Research on the Application of Biochar in Carbon Sequestration: A Bibliometric Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Sources and Retrieval Strategy
2.2. Screening Criteria
2.3. Data Analysis
3. Results
3.1. Annual Publication Volume Analysis
3.2. Journal Analysis
3.3. Institutional Analysis
3.4. National Analysis
3.5. Author Analysis
3.6. Keyword Co-Occurrence
3.7. Co-Citation Analysis
3.8. Analysis of Highly Cited References
First Author | Article | Journal | Year | Cited Times | Document Type |
---|---|---|---|---|---|
Ahmad, M. [42] | Biochar as a sorbent for contaminant management in soil and water: A review | Chemosphere | 2014 | 3762 | Review |
Keiluweit, M. [78] | Dynamic Molecular Structure of Plant Biomass-Derived Black Carbon (Biochar) | Environmental Science & Technology | 2010 | 2453 | Article |
Mohan, D. [62] | Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent—A critical review | Bioresource Technology | 2014 | 1985 | Review |
Wang, J.L. [72] | Preparation, modification and environmental application of biochar: A review | Journal of Cleaner Production | 2019 | 1684 | Review |
Tomczyk, A. [54] | Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects | Environmental Science and Bio/Technology | 2020 | 1671 | Review |
Tan, X.F. [63] | Application of biochar for the removal of pollutants from aqueous solutions | Chemosphere | 2015 | 1618 | Review |
Atkinson, C.J. [66] | Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review | Plant and Soil | 2010 | 1582 | Review |
Chan, K.Y. [65] | Agronomic values of greenwaste biochar as a soil amendment greenwaste | Australian Journal of Soil Research | 2007 | 1579 | Article |
Lehmann, J. [79] | Bio-energy in the black | Frontiers in Ecology and the Environment | 2007 | 1563 | Article |
Biederman, L.A. [76] | Biochar and its effects on plant productivity and nutrient cycling: a meta-analysis | Global Change Biology Bioenergy | 2013 | 1361 | Review |
Kambo, H.S. [73] | A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications | Renewable and Sustainable Energy Reviews | 2015 | 1283 | Review |
Warnock, D.D. [80] | Mycorrhizal responses to biochar in soil—concepts and mechanisms | Plant and Soil | 2007 | 1133 | Article |
Gul, S. [74] | Physico-chemical properties and microbial responses in biochar-amended soils: Mechanisms and future directions | Agriculture, Ecosystems & Environment | 2015 | 1113 | Review |
Mukherjee, A. [81] | Surface chemistry variations among a series of laboratory-produced biochars | Geoderma | 2011 | 1013 | Article |
Fuss, S. [75] | Negative emissions-Part 2: Costs, potentials and side effects | Environmental Research Letters | 2018 | 970 | Review |
Joseph, S.D. [69] | An investigation into the reactions of biochar in soil | Australian Journal of Soil Research | 2010 | 952 | Article |
Gaskin, J.W. [67] | EFFECT OF LOW-TEMPERATURE PYROLYSIS CONDITIONS ON BIOCHAR FOR AGRICULTURAL USE | Transactions of the ASABE | 2008 | 944 | Article |
Singh, B. [68] | Characterisation and evaluation of biochars for their application as a soil amendment | Australian Journal of Soil Research | 2010 | 896 | Article |
Al-Wabel, M.I. [64] | Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes | Bioresource Technology | 2013 | 868 | Article |
Chan, K.Y. [70] | Using poultry litter biochars as soil amendments | Australian Journal of Soil Research | 2008 | 864 | Article |
4. Discussion
4.1. Evolutionary Stages of Biochar Technology
4.2. Heterogeneity and Institutional Logic of Sino–U.S. Scientific Research Output
4.3. Insufficient Author Collaboration Seriously Impedes Knowledge Dissemination
4.4. Technical Hotspots and Trends in Biochar Carbon Sequestration
5. Conclusions
6. Limitations
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Prince Adamu, T.S.; Zhang, Z.; Amena, A. Multi-Feature Data Fusion-Based Load Forecasting of Electric Vehicle Charging Stations Using a Deep Learning Model. Energies 2023, 16, 1306. [Google Scholar]
- Nandhini, K.; Krishnamurthy, K.; Nandhini, K.; Jadoun, V.K.; Shrivastava, A.; Vidya, S.R.; Kudva, G. Optimal Placement and Sizing of Electric Vehicle Charging Infrastructure in a Grid-Tied DC Microgrid Using Modified TLBO Method. Energies 2023, 16, 1781. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, J.; Li, L.; Kassabi, N.; Hamdi, E. Petrophysical and Geochemical Investigation-Based Methodology for Analysis of the Multilithology of the Permian Longtan Formation in Southeastern Sichuan Basin, SW China. Energies 2024, 17, 766. [Google Scholar] [CrossRef]
- United Nations Framework Convention on Climate Change. The Paris Agreement: Article 2; United Nations: New York, NY, USA, 2015. [Google Scholar]
- Knutti, R.; Rogelj, J.; Sedláček, J.; Fischer, E.M. A scientific critique of the two-degree climate change target. Nat. Geosci. 2016, 9, 13–18. [Google Scholar] [CrossRef]
- Rogelj, J.; den Elzen, M.; Höhne, N.; Fransen, T.; Fekete, H.; Winkler, H.; Shaeffer, R.; Riahi, K.; Meinshausen, M. Paris Agreement climate proposals need a boost to keep warming well below 2 °C. Nature 2016, 534, 631–639. [Google Scholar] [CrossRef]
- Cui, Y.; Bai, J.; Liao, S.; Cao, S.; Liu, F. Suggestions on the Development of Environmental Monitoring Technology of CO2 Geological Storage and Leakage under the Background of China’s “Double-Carbon” Strategy. Atmosphere 2023, 14, 51. [Google Scholar] [CrossRef]
- Gao, S.; Jia, S.; Zhu, Y.; Zhao, L.; Cao, Y.; Qi, X.; Guan, F. Study on Quantitative Assessment of CO2 Leakage Risk Along the Wellbore Under the Geological Storage of the Salt Water Layer. Energies 2024, 17, 5302. [Google Scholar] [CrossRef]
- Yin, Y.; Zhang, L.; Cao, X.; Li, Q.; Gan, M.; Wang, Y. Progress, challenges, and prospects of CO2 mineral sequestration in basalt: A critical review. Appl. Energy 2025, 381, 125127. [Google Scholar] [CrossRef]
- Zhang, S.; Ben Abdallah, K.; Li, L.; Hamdi, E.; Liu, J. Multiphase Flow Controlled by Synergistic Injection-Production Pressure: Enabling CO2 Geo-Sequestration with Additional Gas Recovery from Vertically Heterogeneous Depleted Shale Reservoirs. Fuel 2025, 398, 135591. [Google Scholar] [CrossRef]
- Mahmoudnia, A. The role of PFAS in unsettling ocean carbon sequestration. Environ. Monit. Assess. 2023, 195, 310. [Google Scholar] [CrossRef]
- Du, J.L.; Tian, J. Distinct carbon sequestration in the glacial Pacific despite vigorous deep ocean circulation. Earth Planet. Sci. Lett. 2025, 660, 119344. [Google Scholar] [CrossRef]
- Zhang, T.; Tang, Y.; Li, H.; Hu, W.; Cheng, J.; Lee, X. A bibliometric review of biochar for soil carbon sequestration and mitigation from 2001 to 2020. Ecotoxicol. Environ. Saf. 2023, 264, 115438. [Google Scholar] [CrossRef] [PubMed]
- Feng, D.; Wang, S.; Zhang, Y.; Zhao, Y.; Sun, S.; Chang, G.; Lai, X.; Tan, H.; Qin, Y. Review of carbon fixation evaluation and emission reduction effectiveness for biochar in China. Energy Fuels 2020, 34, 10583–10606. [Google Scholar] [CrossRef]
- Manyà, J.J. Pyrolysis for Biochar Purposes: A Review to Establish Current Knowledge Gaps and Research Needs. Environ. Sci. Technol. 2012, 46, 7939–7954. [Google Scholar] [CrossRef] [PubMed]
- Chicaiza-Ortiz, C.; Zhang, P.; Zhang, J.; Zhang, T.; Yang, Q.; He, Y. CO2-enhanced methane production by integration of bamboo biochar during anaerobic co-digestion. J. Environ. Manag. 2025, 373, 123603. [Google Scholar] [CrossRef]
- Salma, A.; Fryda, L.; Djelal, H. Biochar: A Key Player in Carbon Credits and Climate Mitigation. Resources 2024, 13, 31. [Google Scholar] [CrossRef]
- Morales, M.M.; Comferford, N.; Guerrini, I.A.; Falcão, N.P.S.; Reeves, J. Sorption and desorption of phosphate on biochar and biochar–soil mixtures. Soil Use Manag. 2013, 29, 306–314. [Google Scholar] [CrossRef]
- Lin, M.; Li, F.; Li, X.; Rong, X.; Oh, K. Biochar-clay, biochar-microorganism and biochar-enzyme composites for environmental remediation: A review. Environ. Chem. Lett. 2023, 21, 1837–1862. [Google Scholar] [CrossRef]
- Arias, C.M.; Silva, L.F.S.; Soares, M.R.; Forti, V.A. A bibliometric analysis on the agricultural use of biochar in Brazil from 2003 to 2021: Research status and promising raw materials. Renew. Agric. Food Syst. 2023, 38, e124. [Google Scholar] [CrossRef]
- Nan, H.; Wang, L.; Luo, D.; Zhang, Y.; Liu, G.; Wang, C. A bibliometric analysis of biochar application in wastewater treatment from 2000 to 2021. Int. J. Environ. Sci. Technol. 2023, 20, 13957–13974. [Google Scholar] [CrossRef]
- Phiri, Z.; Moja, N.T.; Nkambule, T.T.L.; de Kock, L.A. Utilization of biochar for remediation of heavy metals in aqueous environments: A review and bibliometric analysis. Heliyon 2024, 10, e25785. [Google Scholar] [CrossRef] [PubMed]
- Jin, F.; Lu, J.; Sun, F.; Yang, F.; Li, Z. Application and development of sludge-based materials for environmental pollution remediation: A bibliometric review from 2004 to 2024. RSC Adv. 2025, 15, 8072–8087. [Google Scholar] [CrossRef] [PubMed]
- Pritchard, A. Statistical bibliography or bibliometrics. J. Doc. 1969, 25, 348–349. [Google Scholar]
- Chen, C.; Leydesdorff, L. Patterns of connections and movements in dual-map overlays: A new method of publication portfolio analysis. J. Assoc. Inf. Sci. Technol. 2013, 65, 334–351. [Google Scholar] [CrossRef]
- Shen, Z.; Wu, H.; Chen, Z.; Hu, J.; Pan, J.; Kong, J.; Lin, T. The global research of artificial intelligence on prostate cancer: A 22-year bibliometric analysis. Front. Oncol. 2022, 12, 843735. [Google Scholar] [CrossRef]
- Marzi, G.; Caputo, A.; Garces, E.; Dabić, M. A Three Decade Mixed-Method Bibliometric Investigation of the IEEE Transactions on Engineering Management. IEEE Trans. Eng. Manag. 2018, 67, 4–14. [Google Scholar] [CrossRef]
- Wu, H.; Wang, Y.; Tong, L.; Yan, H.; Sun, Z. Global research trends of ferroptosis: A rapidly evolving field with enormous potential. Front. Cell Dev. Biol. 2021, 9, 646311. [Google Scholar] [CrossRef]
- Xie, L.; Chen, Z.; Wang, H.; Zheng, C.; Jiang, J. Bibliometric and visualized analysis of scientific publications on atlantoaxial spine surgery based on Web of Science and VOSviewer. World Neurosurg. 2020, 137, 435–442. [Google Scholar] [CrossRef]
- Xu, D.; Wang, Y.L.; Wang, K.T.; Wang, Y.; Dong, X.R.; Tang, J. A scientometrics analysis and visualization of depressive disorder. Curr. Neuropharmacol. 2021, 19, 766–786. [Google Scholar] [CrossRef]
- Liu, H.; Hong, R.; Xiang, C.; Lv, C.; Li, H. Visualization and analysis of mapping knowledge domains for spontaneous combustion studies. Fuel 2020, 262, 116598. [Google Scholar] [CrossRef]
- Ebrahimi, P.; Abbasi, S.; Pashaei, R.; Bogusz, A.; Oleszczuk, P. Investigating impact of physicochemical properties of microplastics on human health: A short bibliometric analysis and review. J. Hazard. Mater. 2022, 424, 127787. [Google Scholar] [CrossRef] [PubMed]
- Chen, C. Science Mapping: A Systematic Review of the Literature. J. Data Inf. Sci. 2017, 2, 1–40. [Google Scholar] [CrossRef]
- Miao, Y.; Zhang, Y.; Yin, L. Trends in hepatocellular carcinoma research from 2008 to 2017: A bibliometric analysis. PeerJ 2018, 6, e5477. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, W.; Ma, R.; Li, S.; Song, K.; Zheng, J.; Wang, Y.; Bian, R.; Zhang, X.; Pan, G. Biochar-plant interactions enhance nonbiochar carbon sequestration in a rice paddy soil. Commun. Earth Environ. 2023, 4, 494. [Google Scholar] [CrossRef]
- Zhang, A.; Cui, L.; Pan, G.; Li, L.; Hussain, Q.; Zhang, X.; Zheng, J.; Crowley, D. Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from Tai Lake plain, China. Agric. Ecosyst. Environ. 2010, 139, 469–475. [Google Scholar] [CrossRef]
- Zhang, A.; Bian, R.; Pan, G.; Cui, L.; Hussain, Q.; Li, L.; Zheng, J.; Zhang, X.; Han, X.; Yu, X. Effects of biochar amendment on soil quality, crop yield and greenhouse gas emission in a Chinese rice paddy: A field study of 2 consecutive rice growing cycles. Field Crops Res. 2012, 127, 153–160. [Google Scholar] [CrossRef]
- Bian, R.; Joseph, S.; Cui, L.; Pan, G.; Shi, X.; Li, L.; Liu, X.; Zhang, A.; Rutlidge, H.; Wong, S.; et al. A three-year experiment confirms continuous immobilization of cadmium and lead in contaminated paddy field with biochar amendment. J. Hazard. Mater. 2014, 272, 121–128. [Google Scholar] [CrossRef]
- Schmidt, M.W.; Torn, M.S.; Abiven, S.; Dittmar, T.; Guggenberger, G.; Janssens, I.A.; Kleber, M.; Kögel-Knabner, I.; Lehmann, J.; Manning, D.A.; et al. Persistence of soil organic matter as an ecosystem property. Nature 2011, 478, 49–56. [Google Scholar] [CrossRef]
- Lehmann, J.; Rillig, M.C.; Thies, J.; Masiello, C.A.; Hockaday, W.C.; Crowley, D. Biochar effects on soil biota—A review. Soil Biol. Biochem. 2011, 43, 1812–1836. [Google Scholar] [CrossRef]
- El-Naggar, A.; Lee, S.S.; Rinklebe, J.; Farooq, M.; Song, H.; Sargam, A.K.; Zimmerman, A.R.; Ahmad, M.; Shaheen, S.; Ok, Y.S. Biochar application to low fertility soils: A review of current status, and future prospects. Geoderma 2019, 337, 536–554. [Google Scholar] [CrossRef]
- Ahmad, M.; Rajapaksha, A.U.; Lim, J.E.; Zhang, M.; Bolan, N.; Mohan, D.; Vithanage, M.; Lee, S.S.; Ok, Y.S. Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere 2014, 99, 19–33. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.J.; Li, J.; Ok, Y.S. Machine Learning Predicts Biochar Aging Effects on Nitrous Oxide Emissions from Agricultural Soils. ACS Agric. Sci. Technol. 2024, 4, 888–898. [Google Scholar] [CrossRef]
- Zhang, C.; Hu, T.; Deng, M.; Ok, Y.S.; Wang, H.; Liu, Y.; Zhang, L. Spectral-Based Machine Learning Enables Rapid and Large-Scale Adsorption Capacity Prediction of Heavy Metals in Soil. ACS ES&T Eng. 2024, 4, 2657–2667. [Google Scholar]
- Yuan, X.; Suvarna, M.; Liu, J.Y.; Lim, J.Y.; Pérez-Ramírez, J.; Wang, X.; Ok, Y.S. Active Learning-Based Guided Synthesis of Engineered Biochar for CO2 Capture. Environ. Sci. Technol. 2024, 58, 6628–6636. [Google Scholar] [CrossRef] [PubMed]
- Inyang, M.; Gao, B.; Yao, Y.; Xue, Y.; Zimmerman, A.R.; Pullammanappallil, P.; Cao, X. Removal of heavy metals from aqueous solution by biochars derived from anaerobically digested biomass. Bioresour. Technol. 2012, 110, 50–56. [Google Scholar] [CrossRef]
- Inyang, M.I.; Gao, B.; Yao, Y.; Xue, Y.; Zimmerman, A.; Mosa, A.; Pullammanappallil, P.; Cao, X. A review of biochar as a low-cost adsorbent for aqueous heavy metal removal. Crit. Rev. Environ. Sci. Technol. 2016, 46, 406–433. [Google Scholar] [CrossRef]
- Guo, Y.-M.; Huang, Z.-L.; Guo, J.; Li, H.; Guo, X.-R.; Nkeli, M.J. Bibliometric Analysis on Smart Cities Research. Sustainability 2019, 11, 3606. [Google Scholar] [CrossRef]
- Huang, L.; Kelly, S.; Lv, K.J.; Giurco, D. A systematic review of empirical methods for modelling sectoral carbon emissions in China. J. Clean. Prod. 2019, 215, 1382–1401. [Google Scholar] [CrossRef]
- Chen, X.; Lin, B.Q. Towards carbon neutrality by implementing carbon emissions trading scheme: Policy evaluation in China. Energy Policy 2021, 157, 112510. [Google Scholar] [CrossRef]
- Boyack, K.W.; Klavans, R. Co-citation analysis, bibliographic coupling, and direct citation: Which citation approach represents the research front most accurately? J. Assoc. Inf. Sci. Technol. 2010, 61, 2389–2404. [Google Scholar] [CrossRef]
- Ho, Y.-S. Top-cited articles in chemical engineering in Science Citation Index Expanded: A bibliometric analysis. Chin. J. Chem. Eng. 2012, 20, 478–488. [Google Scholar] [CrossRef]
- Liao, H.; Tang, M.; Luo, L.; Li, C.; Chiclana, F.; Zeng, X.-J. A Bibliometric Analysis and Visualization of Medical Big Data Research. Sustainability 2018, 10, 166. [Google Scholar] [CrossRef]
- Tomczyk, A.; Sokołowska, Z.; Boguta, P. Biochar physicochemical properties: Pyrolysis temperature and feedstock kind effects. Rev. Environ. Sci. Biotechnol. 2020, 19, 191–215. [Google Scholar] [CrossRef]
- Wang, J.; Xiong, Z.; Kuzyakov, Y. Biochar stability in soil: Meta-analysis of decomposition and priming effects. Glob. Change Biol. Bioenergy 2016, 8, 512–523. [Google Scholar] [CrossRef]
- Lehmann, J.; Cowie, A.; Masiello, C.A.; Kammann, C.; Woolf, D.; Amonette, J.E.; Cayuela, M.L.; Camps-Arbestain, M.; Whitman, T. Biochar in climate change mitigation. Nat. Geosci. 2021, 14, 883–892. [Google Scholar] [CrossRef]
- Leng, L.; Huang, H.; Li, H.; Zhou, J.; Zhou, W. Biochar stability assessment methods: A review. Sci. Total Environ. 2019, 647, 210–222. [Google Scholar] [CrossRef]
- Smith, P. Soil carbon sequestration and biochar as negative emission technologies. Glob. Change Biol. 2016, 22, 1315–1324. [Google Scholar] [CrossRef]
- Borchard, N.; Schirrmann, M.; Cayuela, M.L.; Kammann, C.; Wrage-Mönnig, N.; Estavillo, J.M.; Fuertes-Mendizábal, T.; Sigua, G.; Spokas, K.; Ippolito, J.A.; et al. Biochar, soil and land-use interactions that reduce nitrate leaching and N2O emissions: A meta-analysis. Sci. Total Environ. 2019, 651, 2354–2364. [Google Scholar] [CrossRef]
- Jeffery, S.; Verheijen, F.G.A.; van der Velde, M.; Bastos, A.C. A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agric. Ecosyst. Environ. 2011, 144, 175–187. [Google Scholar] [CrossRef]
- Woolf, D.; Amonette, J.; Street-Perrott, F.; Lehmann, J.; Joseph, S. Sustainable biochar to mitigate global climate change. Nat. Commun. 2010, 1, 56. [Google Scholar] [CrossRef]
- Mohan, D.; Sarswat, A.; Ok, Y.S.; Pittman, C.U., Jr. Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent—A critical review. Bioresour. Technol. 2014, 160, 191–202. [Google Scholar] [CrossRef] [PubMed]
- Tan, X.; Liu, Y.; Zeng, G.; Wang, X.; Hu, X.; Gu, Y.; Yang, Z. Application of biochar for the removal of pollutants from aqueous solutions. Chemosphere 2015, 125, 70–85. [Google Scholar] [CrossRef] [PubMed]
- Al-Wabel, M.I.; Al-Omran, A.; El-Naggar, A.H.; Nadeem, M.; Usman, A.R.A. Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes. Bioresour. Technol. 2013, 131, 374–379. [Google Scholar] [CrossRef] [PubMed]
- Chan, K.Y.; Van Zwieten, L.; Meszaros, I.; Downie, A.; Joseph, S. Agronomic values of greenwaste biochar as a soil amendment. Aust. J. Soil Res. 2007, 45, 629–634. [Google Scholar] [CrossRef]
- Atkinson, C.J.; Fitzgerald, J.D.; Hipps, N.A. Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: A review. Plant Soil 2010, 337, 1–18. [Google Scholar] [CrossRef]
- Gaskin, J.W.; Steiner, C.; Harris, K.; Das, K.C.; Bibens, B. Effect of low-temperature pyrolysis conditions on biochar for agricultural use. Trans. ASABE 2008, 51, 2061–2069. [Google Scholar] [CrossRef]
- Singh, B.; Singh, B.P.; Cowie, A.L. Characterisation and evaluation of biochars for their application as a soil amendment. Aust. J. Soil Res. 2010, 48, 516–525. [Google Scholar] [CrossRef]
- Joseph, S.D.; Camps-Arbestain, M.; Lin, Y.; Munroe, P.; Chia, C.H.; Hook, J.; van Zwieten, L.; Kimber, S.; Cowie, A.; Singh, B.P. An investigation into the reactions of biochar in soil. Aust. J. Soil Res. 2010, 48, 501–515. [Google Scholar] [CrossRef]
- Chan, K.Y.; Van Zwieten, L.; Meszaros, I.; Downie, A.; Joseph, S. Using poultry litter biochars as soil amendments. Aust. J. Soil Res. 2008, 46, 437–444. [Google Scholar] [CrossRef]
- Huang, S.; Liu, D.; Gomez-Rivas, E.; Griera, A.; Gan, Q.; Wang, M.; Xing, Y.; Zhao, Y. Experimental Insights into the Nucleation and Propagation of Hydraulic Fractures in Anthracite Coalbed Methane Reservoirs. Earth Energy Sci. 2025; in press. [Google Scholar] [CrossRef]
- Wang, J.; Wang, S. Preparation, modification and environmental application of biochar: A review. J. Clean. Prod. 2019, 227, 1002–1022. [Google Scholar] [CrossRef]
- Kambo, H.S.; Dutta, A. A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications. Renew. Sustain. Energy Rev. 2015, 45, 359–378. [Google Scholar] [CrossRef]
- Gul, S.; Whalen, J.K.; Thomas, B.W.; Sachdeva, V.; Deng, H.Y. Physico-chemical properties and microbial responses in biochar-amended soils: Mechanisms and future directions. Agric. Ecosyst. Environ. 2015, 206, 46–59. [Google Scholar] [CrossRef]
- Fuss, S.; Lamb, W.F.; Callaghan, M.W.; Hilaire, J.; Creutzig, F.; Amann, T.; Beringer, T.; Garcia, W.D.; Hartmann, J.; Khanna, T. Negative emissions-Part 2: Costs, potentials and side effects. Environ. Res. Lett. 2018, 13, 063002. [Google Scholar] [CrossRef]
- Biederman, L.A.; Harpole, W.S. Biochar and its effects on plant productivity and nutrient cycling: A meta-analysis. Glob. Change Biol. Bioenergy 2013, 5, 202–214. [Google Scholar] [CrossRef]
- Gao, Y.; Ge, L.; Shi, S.; Shi, Z.; Sun, Y.; Liu, M.; Wang, B.; Shang, Y.; Wu, J.; Tian, J. Global trends and future prospects of e-waste research: A bibliometric analysis. Environ. Sci. Pollut. Res. 2019, 26, 17809–17820. [Google Scholar] [CrossRef]
- Keiluweit, M.; Nicöl, P.; Johnson, M.G.; Kleber, M. Dynamic Molecular Structure of Plant Biomass-Derived Black Carbon (Biochar). Environ. Sci. Technol. 2010, 44, 1253–1259. [Google Scholar] [CrossRef]
- Lehmann, J. Bio-Energy in the Black. Front. Ecol. Environ. 2007, 5, 381–387. [Google Scholar] [CrossRef]
- Warnock, D.D.; Lehmann, J.; Kuyper, T.W.; Rillig, M.C. Mycorrhizal Responses to Biochar in Soil – Concepts and Mechanisms. Plant Soil 2007, 300, 9–20. [Google Scholar] [CrossRef]
- Mukherjee, A.; Zimmermann, A.R.; Harris, W. Surface Chemistry Variations among a Series of Laboratory-Produced Biochars. Geoderma 2011, 163, 247–255. [Google Scholar] [CrossRef]
- Pei, Z.; Chen, S.; Ding, L.; Liu, J.; Cui, X.; Qiu, F. Current perspectives and trend of nanomedicine in cancer: A review and bibliometric analysis. J. Control. Release 2022, 352, 211–241. [Google Scholar] [CrossRef] [PubMed]
- Meier, E.; Thorburn, P.; Biggs, J.; Palmer, J.; Dumbrell, N.; Kragt, M. Using machine learning with case studies to identify practices that reduce greenhouse gas emissions across Australian grain production regions. Agron. Sustain. Dev. 2023, 43, 29. [Google Scholar] [CrossRef]
- Meyer, S.; Genesio, L.; Vogel, I.; Schmidt, H.-P.; Soja, G.; Shackley, S.; Verheijen, F.G.A.; Glasen, B. Biochar standardization and legislation harmonization. J. Environ. Eng. Landsc. Manag. 2017, 25, 175–191. [Google Scholar] [CrossRef]
- BSR WATER. Palette of Solutions for Nutrient Recycling in the Baltic Sea Region; Helsinki Commission: Helsinki, Finland, 2021; ISBN 978-951-0-06818-7. [Google Scholar]
- Cool Planet Energy Systems. Cool Planet Announces Launch of Cool Terra™ Biochar Soil Amendment: Reduces Atmospheric CO2 and Increases Crop Yields; Business Wire: San Francisco, CA, USA, 2013. [Google Scholar]
- Chen, C.M. CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. J. Am. Soc. Inf. Sci. Technol. 2006, 57, 359–377. [Google Scholar] [CrossRef]
- Zhao, X.; Ma, X.W.; Chen, B.Y.; Shang, Y.; Song, M.L. Challenges toward carbon neutrality in China: Strategies and countermeasures. Resour. Conserv. Recycl. 2022, 176, 105959. [Google Scholar] [CrossRef]
- Liu, Z.; Deng, Z.; He, G.; Wang, H.L.; Zhang, X.; Lin, J.; Qi, Y.; Liang, X. Challenges and opportunities for carbon neutrality in China. Nat. Rev. Earth Environ. 2022, 3, 141–155. [Google Scholar] [CrossRef]
- Li, L.; Ma, S.; Liu, X.; Liu, J.; Lu, Y.; Zhao, P.; Kassabi, N.; Hamdi, E.; Elsworth, D. Coal measure gas resources matter in China: Review, challenges, and perspective. Phys. Fluids 2024, 36, 071301. [Google Scholar] [CrossRef]
- Li, L.; Liu, J.; Wang, W.; Zhao, P.; Lu, Y. Variational Reservoir Characteristics of the Wufeng–Longmaxi Formation from Different Sedimentary Region and Its Implications in Southeastern Sichuan Basin, China. ACS Omega 2023, 8, 20684–20696. [Google Scholar] [CrossRef]
- Wang, X.; Xu, S.; Wang, Z.; Peng, L.; Wang, C. International scientific collaboration of China: Collaborating countries, institutions and individuals. Scientometrics 2013, 95, 885–894. [Google Scholar] [CrossRef]
- Zhang, X.; Sun, X.; Zhang, Y. Analysis on the Characteristics of Withdrawal of International Scientific Papers. China Sci. Technol. Resour. Rev. 2023, 55, 73–81. [Google Scholar]
- Zimmerman, A.R. Abiotic and microbial oxidation of laboratory-produced black carbon (biochar). Environ. Sci. Technol. 2010, 44, 1295–1301. [Google Scholar] [CrossRef] [PubMed]
- International Biochar Initiative. Standardized Product Definition and Product Testing Guidelines for Biochar That Is Used in Soil (aka IBI Biochar Standards) (Version 2.1, 23 November 2015). Available online: http://www.biochar-international.org/characterizationstandard (accessed on 5 May 2025).
- Xu, Z.; He, M.; Xu, X.; Cao, X.; Tsang, D.C.W. Impacts of different activation processes on the carbon stability of biochar for oxidation resistance. Bioresour. Technol. 2021, 338, 125555. [Google Scholar] [CrossRef]
- Wu, M.; Han, X.; Zhong, T.; Yuan, M.; Wu, W. Soil organic carbon content affects the stability of biochar in paddy soil. Agric. Ecosyst. Environ. 2016, 223, 59–66. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Q.; Zhang, L.; Xu, X.; Bi, R.; Xiong, Z. Biochar addition stabilized soil carbon sequestration by reducing temperature sensitivity of mineralization and altering the microbial community in a greenhouse vegetable field. J. Environ. Manage. 2022, 313, 114972. [Google Scholar] [CrossRef]
- Gross, A.; Bromm, T.; Polifka, S.; Fischer, D.; Glaser, B. Long-term biochar and soil organic carbon stability—Evidence from field experiments in Germany. Sci. Total Environ. 2024, 954, 176340. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Shan, Y.; Wu, P.; Zhang, P.; Zhang, Z.; Zhao, F.; Zhu, T. Mitigating the global warming potential of rice paddy fields by straw and straw-derived biochar amendments. Geoderma 2021, 396, 115081. [Google Scholar] [CrossRef]
- Nan, Q.; Xin, L.; Qin, Y.; Waqas, M.; Wu, W. Exploring long-term effects of biochar on mitigating methane emissions from paddy soil: A review. Biochar 2021, 3, 125–134. [Google Scholar] [CrossRef]
- Liu, Y.; Weng, Z.; Han, B.; Guo, Z.; Tian, H.; Tang, Y.; Cai, Y.; Yang, Z. Recent studies on the comprehensive application of biochar in multiple environmental fields. J. Clean. Prod. 2023, 421, 138495. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, C.; Zhang, X.; Li, J.; Wu, W.; Yan, B.; Chen, W.; Zuo, X.; Li, X.; Yang, G.; et al. An operation strategy towards efficient energy recovery from integrated anaerobic digestion and pyrolysis of corn stalk. Resour. Conserv. Recycl. 2023, 188, 106710. [Google Scholar] [CrossRef]
- He, Q.; Raheem, A.; Ding, L.; Xu, J.; Cheng, C.; Yu, G. Combining wet torrefaction and pyrolysis for woody biochar upgradation and structural modification. Energy Convers. Manag. 2021, 243, 114383. [Google Scholar] [CrossRef]
- Cheng, N.; Wang, B.; Wu, P.; Lee, X.; Xing, Y.; Chen, M.; Gao, B. Adsorption of emerging contaminants from water and wastewater by modified biochar: A review. Environ. Pollut. 2021, 273, 116448. [Google Scholar] [CrossRef]
- Zhang, P.; Li, Y.; Cao, Y.; Han, L. Characteristics of tetracycline adsorption by cow manure biochar prepared at different pyrolysis temperatures. Bioresour. Technol. 2019, 285, 121348. [Google Scholar] [CrossRef]
- Zhu, X.; Li, K.; Zhang, L.; Wu, X.; Zhu, X. Comparative study on the evolution of physicochemical characteristics of biochar produced from bio-oil distillation residue under different induction atmosphere. Energy Convers. Manag. 2018, 157, 288–293. [Google Scholar] [CrossRef]
- United Nations Environment Programme; International Waste Management Association. Global Waste Management Outlook; International Environmental Technology Centre: Osaka, Japan, 2015. [Google Scholar]
- Karki, B.K. Amended biochar in constructed wetlands: Roles, challenges, and future directions removing pharmaceuticals and personal care products. Heliyon 2024, 10, e39848. [Google Scholar] [CrossRef] [PubMed]
- Hao, L.; Zhao, Z.; Zhou, H.; Wen, L.; Liu, X.; Yu, Y.; Liu, Y. Resource utilization of tea waste in biochar and other areas: Current status, challenges and future prospects. J. Environ. Manag. 2025, 377, 124569. [Google Scholar] [CrossRef] [PubMed]
- Yuan, S.; Zhao, L.; Meng, H.; Shen, Y. The main types of biochar and their properties and expectative researches. J. Plant Nutr. Fertil. 2016, 22, 1402–1417. [Google Scholar]
- Li, Y. Research progress of biochar preparation and performance. Hans J. Chem. Eng. Technol. 2020, 10, 384–388. [Google Scholar] [CrossRef]
- Li, Y.; Li, H.; Huang, W.; Sun, Y.; Cao, J.; Luo, J. Research progress on the biochar production and its applications in enhancing electron transport and catalysis performance. Res. Environ. Sci. 2021, 34, 1157–1167. [Google Scholar]
- Liu, L.; Huang, L.; Huang, R.; Lin, H.; Wang, D. Immobilization of heavy metals in biochar derived from co-pyrolysis of sewage sludge and calcium sulfate. J. Hazard. Mater. 2021, 403, 123648. [Google Scholar] [CrossRef]
- Bai, X.; Zhang, S.; Shao, J.; Chen, A.; Jiang, J.; Chen, A.; Luo, S. Exploring the negative effects of biochars on the germination, growth, and antioxidant system of rice and corn. J. Environ. Chem. Eng. 2022, 10, 107398. [Google Scholar] [CrossRef]
- International Biochar Initiative. Biochar Feedstocks. Available online: https://biochar-international.org/ (accessed on 5 May 2025).
- Chen, D.; Zhuang, X.; Gan, Z.; Cen, K.; Ba, Y.; Jia, D. Co-pyrolysis of light bio-oil leached bamboo and heavy bio-oil: Effects of mass ratio, pyrolysis temperature, and residence time on the biochar. Chem. Eng. J. 2022, 437, 135253. [Google Scholar] [CrossRef]
- O’Boyle, M.; Mohamed, B.A.; Li, L.Y. Co-pyrolysis of sewage sludge and biomass waste into biofuels and biochar: A comprehensive feasibility study using a circular economy approach. Chemosphere 2024, 350, 141074. [Google Scholar] [CrossRef] [PubMed]
- Márquez, A.; Ortiz, I.; Sánchez-Hervás, J.M.; Monte, M.C.; Negro, C.; Blanco, Á. Global trends of pyrolysis research: A bibliometric analysis. Environ. Sci. Pollut. Res. 2024, 31, 931–947. [Google Scholar] [CrossRef]
- Giusitin, M.Z. Advantages of Co-Pyrolysis of Sewage Sludge with Agricultural and Forestry Waste. Energies 2024, 17, 5736. [Google Scholar] [CrossRef]
- Beillouin, D.; Corbeels, M.; Demenois, J.; Berre, D.; Boyer, A.; Fallot, A.; Feder, F.; Cardinael, R. A global meta-analysis of soil organic carbon in the Anthropocene. Nat. Commun. 2023, 14, 3700. [Google Scholar] [CrossRef]
- Raza, S.; Irshad, A.; Margenot, A.; Zamanian, K.; Nan, L.; Ullah, S.; Zhao, X. Inorganic carbon is overlooked in global soil carbon research: A bibliometric analysis. Geoderma 2024, 443, 116831. [Google Scholar] [CrossRef]
- Mentges, M.I.; Reichert, J.M.; Rodrigues, M.F.; Awe, G.O.; Mentges, L.R. Capacity and intensity soil aeration properties affected by granulometry, moisture, and structure in no-tillage soils. Geoderma 2016, 263, 47–59. [Google Scholar] [CrossRef]
- Tang, H.; Liu, Y.; Li, X.; Muhammad, A.; Huang, G. Carbon sequestration of cropland and paddy soils in China: Potential, driving factors, and mechanisms. Greenh. Gases Sci. Technol. 2019, 9, 872–885. [Google Scholar] [CrossRef]
- Wang, J.; Wang, B.; Bian, R.; He, W.; Liu, Y.; Shen, G.; Xie, H.; Feng, Y. Bibliometric analysis of biochar-based organic fertilizers in the past 15 years: Focus on ammonia volatilization and greenhouse gas emissions during composting. Environ. Res. 2024, 243, 117853. [Google Scholar] [CrossRef]
- Xie, Y.; Li, C.; Chen, H.; Gao, Y.; Vancov, T.; Keen, B.; Van Zwieten, L.; Fang, Y.; Sun, X.; He, Y.; et al. Methods for quantification of biochar in soils: A critical review. Catena 2024, 241, 108082. [Google Scholar] [CrossRef]
- Gross, A.; Bromm, T.; Glaser, B. Soil Organic Carbon Sequestration after Biochar Application: A Global Meta-Analysis. Agronomy 2021, 11, 2474. [Google Scholar] [CrossRef]
- Han, J.; Elgowainy, A.; Dunn, J.B.; Wang, M.Q. Life cycle analysis of fuel production from fast pyrolysis of biomass. Bioresour. Technol. 2013, 133, 421–428. [Google Scholar] [CrossRef] [PubMed]
- Rasul, M.; Cho, J.; Shin, H.-S.; Hur, J. Biochar-induced priming effects in soil via modifying the status of soil organic matter and microflora: A review. Sci. Total Environ. 2022, 805, 150304. [Google Scholar] [CrossRef] [PubMed]
Rank | Journal | Number of Documents | IF (2024) | Publishers | Core Research Directions |
---|---|---|---|---|---|
1st | Science of the Total Environment | 164 | 8.2 | Elsevier | Environmental Science; Pollution Control |
2nd | Journal of Environmental Management | 67 | 8.0 | Academic | Environmental Management; Sustainability Policies |
3rd | Journal of Cleaner Production | 64 | 9.7 | Elsevier | Cleaner Production Technologies; Circular Economy |
4th | Agronomy-Basel | 59 | 3.3 | MDPI | Agronomy; Sustainable Agriculture |
5th | Sustainability | 58 | 3.3 | MDPI | Comprehensive Sustainability Studies |
6th | Global Change Biology Bioenergy | 48 | 5.9 | Wiley | Climate Change and Bioenergy |
7th | Chemosphere | 41 | 8.8 | Elsevier | Environmental Chemistry; Pollutant Studies |
8th | Bioresource Technology | 40 | 9.7 | Elsevier | Bioresource Technology; Bioenergy |
9th | Biochar | 39 | 13.1 | Springer Nature | Biochar Applications; Soil Amendment |
10th | Geoderma | 39 | 5.6 | Elsevier | Soil Science; Land Management |
11 | Bioresource Technology | 39 | 9.7 | Elsevier | Biological Resource Conversion and Environmental Biotechnology |
12 | Agriculture Ecosystems & Environment | 38 | 3.9 | Elsevier | Agricultural Ecosystem Sustainability |
Rank | Institution | Countries/ Regions | Publication | Citation | Citation per Publication | TLS |
---|---|---|---|---|---|---|
1st | Chinese Academy of Sciences | China | 116 | 5492 | 47.34 | 104 |
2nd | Zhejiang University | China | 60 | 4872 | 81.20 | 45 |
3rd | Northwest A&F University | China | 52 | 1713 | 32.94 | 27 |
4th | Nanjing Agricultural University | China | 48 | 2525 | 52.60 | 34 |
5th | University of Chinese Academy of Sciences | China | 44 | 2115 | 48.07 | 60 |
6th | University of Edinburgh | England | 38 | 3248 | 85.47 | 30 |
7th | China Agricultural University | China | 30 | 1235 | 41.17 | 29 |
8th | Zhejiang A&F University | China | 30 | 1933 | 64.34 | 22 |
9th | King Saud University | Saudi Arabia | 29 | 2392 | 82.48 | 15 |
10th | Shanghai Jiao Tong University | China | 29 | 2546 | 87.79 | 21 |
11th | University of Florida | U.S. | 28 | 4433 | 158.32 | 14 |
12th | University of Western Australia | Australia | 28 | 2444 | 87.29 | 35 |
13th | Chinese Academy of Agricultural Sciences | China | 27 | 768 | 28.44 | 24 |
14th | Aarhus University | Denmark | 27 | 1249 | 46.25 | 19 |
15th | Cornell University | U.S. | 25 | 5853 | 234.12 | 22 |
Ranking | Author | Publications | Citations | H-Index | Affiliated Institution |
---|---|---|---|---|---|
1st | Yong Sik Ok | 30 | 7795 | 145 | Korea University |
2nd | Ondřej Mašek | 24 | 1544 | 49 | University of Edinburgh |
3rd | Tsang, Daniel C. W. | 19 | 1537 | 129 | Hong Kong University of Science and Technology |
4th | Cao, Xinde | 19 | 2429 | 78 | Shanghai Jiao Tong University |
Rank | Keywords | Occurrences | Total Link Strength |
---|---|---|---|
1st | biochar | 1208 | 10,736 |
2nd | carbon sequestration | 878 | 8004 |
3rd | pyrolysis | 388 | 3560 |
4th | black carbon | 341 | 3345 |
5th | biomass | 319 | 3048 |
6th | soil | 301 | 2705 |
7th | carbon | 237 | 2050 |
8th | charcoal | 214 | 2040 |
9th | nitrogen | 213 | 2018 |
10th | pyrolysis temperature | 209 | 2072 |
11th | stability | 202 | 1948 |
12th | organic—matter | 202 | 1880 |
13th | greenhouse—gas emissions | 184 | 1856 |
14th | temperature | 184 | 1768 |
15th | adsorption | 172 | 1564 |
First Author | Article | Journal | Year | Co-Citation | Total Citation |
---|---|---|---|---|---|
Tomczyk, A. [54] | Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects | Environmental Science and Bio/Technology | 2020 | 115 | 1606 |
Wang, J.Y. [55] | Biochar stability in soil: meta-analysis of decomposition and priming effects | Global Change Biology Bioenergy | 2016 | 105 | 897 |
Lehmann, J. [40] | Biochar effects on soil biota—A review | Soil Biology and Biochemistry | 2011 | 101 | 4017 |
Lehmann, J. [56] | Biochar in climate change mitigation | Nature Geoscience | 2021 | 93 | 433 |
Leng, L.J. [57] | Biochar stability assessment methods: A review | Science of The Total Environment | 2019 | 76 | 469 |
El-Naggar, A. [41] | Biochar application to low fertility soils: A review of current status, and future prospects | Geoderma | 2019 | 75 | 727 |
Smith, P. [58] | Soil carbon sequestration and biochar as negative emission technologies | Global Change Biology | 2016 | 70 | 658 |
Borchard, N. [59] | Biochar, soil and land-use interactions that reduce nitrate leaching and N2O emissions: A meta-analysis | Science of the Total Environment, | 2021 | 69 | 361 |
Jeffery, S. [60] | A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis | Agriculture, Ecosystems & Environment | 2011 | 65 | 1917 |
Woolf, D. [61] | Sustainable biochar to mitigate global climate change | Nature Communications | 2010 | 65 | 1761 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Wang, S.; Zhang, J.; Wang, B.; Wang, H.; Liu, L.; Cao, C.; Shi, M.; Liu, Y. Research on the Application of Biochar in Carbon Sequestration: A Bibliometric Analysis. Energies 2025, 18, 2745. https://doi.org/10.3390/en18112745
Zhang S, Wang S, Zhang J, Wang B, Wang H, Liu L, Cao C, Shi M, Liu Y. Research on the Application of Biochar in Carbon Sequestration: A Bibliometric Analysis. Energies. 2025; 18(11):2745. https://doi.org/10.3390/en18112745
Chicago/Turabian StyleZhang, Shizhao, Shuzhi Wang, Jiayong Zhang, Bao Wang, Hui Wang, Liwei Liu, Chong Cao, Muyang Shi, and Yuhan Liu. 2025. "Research on the Application of Biochar in Carbon Sequestration: A Bibliometric Analysis" Energies 18, no. 11: 2745. https://doi.org/10.3390/en18112745
APA StyleZhang, S., Wang, S., Zhang, J., Wang, B., Wang, H., Liu, L., Cao, C., Shi, M., & Liu, Y. (2025). Research on the Application of Biochar in Carbon Sequestration: A Bibliometric Analysis. Energies, 18(11), 2745. https://doi.org/10.3390/en18112745