/en18112915