Electrical Properties of Engine Oils—Comparison of Electrical Parameters with Physicochemical Characteristics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Material
2.2. Research Methodology
3. Results
3.1. FTIR
3.2. Viscosity
3.3. Permittivity
3.4. Relationship Between Electrical and Physicochemical Properties of Oils
4. Conclusions
Limitations
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Urban, A.; Zhe, J. A Microsensor Array for Diesel Engine Lubricant Monitoring Using Deep Learning with Stochastic Global Optimization. Sens. Actuators A Phys. 2022, 343, 113671. [Google Scholar] [CrossRef]
- Altıntaş, O.; Aksoy, M.; Ünal, E.; Akgöl, O.; Karaaslan, M. Artificial Neural Network Approach for Locomotive Maintenance by Monitoring Dielectric Properties of Engine Lubricant. Measurement 2019, 145, 678–686. [Google Scholar] [CrossRef]
- Duchowski, J.K.; Mannebach, H. A Novel Approach to Predictive Maintenance: A Portable, Multi-Component Mems Sensor for on-Line Monitoring of Fluid Condition in Hydraulic and Lubricating Systems. Tribol. Trans. 2006, 49, 545–553. [Google Scholar] [CrossRef]
- Macioszek, Ł.; Włodarczak, S.; Rybski, R. Mineral Oil Moisture Measurement with the Use of Impedance Spectroscopy. IET Sci. Meas. Technol. 2019, 13, 1158–1162. [Google Scholar] [CrossRef]
- Nissar, A.; Hanief, M.; Mir, F.Q. Condition Monitoring of Used Engine Oil by FTIR Spectroscopy—A Review. In Proceedings of the Lecture Notes in Mechanical Engineering; Springer: Singapore, 2022. [Google Scholar]
- Pfeiffer, P.; Ronai, B.; Vorlaufer, G.; Dörr, N.; Filzmoser, P. Weighted LASSO Variable Selection for the Analysis of FTIR Spectra Applied to the Prediction of Engine Oil Degradation. Chemom. Intell. Lab. Syst. 2022, 228, 104617. [Google Scholar] [CrossRef]
- Heredia-Cancino, J.; Carrillo-Torres, R.; Munguía-Aguilar, H.; Álvarez-Ramos, M. An Innovative Method to Reduce Oil Waste Using a Sensor Made of Recycled Material to Evaluate Engine Oil Life in Automotive Workshops. Environ. Sci. Pollut. Res. 2020, 27, 28104–28112. [Google Scholar] [CrossRef]
- Soleimani, M.; Sophocleous, M.; Wang, L.; Atkinson, J.; Hosier, I.L.; Vaughan, A.S.; Taylor, R.I.; Wood, R.J.K. Base Oil Oxidation Detection Using Novel Chemical Sensors and Impedance Spectroscopy Measurements. Sens. Actuators B Chem. 2014, 99, 247–258. [Google Scholar] [CrossRef]
- Latif, U.; Dickert, F.L. Conductometric Sensors for Monitoring Degradation of Automotive Engine Oil. Sensors 2011, 11, 8611–8625. [Google Scholar] [CrossRef]
- Wu, X.; Zhang, Y.; Li, N.; Qian, Z.; Liu, D.; Qian, Z.; Zhang, C. A New Inductive Debris Sensor Based on Dual-Excitation Coils and Dual-Sensing Coils for Online Debris Monitoring. Sensors 2021, 21, 7556. [Google Scholar] [CrossRef]
- Wang, C.; Bai, C.; Yang, Z.; Zhang, H.; Li, W.; Wang, X.; Zheng, Y.; Ilerioluwa, L.; Sun, Y. Research on High Sensitivity Oil Debris Detection Sensor Using High Magnetic Permeability Material and Coil Mutual Inductance. Sensors 2022, 22, 1833. [Google Scholar] [CrossRef]
- Niedermayer, A.O.; Voglhuber-Brunnmaier, T.; Feichtinger, F.; Heinisch, M.; Jakoby, B. Online Condition Monitoring of Lubricating Oil Based on Resonant Measurement of Fluid Properties. In Proceedings of the Sensors and Measuring Systems, 19th ITG/GMA-Symposium, Nuremberg, Germany, 26–27 June 2018. [Google Scholar]
- Li, Z.; Meng, Z.; Fei, F.; Gibson, A. Microwave Cylindrical Cavity Resonator Sensor for Detection and Characterization of Contaminants in Lubricating Oil. IEEE Sens. J. 2022, 22, 22600–22609. [Google Scholar] [CrossRef]
- Raadnui, S.; Kleesuwan, S. Low-Cost Condition Monitoring Sensor for Used Oil Analysis. Wear 2005, 259, 1502–1506. [Google Scholar] [CrossRef]
- Schecklman, S.; Zurk, L. Terahertz Imaging of Thin Film Layers with Matched Field Processing. Sensors 2018, 18, 3547. [Google Scholar] [CrossRef]
- Zhang, H.; Shi, H.; Li, W.; Ma, L.; Zhao, X.; Xu, Z.; Wang, C.; Xie, Y.; Zhang, Y. A Novel Impedance Micro-sensor for Metal Debris Monitoring of Hydraulic Oil. Micromachines 2021, 12, 150. [Google Scholar] [CrossRef]
- Zhang, H.; Ma, L.; Shi, H.; Xie, Y.; Wang, C. A Method for Estimating the Composition and Size of Wear Debris in Lubricating Oil Based on the Joint Observation of Inductance and Resistance Signals: Theoretical Modeling and Experimental Verification. IEEE Trans. Instrum. Meas. 2022, 71, 9507409. [Google Scholar] [CrossRef]
- Niknafs, H.; Zarepour, G.R.; Faridkhah, M. Design of an Expert System Based on Fuzzy Logic for Real-Time Oil Condition Monitoring and Fault Diagnosis in Heavy-Duty Diesel Engines. Int. J. Qual. Eng. Technol. 2023, 9, 211–239. [Google Scholar] [CrossRef]
- Tanwar, M.; Raghavan, N. Lubricating Oil Remaining Useful Life Prediction Using Multi-Output Gaussian Process Regression. IEEE Access 2020, 8, 128897–128907. [Google Scholar] [CrossRef]
- Pan, Y.; Wu, T.; Jing, Y.; Wang, P. Multiattribute Modeling for Oil Condition Assessment Considering Uncertainties. IEEE Trans. Instrum. Meas. 2022, 71, 3509908. [Google Scholar] [CrossRef]
- Xie, Y.; Wang, S.; Zhang, S.; Zhang, H.; Shi, H. Dual Inductive-Capacitive Detection Cell: A Promising Tool for Distinguishing Mixed Metal Particles. IEEE Sens. J. 2023, 23, 21163–21171. [Google Scholar] [CrossRef]
- Ma, L.; Shi, H.; Zhang, H.; Li, G.; Shen, Y.; Zeng, N. High-Sensitivity Distinguishing and Detection Method for Wear Debris in Oil of Marine Machinery. Ocean Eng. 2020, 215, 107452. [Google Scholar] [CrossRef]
- Shi, H.; Zhang, H.; Ma, L.; Rogers, F.; Zhao, X.; Zeng, L. An Impedance Debris Sensor Based on a High-Gradient Magnetic Field for High Sensitivity and High Throughput. IEEE Trans. Ind. Electron. 2021, 68, 5376–5384. [Google Scholar] [CrossRef]
- Du, Y.; Wu, T.; Cheng, J. Age Detection of Lubricating Oil with On-Line Sensors. In Proceedings of the 2015 IEEE SENSORS, Busan, Republic of Korea, 1–4 November 2015. [Google Scholar]
- Sun, H.; Liu, Y.; Tan, J. Research on Testing Method of Oil Characteristic Based on Quartz Tuning Fork Sensor. Appl. Sci. 2021, 11, 5642. [Google Scholar] [CrossRef]
- Pourramezan, M.R.; Rohani, A.; Abbaspour-Fard, M.H. Unlocking the Potential of Soft Computing for Predicting Lubricant Elemental Spectroscopy. Lubricants 2023, 11, 382. [Google Scholar] [CrossRef]
- Delgado, E.; Aperador, W.; Hernández, A. Impedance Spectroscopy as a Tool for the Diagnosis of the State of Vegetable Oils Used as Lubricants. Int. J. Electrochem. Sci. 2015, 10, 8190–8199. [Google Scholar] [CrossRef]
- Zhang, E.; Liu, J.; Zhang, C.; Zheng, P.; Nakanishi, Y.; Wu, T. State-of-Art Review on Chemical Indicators for Monitoring the Aging Status of Oil-Immersed Transformer Paper Insulation. Energies 2023, 16, 1396. [Google Scholar] [CrossRef]
- Liskiewicz, T.; Sherrington, I.; Khan, T.; Liu, Y. Advances in Sensing for Real-Time Monitoring of Tribological Parameters. Tribol. Int. 2023, 189, 108965. [Google Scholar] [CrossRef]
- Gajewski, J.; Vališ, D. The Determination of Combustion Engine Condition and Reliability Using Oil Analysis by MLP and RBF Neural Networks. Tribol. Int. 2017, 115, 557–572. [Google Scholar] [CrossRef]
- Pérez, A.T.; Hadfield, M. Low-Cost Oil Quality Sensor Based on Changes in Complex Permittivity. Sensors 2011, 11, 10675–10690. [Google Scholar] [CrossRef]
- Zhu, X.; Zhong, C.; Zhe, J. Lubricating Oil Conditioning Sensors for Online Machine Health Monitoring—A Review. Tribol. Int. 2017, 109, 473–484. [Google Scholar] [CrossRef]
- ASTM D7042-21a; Standard Test Method for Dynamic Viscosity and Density of Liquids by Stabinger Viscometer (and the Calculation of Kinematic Viscosity). ASTM International: West Conshohocken, PA, USA, 2021.
- Qiu, Z.; Chen, R.; Gan, X.; Wu, C. Torsional Damper Design for Diesel Engine: Theory and Application. Phys. Scr. 2024, 99, 125214. [Google Scholar] [CrossRef]
- Zhang, X.; Zhu, Q.; Wang, S.; Ma, T.; Gao, S.; Kong, Y.; Han, Q.; Chu, F. Hybrid Triboelectric-Variable Reluctance Generator Assisted Wireless Intelligent Condition Monitoring of Aero-Engine Main Bearings. Nano Energy 2025, 136, 110721. [Google Scholar] [CrossRef]
Parameter | Units | Total | Orlen | Revline | Motul | Motul |
---|---|---|---|---|---|---|
SAE * grade | - | 5W30 | 5W30 | 5W30 | 5W30 | 0W30 |
API * grade | - | SM/CF | SN | SN/SM/CF | SL | SL/CF |
ACEA * class | - | C3 | C3 | C3 | A5/B5 | A5/B5 |
Base stock | - | synthetics *** | HC | HC | synthetics *** | synthetics *** |
Viscosity at 40 °C | mm2·s−1 | 69 | 66.9 | 72.7 | 57.6 | 53.9 |
Viscosity at 100 °C | mm2·s−1 | 12 | 12.2 | 11.9 | 10.1 | 10.4 |
Viscosity index | - | 171 | 170 | 160 | 163 | 186 |
Density at 15 °C | kg·m−3 | 852 | 852 | 860 | 847 ** | 840 ** |
TBN * | mg·KOH·g−1 | 7 | 8.6 | 8 | 10.2 | 10.1 |
Flash point, open cup | °C | 233 | 240 | 220 | 226 | 228 |
Oil Brand | Carbonyl/Aromatic Stretching | Additives | Antioxidant | |||
---|---|---|---|---|---|---|
cm−1 | abs/0.1 | cm−1 | abs/0.1 mm | cm−1 | abs/0.1 mm | |
Revline | 1600 1708 1738 | 0.020 0.144 0.060 | 976 1230 1515 | 0.176 0.082 0.052 | 3650 | 0.00 |
Orlen | 1600 1708 1738 | 0.057 0.111 0.014 | 976 1230 1515 | 0.190 0.088 0.064 | 3650 | 0.00 |
Total | 1600 1708 1738 | 0.030 0.151 0.109 | 976 1230 1515 | 0.169 0.137 0.052 | 3650 | 0.057 |
Motul 5W30 | 1600 1708 1738 | 0.053 0.100 0.005 | 976 1230 1515 | 0.172 0.104 0.056 | 3650 | 0.00 |
Motul 0W30 | 1600 1708 1738 | 0.052 0.097 0.011 | 976 1230 1515 | 0.155 0.097 0.056 | 3650 | 0.00 |
Oil Brand | Viscosity Index | Kin. Visc. 40 °C | Kin. Visc. 100 °C | Dyn. Visc. 40 °C | Dyn. Visc. 100 °C | Density 40 °C | Density 100 °C | ° API Gravity 15 °C | API Density 15 °C | API Specific Gravity 15 °C |
---|---|---|---|---|---|---|---|---|---|---|
- | mm2/s | mm2/s | mPa·s | mPa·s | g/cm3 | g/cm3 | - | kg/m3 | - | |
Revline | 180.22 | 61,577 | 11,327 | 51,053 | 8.9642 | 0.8291 | 0.7914 | 35.83 | 844.80 | 0.8456 |
Orlen | 171.66 | 56,237 | 10,205 | 47,023 | 8.1329 | 0.8362 | 0.7969 | 34.32 | 852.50 | 0.8533 |
Total | 177.69 | 66,872 | 11,975 | 55,803 | 9.5517 | 0.8345 | 0.7976 | 34.84 | 849.80 | 0.8507 |
Motul 5W30 | 175.51 | 57,261 | 10,503 | 47,749 | 8.3618 | 0.8339 | 0.7961 | 34.88 | 849.60 | 0.8505 |
Motul 0W30 | 181.85 | 54,828 | 10,388 | 45,255 | 8.1901 | 0.8254 | 0.7884 | 36.62 | 840.80 | 0.8416 |
Z | Theta | G | B | R | X | Cp | Q | Rp | Cs | Rs | tg_delta | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Abs_980 | 0.61 | −0.63 | −0.65 | −0.60 | −0.61 | −0.62 | −0.60 | 0.60 | 0.60 | −0.61 | −0.62 | −0.63 |
Abs_1100 | 0.35 | −0.44 | −0.45 | −0.35 | −0.43 | −0.37 | −0.35 | 0.33 | 0.32 | −0.38 | −0.43 | −0.45 |
Abs_1230 | 0.84 | −0.91 | −0.91 | −0.81 | −0.90 | −0.85 | −0.81 | 0.93 | 0.92 | −0.83 | −0.90 | −0.90 |
Abs_1520 | −0.91 | 0.93 | 0.94 | 0.89 | 0.91 | 0.93 | 0.90 | −0.95 | −0.95 | 0.92 | 0.92 | 0.94 |
Abs_1600 | −0.20 | 0.17 | 0.19 | 0.22 | 0.14 | 0.21 | 0.22 | −0.09 | −0.09 | 0.23 | 0.15 | 0.18 |
Abs_1710 | 0.81 | −0.90 | −0.91 | −0.78 | −0.89 | −0.83 | −0.78 | 0.85 | 0.84 | −0.82 | −0.89 | −0.90 |
Abs_1740 | 0.91 | −0.96 | −0.97 | −0.89 | −0.94 | −0.93 | −0.89 | 0.94 | 0.94 | −0.92 | −0.95 | −0.97 |
Abs_3650 | 0.41 | −0.45 | −0.45 | −0.38 | −0.47 | −0.41 | −0.38 | 0.53 | 0.53 | −0.39 | −0.47 | −0.45 |
VI | 0.04 | −0.05 | −0.04 | −0.05 | −0.05 | −0.05 | −0.06 | 0.04 | 0.05 | −0.06 | −0.04 | −0.05 |
KV_40 | 0.92 | −0.90 | −0.93 | −0.91 | −0.87 | −0.93 | −0.91 | 0.88 | 0.89 | −0.93 | −0.87 | −0.91 |
KV_100 | 0.88 | −0.87 | −0.89 | −0.87 | −0.83 | −0.89 | −0.88 | 0.84 | 0.85 | −0.90 | −0.84 | −0.87 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wolak, A.; Żywica, R. Electrical Properties of Engine Oils—Comparison of Electrical Parameters with Physicochemical Characteristics. Energies 2025, 18, 2776. https://doi.org/10.3390/en18112776
Wolak A, Żywica R. Electrical Properties of Engine Oils—Comparison of Electrical Parameters with Physicochemical Characteristics. Energies. 2025; 18(11):2776. https://doi.org/10.3390/en18112776
Chicago/Turabian StyleWolak, Artur, and Ryszard Żywica. 2025. "Electrical Properties of Engine Oils—Comparison of Electrical Parameters with Physicochemical Characteristics" Energies 18, no. 11: 2776. https://doi.org/10.3390/en18112776
APA StyleWolak, A., & Żywica, R. (2025). Electrical Properties of Engine Oils—Comparison of Electrical Parameters with Physicochemical Characteristics. Energies, 18(11), 2776. https://doi.org/10.3390/en18112776