An Application of a Dual-Module VSG Based on QPR and Virtual Impedance in Three-Phase Unbalanced Power Grids
Abstract
:1. Introduction
2. Topology and Control Strategies of Virtual Synchronous Generators
2.1. Control System Structure
2.2. Reactive-Voltage Controller
3. Dual-Module Virtual Synchronous Generator Control Architecture
3.1. Power Characteristic Analysis of VSG Under Voltage Unbalance Conditions
3.2. Conventional at Unbalanced Voltage VSG
3.3. Dual-Module VSG Control Architecture for Unbalanced Grid Conditions
3.4. Dual-Loop Voltage and Current Control Architecture
4. System Operation and Performance Analysis
4.1. Operating Environment and Conditions
4.2. Active Power
4.3. Reactive Power
4.4. Current Balance Stability
4.5. THD Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hannan, M.; Tan, Y.S.; Al-Shetwi, Q.A.; Jern, K.P.; Begum, R.A. Optimized controller for renewable energy sources integration into microgrid: Functions, constraints and suggestions. J. Clean. Prod. 2020, 256, 120419. [Google Scholar] [CrossRef]
- Ehsan, R.; Sirus, M.; Mahmoud, Z.; Zadehbagheri, M.; Kiani, M. Probabilistic reliability management of energy storage systems in connected/islanding microgrids with renewable energy. Electr. Power Syst. Res. 2023, 214 Pt A, 108891. [Google Scholar]
- Samuel, O.; Adeyemi, O.; Christiana, O. Potential of using floating solar photovoltaic and wind farms for sustainable energy generation in an existing hydropower station in Nigeria. Clean Technol. Environ. Policy 2023, 25, 1921–1934. [Google Scholar]
- Liu, S.; Hu, P.; Yu, Y.; Kiani, M. A novel fault ride through strategy for grid-connected virtual synchronous Generators: Power angle stability enhancement and current limiting. Int. J. Electr. Power Energy Syst. 2024, 162, 110293. [Google Scholar] [CrossRef]
- Askarov, A.; Ruban, N.; Bay, Y.; Ufa, R.; Malkova, Y.; Suvorov, A. A feedforward control for increasing the damping effect of enhanced current-controlled virtual synchronous generator. Electr. Power Syst. Res. 2024, 234, 110659. [Google Scholar] [CrossRef]
- Zhang, M.; Mu, L.; Chen, G.; Fang, C. A circulating current suppression strategy of VSG based on adaptive virtual complex impedance. Electr. Power Electr. Power Syst. Res. 2024, 228, 110065. [Google Scholar] [CrossRef]
- Cheng, Q.; Lai, Y.; Xie, Y.; Chen, Y.; Shen, Z. Bilateral Lyapunov control strategy for MMMC under three-phase voltage unbalance. J. Electr. Mach. Control 2023, 27, 96–107. [Google Scholar] [CrossRef]
- Wu, T.; Wang, A.; Xu, Y. A rapid harmonic detection method for grid-connected photovoltaic when three-phase voltage is unbalanced. J. Low Carbon Technol. 2021, 16, 822–830. [Google Scholar] [CrossRef]
- Kahia, B.; Bouafia, A.; Chaoui, A.; Zhang, Z.; Abdelrahem, M.; Kennel, R. A direct power control strategy for three level neutral-point-clamped rectifier under unbalanced grid voltage. J. Electr. Power Syst. Res. 2018, 161, 103–113. [Google Scholar] [CrossRef]
- Yang, X.; Li, H.; Jia, W.; Liu, Z.; Pan, Y.; Qian, F. Adaptive Virtual Synchronous Generator Based on Model Predictive Control with Improved Frequency Stability. Energies 2022, 15, 8385. [Google Scholar] [CrossRef]
- Suvorov, A.; Askarov, A.; Ruban, N.; Rudnik, V.; Radko, P.; Achitaev, A.; Suslov, K. An Adaptive Inertia and Damping Control Strategy Based on Enhanced Virtual Synchronous Generator Model. Mathematics 2023, 11, 3938. [Google Scholar] [CrossRef]
- Wang, J.; Ramli, N.; Aziz, N.H.A. Modeling and adaptive control strategy of hybrid microgrid based on virtual synchronous generator. Adv. Control. Appl. Eng. Ind. Syst. 2023, 6, e155. [Google Scholar] [CrossRef]
- Zhou, K.; Jin, Q.-X.; Mo, Z.-Y.; Lu, B.-H. Harmonic suppression and fault ride-through strategy for power grid under virtual synchronous machine grid-connected operation. Power Syst. Prot. Control 2024, 52, 166–173. [Google Scholar] [CrossRef]
- Yang, X.; Yang, Y.; Pan, Y.; Gu, W.; Yang, H.; Jia, W. A virtual synchronous generator control strategy based on RBF-LADRC. J. Sol. Energy 2024, 45, 319–325. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, Y.; Li, X.; Luo, C.; Fu, Y.; Wang, H.; Fu, J. Difference-free coordinated control strategy of multiple virtual synchronous generator frequencies for islanded microgrids. Power Syst. Prot. Control 2024, 52, 12–23. [Google Scholar] [CrossRef]
- Liu, Z.; Tang, N.; Zhang, H.; Wang, T.; Lu, X. Virtual synchronous generator model predictive control under unbalanced grid voltage. Electrotechnology 2024, 1, 12–17. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, H.; Zhuang, B.; Zhou, Z.; Lv, W. VSG-based control strategy for grid-connected inverter under grid voltage unbalance. Renew. Energy 2022, 40, 696–702. [Google Scholar] [CrossRef]
- Zheng, T.; Chen, L.; Guo, Y.; Mei, S. Comprehensive control strategy of virtual synchronous generator under unbalanced voltage conditions. IET Generation. Transm. Distrib. 2018, 12, 1621–1630. [Google Scholar] [CrossRef]
- Zeng, Z.; Shao, W.; Li, H.; Ran, L.; Qin, S. Virtual synchronous generator unbalanced voltage control in an islanded microgrid. Chin. J. Electr. Eng. 2017, 37, 372–381. [Google Scholar] [CrossRef]
- Cao, Z.Y.; Wang, N.H.; Chen, B. Unbalanced voltage control of virtual synchronous generator in isolated micro-grid. IOP Conf. Ser. Mater. Sci. Eng. 2017, 211, 012020. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, L.; Wang, M. An Application of a Dual-Module VSG Based on QPR and Virtual Impedance in Three-Phase Unbalanced Power Grids. Energies 2025, 18, 2782. https://doi.org/10.3390/en18112782
Fan L, Wang M. An Application of a Dual-Module VSG Based on QPR and Virtual Impedance in Three-Phase Unbalanced Power Grids. Energies. 2025; 18(11):2782. https://doi.org/10.3390/en18112782
Chicago/Turabian StyleFan, Liping, and Mingjun Wang. 2025. "An Application of a Dual-Module VSG Based on QPR and Virtual Impedance in Three-Phase Unbalanced Power Grids" Energies 18, no. 11: 2782. https://doi.org/10.3390/en18112782
APA StyleFan, L., & Wang, M. (2025). An Application of a Dual-Module VSG Based on QPR and Virtual Impedance in Three-Phase Unbalanced Power Grids. Energies, 18(11), 2782. https://doi.org/10.3390/en18112782