Investigation on the Ampacity of AC Submarine Cables in J-Type Conduit Trenchless Installation
Abstract
:1. Introduction
2. Governing Equations
3. Numerical Model Setup
3.1. Parameters of the Submarine Cable
3.2. Model Setup
4. Results and Discussion
4.1. Effect of Burial Depth on the Cable Ampacity
4.2. Effect of Conduit Material on the Cable Ampacity
4.3. Effect of Environmental Temperature on the Cable Ampacity
5. Conclusions
- (1)
- As the burial depth increases, the surrounding soil impedes cable heat dissipation, negatively affecting ampacity and resulting in a monotonically decreasing trend. Research on the internal medium of the conduit demonstrates that under identical burial depths, submarine cable ampacity follows the hierarchy of muddy water > seawater–mud > seawater > air–seawater > air.
- (2)
- The conductor region forms a nearly uniform temperature distribution due to significant Joule heating effects, while the insulation layer and conductor shielding layer constitute the primary thermal resistance zone with the most pronounced temperature gradient. The central cable region achieves thermal equilibrium through the superposition of three-phase conductor thermal fields, resulting in stabilized temperature distribution, whereas the unilateral region mainly follows typical attenuation patterns influenced by heat conduction from adjacent conductors.
- (3)
- Under identical burial depth and internal medium conditions, the J-type conduit made of non-magnetic metals (copper, stainless steel) shows a significantly higher cable ampacity than polymeric materials (PE, PVC). This difference primarily stems from substantial variations in thermal conductivity. Copper conduits exhibit an optimal ampacity performance, while PVC, with the poorest thermal conductivity, shows the lowest ampacity.
- (4)
- The environmental temperature significantly affects the cable ampacity. When the surface soil temperature rises, the internal soil temperature gradient decreases, reducing the heat transfer efficiency and consequently impairing both cable cooling performance and capacity. Additionally, soil thermal conductivity is moisture-dependent, and elevated temperatures may cause soil desiccation that further diminishes its heat conduction capability.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AC | Alternating current |
PE | Polyethylene |
PVC | Polyvinyl chloride |
XLPE | Cross-linked polyethylene |
References
- Zhang, T.; Li, L.T.; Du, A.; Wei, R.; Tan, H.B.; Wang, K.T.; Liu, S.N. Research on anchor damage and protection of three-core composite submarine cable considering impact angle. Ocean Eng. 2022, 265, 112668. [Google Scholar] [CrossRef]
- Li, Z.Q.; Nie, L.; Xue, Y.; Li, W.; Fan, K. Model Testing on the Processes, Characteristics, and Mechanism of Water Inrush Induced by Karst Caves Ahead and Alongside a Tunnel. Rock Mech. Rock Eng. 2025, 58, 5363–5380. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, S.D.; Cao, J.P.; Wang, S.H. Simulation on Thermal and Electric Field of 500 kV HVDC XLPE Submarine Cable. High Volt. Appar. 2020, 56, 7–15. [Google Scholar]
- Liu, Y.P.; Xu, Z.Q.; Chen, Z.Z.; Liu, H.C. Simulation and experiment of ampacity characteristics for ±160 kV DC XLPE submarine cable. Electr. Power Autom. Equip. 2018, 38, 130–136. [Google Scholar]
- Li, M.; Niu, S.S.; Liu, Y.Q.; Liu, K.W. Calculation of temperature distribution and ampacity for submarine cables based on multi-physics field coupling model. Electr. Meas. Instrum. 2018, 55, 12–16+23. [Google Scholar]
- Naghibi, A.F.; Koochaki, A.; Gatabi, M. Optimal Protection Coordination of Directional Overcurrent Relays Using Shuffled Frog Leaping in Smart Grids. Majlesi J. Mechatron. Syst. 2019, 8, 25–31. [Google Scholar]
- Zhou, B.D.; Le, Y.J.; Fang, Y.L.; Yang, F.; Dai, T.; Sum, L.; Liu, J.P.; Zou, L.K. Temperature field simulation and ampacity optimisation of 500 kV HVDC cable. J. Eng. 2019, 2019, 2448–2453. [Google Scholar] [CrossRef]
- Liu, K.; Jiao, S.; Nie, G.; Ma, H.; Gao, B.; Sun, C.; Xin, D.; Saha, T.K.; Wu, G. On Image Transformation for Partial Discharge Source Identification in Vehicle Cable Terminals of High-Speed Trains. High Volt. 2024, 1090–1100. [Google Scholar] [CrossRef]
- Lu, G.; Lin, Q.Q.; Zheng, D.; Zhang, P. Online Degradation Fault Prognosis for DC-Link Capacitors in Multistring-Connected Photovoltaic Boost Converters Subject to Cable Uncertainties. IEEE J. Emerg. Sel. Top. Power Electron. 2024, 13, 1107–1117. [Google Scholar] [CrossRef]
- Hao, Y.B.; Chen, Y.; Yang, L.; Qiu, W.H.; Fu, M.L.; Hou, S. Coupled simulation on electro-thermal-fluid multiple physical fields of HVDC submarine cable. High Volt. Eng. 2017, 43, 3534–3542. [Google Scholar]
- Emeana, C.J.; Hughes, T.J.; Dix, J.K.; Gernon, T.M.; Henstock, T.J.; Thompson, C.E.L.; Pilgrim, J.A. The Thermal Regime Around Buried Submarine HighVoltage Cables. Geophys. J. Int. 2016, 206, 1051–1064. [Google Scholar] [CrossRef]
- Hughes, T.J.; Henstock, T.J.; Pilgrim, J.A.; Dix, J.K.; Gernon, T.M.; Thompson, C.E.L. Effect of Sediment Properties on the Thermal Performance of Submarine HV Cables. IEEE Trans. Power Deliv. 2015, 30, 2443–2450. [Google Scholar] [CrossRef]
- Alsadat, S.M.; Baharisangari, N.; Paliwal, Y.; Xu, Z. Distributed Reinforcement Learning for Swarm Systems with Reward Machines. In Proceedings of the 2024 American Control Conference (ACC), Toronto, ON, Canada, 10–12 July 2024; pp. 33–38. [Google Scholar]
- Akbari, E.; Faraji Naghibi, A.; Veisi, M.; Shahparnia, A.; Pirouzi, S. Multi-Objective Economic Operation of Smart Distribution Network with Renewable-Flexible Virtual Power Plants Considering Voltage Security Index. Sci. Rep. 2024, 14, 19136. [Google Scholar] [CrossRef] [PubMed]
- Qiao, J.Q.; Zhao, X.T.; Xia, Y.; Xiao, Y.J.; Yang, L.J. Simulation analysis of steady-state ampacity of ±500 kV high-voltage DC submarine cables under different laying methods. High Volt. Eng. 2023, 49, 597–607. [Google Scholar]
- Gao, Q.; Duan, M.L.; Liu, X.X.; Wang, Y.; Jia, X.; An, C.; Zhang, T. Damage assessment for submarine photoelectric composite cable under anchor impact. Appl. Ocean Res. 2018, 73, 42–58. [Google Scholar] [CrossRef]
- Zhang, H.; Li, P.F.; Ma, G.Q.; Duan, Y.B.; Zheng, Y.S.; Li, Z.L. Ampacity analysis of extra-high voltage XLPE submarine cable in typical layout environments. Electr. Power Eng. Technol. 2022, 41, 154–162. [Google Scholar]
- Che, C.Q.; Yan, B.F.; Fu, C.J.; Li, G.N.; Qin, C.X.; Liu, L.Q. Improvement of cable current carrying capacity using COMSOL software. Energy Rep. 2022, 8, 931–942. [Google Scholar] [CrossRef]
- Li, X.; Wang, P. Investigation on the improvement method of ampacity for cable in duct bank: Using the mixed filler with high thermal conductivity material and phase change material. Electr. Power Syst. Res. 2024, 229, 110142. [Google Scholar] [CrossRef]
- Maximov, S.; Venegas, V.; Guardado, J.L.; Moreno, E.L.; Lopez, R. Analysis of underground cable ampacity considering non-uniform soil temperature distributions. Electr. Power Syst. Res. 2016, 132, 22–29. [Google Scholar] [CrossRef]
- Wang, J.G.; Tao, Y.Q.; Tian, T.; Ren, R. Simulation research on eddy-current loss of cable trench structure of metal top pipe. Int. J. Appl. Electromagn. Mech. 2018, 56, 499–510. [Google Scholar] [CrossRef]
- Taghizadeh, M.; Khayambashi, K.; Hasnat, M.A.; Alemazkoor, N. Multi-Fidelity Graph Neural Networks for Efficient Power Flow Analysis under High-Dimensional Demand and Renewable Generation Uncertainty. Electr. Power Syst. Res. 2024, 237, 111014. [Google Scholar] [CrossRef]
- Tahami, H.; Saberi, S.; Ali, B.M.; Ameer, S.A.; Hussein, A.H.A.; Chaoui, H. A Robust H∞-Based State Feedback Control of Permanent Magnet Synchronous Motor Drives Using Adaptive Fuzzy Sliding Mode Observers. Actuators 2024, 13, 307. [Google Scholar] [CrossRef]
- Hosseini Dolatabadi, S.H.; Soleimani, A.; Maghanaki, M.; Ilinca, A. Enhancing Photovoltaic Farm Capacity Estimation: A Comprehensive Analysis with a Novel Approach. Energy Technol. 2024, 12, 2301294. [Google Scholar] [CrossRef]
- Lin, R.; Huang, Y.M.; Lu, Y.; Li, Q.J.; Liu, S.Q.; Luo, G.R.; Wang, P.Y.; Liu, G. Research on Optimal Selection of Submarine Cable Cross-Section Considering Ampacity Matching in All Laying Scenarios. In Proceedings of the 2024 4th Power System and Green Energy Conference (PSGEC), Shanghai, China, 24–28 August 2024; pp. 604–611. [Google Scholar]
- Zhang, R.S.; Zhang, S.H.; Wang, M.Z.; Peng, J.; Chang, Z.S.; Deng, J.B.; Wang, S.H.; Yang, Y.; Ma, Y. Ampacity improvement of high voltage submarine cables installed in J-tubes. Electr. Power Syst. Res. 2025, 244, 111562. [Google Scholar] [CrossRef]
- Du, Z.Y.; Li, G.; Yue, G.H.; Peng, C.; Zhan, Y.; Deng, Y.Q. Ampacity derating factors for submarine transmission cables in J-tubes. Electr. Power Syst. Res. 2025, 238, 111118. [Google Scholar] [CrossRef]
- You, L.; Wang, J.; Liu, G.; Ma, H.; Zheng, M. Thermal rating of offshore wind farm cables installed in ventilated J-tubes. Energies 2018, 11, 545. [Google Scholar] [CrossRef]
- Wu, Q.; Liu, S.; Lv, Y.; Hu, D.; Liu, Y.; Feng, B.; Hou, S.; Fu, M. Simulation study on steady-state ampacity of ±400 kV DC submarine cable under different laying environments. In Proceedings of the 22nd International Symposium on High Voltage Engineering (ISH 2021), Xi’an, China, 21–26 November 2021; pp. 60–65. [Google Scholar]
- Zou, Z.Y.; Xu, X.W.; Wang, P.Y.; Liu, G. Research on enhancing heat dissipation in the air section of J-tube for submarine cables using gravity heat pipes. Appl. Therm. Eng. 2025, 270, 126254. [Google Scholar] [CrossRef]
- Li, G.; Du, Z.Y.; Xiao, P.; Hao, Z.Y.; Cui, R.J. Study on Calculation Model of Submarine Cable Ampacity in J-Tube Section of Offshore Wind Power Transmission. Trans. China Electrotech. Soc. 2023, 38, 3619–3629. [Google Scholar]
- Xia, Y.; Zhao, X.T.; Feng, Y.; Hou, S.; Feng, B. Simulation Study on Steady-state Ampacity of ±500kV DC Submarine Cable Under J-tube Laying Environment. Proc. CSEE 2023, 43, 4851–4861. [Google Scholar]
- Cui, R.J.; Xiao, P.; Wu, G.B.; Li, J.; Du, Z.Y.; Hao, Z.Y. Study on Current-carrying Improvement of J-tubes Section of ±250 kV DC Submarine Cable. High Volt. Appar. 2022, 58, 61–69. [Google Scholar]
- IEC 60287-1-1; Electric Cables–Calculations of the Current Ratings—Part 1-1: Current Rating Equations and Calculation of Losses. IEC: Geneva, Switzerland, 2023.
Definition | Symbol | Value |
---|---|---|
Radius of the copper conductor | R1 | 15 mm |
Radius of the XLPE insulation layer | R2 | 33.1 mm |
Radius of the insulation layer | R3 | 34.8 mm |
Radius of the alloy lead sleeve | R4 | 37.7 mm |
Radius of the filler layer | R5 | 89.2 mm |
Radius of the armor layer | R6 | 95.6 mm |
Radius of the sheath | R7 | 99.6 mm |
Definition | Symbol | Value |
---|---|---|
Thermal conductivity of copper conductors and armor layers | λ1 | 400 W/(m·K) |
Thermal conductivity of the XLPE insulation layer | λ2 | 0.15 W/(m·K) |
Thermal conductivity of the insulation layer | λ3 | 0.29 W/(m·K) |
Thermal conductivity of the alloy lead sleeve | λ4 | 34.8 W/(m·K) |
Thermal conductivity of the sheath | λ5 | 0.15 W/(m·K) |
Electrical conductivity of copper conductors and armor layers | σ1 | 5.998 × 107 S/m |
Electrical conductivity of the alloy lead sleeve | σ2 | 4.673 × 106 S/m |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, X.; Cong, Y.; Qian, G.; Xu, J.; Sun, L.; Liu, Z. Investigation on the Ampacity of AC Submarine Cables in J-Type Conduit Trenchless Installation. Energies 2025, 18, 2900. https://doi.org/10.3390/en18112900
Yan X, Cong Y, Qian G, Xu J, Sun L, Liu Z. Investigation on the Ampacity of AC Submarine Cables in J-Type Conduit Trenchless Installation. Energies. 2025; 18(11):2900. https://doi.org/10.3390/en18112900
Chicago/Turabian StyleYan, Xunping, Yun Cong, Gang Qian, Jianliang Xu, Lu Sun, and Zhen Liu. 2025. "Investigation on the Ampacity of AC Submarine Cables in J-Type Conduit Trenchless Installation" Energies 18, no. 11: 2900. https://doi.org/10.3390/en18112900
APA StyleYan, X., Cong, Y., Qian, G., Xu, J., Sun, L., & Liu, Z. (2025). Investigation on the Ampacity of AC Submarine Cables in J-Type Conduit Trenchless Installation. Energies, 18(11), 2900. https://doi.org/10.3390/en18112900