Enhancing Investment Profitability: Study on Contrarian Technical Strategies in Brent Crude Oil Markets
Abstract
:1. Introduction
2. Literature Review and Hypotheses Proposed
2.1. Theoretical Foundation
2.2. Contrarian Investment Strategies
2.2.1. SOI Trading Rules
2.2.2. RSI Trading Rules
2.3. Hypotheses Proposed
2.3.1. Concerning Contrarian Trading Rules
2.3.2. Concerning the Adjustment of Parameters for Contrarian Trading Rules
2.3.3. Concerning Contrarian Trading Rules with Trading Signals Issued at Varying Times
2.3.4. Concerning the Adjustment of Parameters for Contrarian Trading Rules with Trading Signals Issued at Varying Times
3. The Design of This Research
3.1. Trading as Contrarian Trading Signals Produced
3.2. Subsequent Performance Measured
4. Results
4.1. Sample Statistics
4.2. Results of Oversold Trading Rules in Aggregate and Various Quarters
4.2.1. Results of Using RSI Oversold Trading Rules
4.2.2. Results of Using SOI Oversold Trading Rules
4.3. Results of Overbought Trading Rules in Aggregate and Various Quarters
4.3.1. Results of Using RSI Overbought Trading Rules
4.3.2. Results of Using SOI Overbought Trading Rules
5. Discussion
6. Conclusions Remarks
6.1. Main Conclusions
6.2. Research Implications
6.3. Limitation and Future Research
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chatziantoniou, I.; Filippidis, M.; Filis, G.; Gabauer, D. A closer look into the global determinants of oil price volatility. Energy Econ. 2021, 95, 105092. [Google Scholar] [CrossRef]
- Dokas, I.; Oikonomou, G.; Panagiotidis, M.; Spyromitros, E. Macroeconomic and uncertainty shocks’ effects on energy prices: A comprehensive literature review. Energies 2023, 16, 1491. [Google Scholar] [CrossRef]
- Narayan, P.K. Pricing behavior of clean energy stocks? Some trading implications. Energy Econ. 2024, 134, 107590. [Google Scholar] [CrossRef]
- Qu, J.; Jeon, W. Price and subsidy under uncertainty: Real-option approach to optimal investment decisions on energy storage with solar PV. Energy Environ. 2022, 33, 263–282. [Google Scholar] [CrossRef]
- Kuang, W. Which clean energy sectors are attractive? A portfolio diversification perspective. Energy Econ. 2021, 104, 105644. [Google Scholar] [CrossRef]
- Mercure, J.F.; Salas, P. On the global economic potentials and marginal costs of non-renewable resources and the price of energy commodities. Energy Policy 2013, 63, 469–483. [Google Scholar] [CrossRef]
- Gong, X.; Zhang, W.; Wang, J.; Wang, C. Investor sentiment and stock volatility: New evidence. Int. Rev. Financ. Anal. 2022, 80, 102028. [Google Scholar] [CrossRef]
- Tissaoui, K.; Abidi, I.; Azibi, N.; Nsaibi, M. Spillover effects between crude oil returns and uncertainty: New evidence from time-frequency domain approaches. Energies 2024, 17, 340. [Google Scholar] [CrossRef]
- Chiu, C.L.; Huang, P.; Day, M.Y.; Ni, Y.; Chen, Y. Mastery of “Monthly Effects”: Big Data Insights into Contrarian Strategies for DJI 30 and NDX 100 Stocks over a Two-Decade Period. Mathematics 2024, 12, 356. [Google Scholar] [CrossRef]
- Day, M.Y.; Ni, Y. Do clean energy indices outperform using contrarian strategies based on contrarian trading rules? Energy 2023, 272, 127113. [Google Scholar] [CrossRef]
- Ni, Y.; Day, M.Y.; Huang, P.; Yu, S.R. The profitability of Bollinger Bands: Evidence from the constituent stocks of Taiwan 50. Phys. A Stat. Mech. Its Appl. 2020, 551, 124144. [Google Scholar] [CrossRef]
- Ni, Y.; Day, M.Y.; Cheng, Y.; Huang, P. Can investors profit by utilizing technical trading strategies? Evidence from the Korean and Chinese stock markets. Financ. Innov. 2022, 8, 54. [Google Scholar] [CrossRef]
- Salur, B.V.; Ekinci, C. Anomalies and investor sentiment: International evidence and the impact of size factor. Int. J. Financ. Stud. 2023, 11, 49. [Google Scholar] [CrossRef]
- Chiu, C.L.; Ni, Y.; Hu, H.C.; Day, M.Y.; Chen, Y. Enhancing Crypto Success via Heatmap Visualization of Big Data Analytics for Numerous Variable Moving Average Strategies. Appl. Sci. 2023, 13, 12805. [Google Scholar] [CrossRef]
- Ni, Y.; Liao, Y.C.; Huang, P. MA trading rules, herding behaviors, and stock market overreaction. Int. Rev. Econ. Financ. 2015, 39, 253–265. [Google Scholar] [CrossRef]
- Ni, Y.S.; Lee, J.T.; Liao, Y.C. Do variable length moving average trading rules matter during a financial crisis period? Appl. Econ. Lett. 2013, 20, 135–141. [Google Scholar] [CrossRef]
- Reis, P.M.N.; Pinho, C. A reappraisal of the causal relationship between sentiment proxies and stock returns. J. Behav. Financ. 2021, 22, 420–442. [Google Scholar] [CrossRef]
- Murphy, J.J. Technical Analysis of the Financial Markets: A Comprehensive Guide to Trading Methods and Applications; Penguin: London, UK, 1999. [Google Scholar]
- Kehinde, T.O.; Chan, F.T.; Chung, S.H. Scientometric review and analysis of recent approaches to stock market forecasting: Two decades survey. Expert Syst. Appl. 2023, 213, 119299. [Google Scholar] [CrossRef]
- Day, M.Y.; Ni, Y. The profitability of seasonal trading timing: Insights from energy-related markets. Energy Econ. 2023, 128, 107132. [Google Scholar] [CrossRef]
- Teixeira, L.A.; De Oliveira, A.L.I. A method for automatic stock trading combining technical analysis and nearest neighbor classification. Expert Syst. Appl. 2010, 37, 6885–6890. [Google Scholar] [CrossRef]
- Chang, C.L.; McAleer, M.; Wang, Y.A. Herding behaviour in energy stock markets during the Global Financial Crisis, SARS, and ongoing COVID-19. Renew. Sustain. Energy Rev. 2020, 134, 110349. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Hope, O.K.; Hu, D. Earnings announcements in China: Overnight-intraday disparity. J. Corp. Financ. 2023, 82, 102471. [Google Scholar] [CrossRef]
- Ni, Y. Navigating Energy and Financial Markets: A Review of Technical Analysis Used and Further Investigation from Various Perspectives. Energies 2024, 17, 2942. [Google Scholar] [CrossRef]
- Ni, Y.; Wu, M.; Day, M.Y.; Huang, P. Do sharp movements in oil prices matter for stock markets? Phys. A Stat. Mech. Its Appl. 2020, 539, 122865. [Google Scholar] [CrossRef]
- Wu, M.H.; Ni, Y.S. The effects of oil prices on inflation, interest rates and money. Energy 2011, 36, 4158–4164. [Google Scholar] [CrossRef]
- Martin-Valmayor, M.A.; Gil-Alana, L.A.; Infante, J. Energy prices in Europe. Evidence of persistence across markets. Resour. Policy 2023, 82, 103546. [Google Scholar] [CrossRef]
- Day, M.Y.; Cheng, Y.; Huang, P.; Ni, Y. The profitability of trading US stocks in Quarter 4-evidence from trading signals emitted by SOI and RSI. Appl. Econ. Lett. 2023, 30, 1173–1178. [Google Scholar] [CrossRef]
- Venizelou, V.; Poullikkas, A. Trend Analysis of Cross-Border Electricity Trading in Pan-European Network. Energies 2024, 17, 5318. [Google Scholar] [CrossRef]
- Day, M.Y.; Cheng, Y.; Huang, P.; Ni, Y. The profitability of Bollinger Bands trading bitcoin futures. Appl. Econ. Lett. 2023, 30, 1437–1443. [Google Scholar] [CrossRef]
- Ni, Y.; Cheng, Y.; Liao, Y.; Huang, P. Does board structure affect stock price overshooting informativeness measured by stochastic oscillator indicators? Int. J. Financ. Econ. 2022, 27, 2290–2302. [Google Scholar] [CrossRef]
- Bikhchandani, S.; Sharma, S. Comportamiento gregario o de rebaño en los mercados financieros: Una reseña. Boletín 2001, 47, 23–42. [Google Scholar]
- Li, Z.; Guo, F.; Du, Z. Learning from Peers: How Peer Effects Reshape the Digital Value Chain in China? J. Theor. Appl. Electron. Commer. Res. 2025, 20, 41. [Google Scholar] [CrossRef]
- Li, Z.; Xu, Y.; Du, Z. Valuing Financial Data: The Case of Analyst Forecasts. Finance Res. Lett. 2025, 75, 106847. [Google Scholar] [CrossRef]
- Alexander, S.S. Price movements in speculative markets: Trends or random walks. Ind. Manag. Rev. 1961, 2, 7–26. [Google Scholar]
- Sharpe, W.F. Mutual fund performance. J. Bus. 1966, 39, 119–138. [Google Scholar] [CrossRef]
- Magdon-Ismail, M.; Atiya, A.F.; Pratap, A.; Abu-Mostafa, Y.S. On the maximum drawdown of a Brownian motion. J. Appl. Probab. 2004, 41, 147–161. [Google Scholar] [CrossRef]
- He, J.; Makarov, R.N.; Tuero, J.; Wang, Z. Performance evaluation metric for statistical learning trading strategies. Data Sci. Financ. Econ. 2024, 4, 570–600. [Google Scholar] [CrossRef]
- Liao, Y.; Day, M.Y.; Cheng, Y.; Huang, P.; Ni, Y. The profitability of technical trading for hotel stocks under COVID-19 pandemic. J. Comput. 2021, 32, 44–54. [Google Scholar] [CrossRef]
- Day, M.Y.; Ni, Y.; Hsu, C.; Huang, P. Do investment strategies matter for trading global clean energy and global energy ETFs? Energies 2022, 15, 3328. [Google Scholar] [CrossRef]
- Gurrib, I. Technical analysis, energy cryptos and energy equity markets. Int. J. Energy Econ. Policy 2022, 12, 249–267. [Google Scholar] [CrossRef]
- James, N. Dynamics, behaviours, and anomaly persistence in cryptocurrencies and equities surrounding COVID-19. Phys. A 2021, 570, 125831. [Google Scholar] [CrossRef] [PubMed]
- Manahov, V.; Hudson, R.; Gebka, B. Does high frequency trading affect technical analysis and market efficiency? And if so, how? J. Int. Financ. Mark. Inst. Money 2014, 28, 131–157. [Google Scholar] [CrossRef]
- Kedar-Levy, H. Price discovery in the small and in the large: Momentum and reversal, bubbles, and crashes. J. Financ. Mark. 2020, 48, 100505. [Google Scholar] [CrossRef]
- Polyzos, E.; Wang, F. Twitter and market efficiency in energy markets: Evidence using LDA clustered topic extraction. Energy Econ. 2022, 114, 106264. [Google Scholar] [CrossRef]
- Balcilar, M.; Demirer, R.; Hammoudeh, S.; Shahbaz, M. Revisiting WTI-Brent spread and its drivers. Energy Strateg. Rev. 2023, 50, 101206. [Google Scholar]
- Dias, R.; Alexandre, P.; Teixeira, N.; Chambino, M. Clean energy stocks: Resilient safe havens in the volatility of dirty cryptocurrencies. Energies 2023, 16, 5232. [Google Scholar] [CrossRef]
- Dutta, A.; Dutta, P. Geopolitical risk and renewable energy asset prices: Implications for sustainable development. Renew. Energy 2022, 196, 518–525. [Google Scholar] [CrossRef]
- Edelen, R.M.; Warner, J.B. Aggregate price effects of institutional trading: A study of mutual fund flow and market returns. J. Financ. Econ. 2001, 59, 195–220. [Google Scholar] [CrossRef]
- Husain, A.; Karim, S.; Sensoy, A. Financial fusion: Bridging Islamic and Green investments in the European stock market. Int. Rev. Financ. Anal. 2024, 94, 103341. [Google Scholar] [CrossRef]
- Corbett, J.; Savarimuthu, B.T.R. From tweets to insights: A social media analysis of the emotion discourse of sustainable energy in the United States. Energy Res. Soc. Sci. 2022, 89, 102515. [Google Scholar] [CrossRef]
- Lane, G.C. Technical Analysis: The Stochastic Oscillator; Investment Educators Inc.: Watseka, IL, USA, 1980. [Google Scholar]
- Pring, M.J. Study Guide for Technical Analysis Explained; McGraw-Hill: New York, NY, USA, 2002. [Google Scholar]
- Chen, G.T.; Gao, H. Volatility and asymmetric effect of crude oil options on crude oil market: Empirical evidence from China. Appl. Econ. Financ. 2023, 10, 4467. [Google Scholar] [CrossRef]
- Zhang, H.; Fang, Y.; Liu, X. A Deep Reinforcement Learning Model for Portfolio Management Incorporating Historical Stock Prices and Risk Information. In Proceedings of the 2024 8th International Conference on Deep Learning Technologies (ICDLT), Suzhou, China, 15–17 July 2024; pp. 1–8. [Google Scholar]
- Kong, A.; Zhu, H.; Azencott, R. Predicting intraday jumps in stock prices using liquidity measures and technical indicators. J. Forecast. 2021, 40, 416–438. [Google Scholar] [CrossRef]
- Brown, K. Trend Trading: Timing Market Tides; John Wiley & Sons: Hoboken, NJ, USA, 2006. [Google Scholar]
- Fister, D.; Perc, M.; Jagrič, T. Two robust long short-term memory frameworks for trading stocks. Appl. Intell. 2021, 51, 7177–7195. [Google Scholar] [CrossRef]
- Coe, T.S.; Laosethakul, K. Applying technical trading rules to beat long-term investing: Evidence from Asian markets. Asia-Pac. Financ. Mark. 2021, 28, 587–611. [Google Scholar] [CrossRef]
- Park, S.; Yang, J.S. Intelligent cryptocurrency trading system using integrated AdaBoost-LSTM with market turbulence knowledge. Appl. Soft Comput. 2023, 145, 110568. [Google Scholar] [CrossRef]
- Adegboye, A.; Kampouridis, M. Machine learning classification and regression models for predicting directional changes trend reversal in FX markets. Expert Syst. Appl. 2021, 173, 114645. [Google Scholar] [CrossRef]
- Yang, S.Y.; Mo, S.Y.K.; Liu, A.; Kirilenko, A.A. Genetic programming optimization for a sentiment feedback strength based trading strategy. Neurocomputing 2017, 264, 29–41. [Google Scholar] [CrossRef]
- Fama, E.F. Efficient capital markets. J. Financ. 1970, 25, 383–417. [Google Scholar] [CrossRef]
- Zatwarnicki, M.; Zatwarnicki, K.; Stolarski, P. Effectiveness of the relative strength index signals in timing the cryptocurrency market. Sensors 2023, 23, 1664. [Google Scholar] [CrossRef]
- Day, M.Y.; Ni, Y.; Huang, P. Trading as sharp movements in oil prices and technical trading signals emitted with big data concerns. Phys. A 2019, 525, 349–372. [Google Scholar] [CrossRef]
- Chau, F.; Deesomsak, R.; Koutmos, D. Does investor sentiment really matter? Int. Rev. Financ. Anal. 2016, 48, 221–232. [Google Scholar] [CrossRef]
- Özemre, M.; Kabadurmus, O. A big data analytics based methodology for strategic decision making. J. Enterp. Inf. Manag. 2020, 33, 1467–1490. [Google Scholar] [CrossRef]
- Wang, J.; Gao, Y.; Li, R. Reinforcement learning based bilevel real-time pricing strategy for a smart grid with distributed energy resources. Appl. Soft Comput. 2024, 155, 111474. [Google Scholar] [CrossRef]
- Cerra, V.; Fatás, A.; Saxena, S.C. Hysteresis and business cycles. J. Econ. Lit. 2023, 61, 181–225. [Google Scholar] [CrossRef]
- De Bondt, W.F.; Thaler, R.H. Does the stock market overreact? J. Financ. 1985, 40, 793–805. [Google Scholar] [CrossRef]
- Lewis, K.F.; Longstaff, F.A.; Petrasek, L. Asset mispricing. J. Financ. Econ. 2021, 141, 981–1006. [Google Scholar] [CrossRef]
- Economou, F.; Gavriilidis, K.; Gebka, B.; Kallinterakis, V. Feedback trading: A review of theory and empirical evidence. Rev. Behav. Financ. 2023, 15, 429–476. [Google Scholar] [CrossRef]
- Kim, A.; Yang, Y.; Lessmann, S.; Ma, T.; Sung, M.C.; Johnson, J.E. Can deep learning predict risky retail investors? A case study in financial risk behavior forecasting. Eur. J. Oper. Res. 2020, 283, 217–234. [Google Scholar] [CrossRef]
- Gong, X.; Shi, R.; Xu, J.; Lin, B. Analyzing spillover effects between carbon and fossil energy markets from a time-varying perspective. Appl. Energy 2021, 285, 116384. [Google Scholar] [CrossRef]
- Attarzadeh, A.; Balcilar, M. On the dynamic connectedness of the stock, oil, clean energy, and technology markets. Energies 2022, 15, 1893. [Google Scholar] [CrossRef]
- Çelik, İ.; Sak, A.F.; Höl, A.Ö.; Vergili, G. The dynamic connectedness and hedging opportunities of implied and realized volatility: Evidence from clean energy ETFs. N. Am. J. Econ. Financ. 2022, 60, 101670. [Google Scholar] [CrossRef]
- Kouaissah, N.; Hocine, A. Forecasting systemic risk in portfolio selection: The role of technical trading rules. J. Forecast. 2021, 40, 708–729. [Google Scholar] [CrossRef]
- Ghoshal, A.; Mookerjee, V. 41S.; Sarkar, S. Recommendations and cross-selling: Pricing strategies when personalizing firms cross-sell. J. Manag. Inf. Syst. 2021, 38, 430–456. [Google Scholar] [CrossRef]
- Koshiyama, A.; Firoozye, N.; Treleaven, P. Generative adversarial networks for financial trading strategies fine-tuning and combination. Quant. Financ. 2021, 21, 797–813. [Google Scholar] [CrossRef]
- Clacher, I.; Osma, B.G.; Scarlat, E.; Shields, K. Do commonalities facilitate private information channels? Evidence from common gender and insider trading. J. Corp. Financ. 2021, 70, 102062. [Google Scholar] [CrossRef]
- Liu, J.; Papailias, F. Time series reversal in trend-following strategies. Eur. Financ. Manag. 2023, 29, 76–108. [Google Scholar] [CrossRef]
- Chang, C.L.; Ilomäki, J.; Laurila, H.; McAleer, M. Moving average market timing in European energy markets: Production versus emissions. Energies 2018, 11, 3281. [Google Scholar] [CrossRef]
- Zaharudin, K.Z.; Young, M.R.; Hsu, W.H. High-frequency trading: Definition, implications, and controversies. J. Econ. Surv. 2022, 36, 75–107. [Google Scholar] [CrossRef]
- Zhu, H.; Bian, Y.; Ren, F.; Liu, X. An efficiency evaluation and driving effect analysis of the green transformation of the thermal power industrial chain: Evidence based on impacts and challenges in China. Energies 2024, 17, 3840. [Google Scholar] [CrossRef]
- Yan, C.; Qiu, Z. Review of Power Market Optimization Strategies Based on Industrial Load Flexibility. Energies 2025, 18, 1569. [Google Scholar] [CrossRef]
Obs. | M | SD | Med | Min | Max | |
---|---|---|---|---|---|---|
Panel A: Daily index | ||||||
Brent | 8623 | 51.97 | 32.84 | 46.57 | 9.1 | 143.95 |
Panel B: Daily index return | ||||||
Brent | 8623 | 0.05% | 2.55% | 0.05% | −47.47% | 50.99% |
Panel A: Performance in aggregate | ||||||||||||||||||||
Holding period (HP) | Number (N) | Mean (M) | p value (p) | Sig. (S) | ||||||||||||||||
RSI25 | 10 | 295 | −2.03% | 0.0025 | *** | |||||||||||||||
RSI25 | 25 | 295 | −1.78% | 0.1401 | ||||||||||||||||
RSI25 | 100 | 295 | 8.12% | 0.0003 | *** | |||||||||||||||
RSI25 | 250 | 295 | 9.45% | 0.0051 | *** | |||||||||||||||
RSI30 | 10 | 669 | −1.74% | 0.0000 | *** | |||||||||||||||
RSI30 | 25 | 669 | −1.45% | 0.0358 | ** | |||||||||||||||
RSI30 | 100 | 669 | 6.10% | 0.0000 | *** | |||||||||||||||
RSI30 | 250 | 667 | 11.10% | 0.0000 | *** | |||||||||||||||
RSI35 | 10 | 1274 | −1.05% | 0.0000 | *** | |||||||||||||||
RSI35 | 25 | 1271 | −0.79% | 0.0784 | ||||||||||||||||
RSI35 | 100 | 1269 | 7.21% | 0.0000 | *** | |||||||||||||||
RSI35 | 250 | 1254 | 11.34% | 0.0000 | *** | |||||||||||||||
Panel B: Performance in diverse quarters | ||||||||||||||||||||
Quarter 1 | Quarter 2 | Quarter 3 | Quarter 4 | |||||||||||||||||
HP | N | M | p | S | N | M | p | S | N | M | p | S | N | M | p | S | ||||
RSI25 | 10 | 85 | 1.99% | 0.1419 | 33 | −1.10% | 0.7105 | 47 | −1.20% | 0.2263 | 130 | −5.19% | 0.0000 | *** | ||||||
RSI25 | 25 | 85 | 0.50% | 0.8656 | 33 | 15.16% | 0.0000 | *** | 47 | −3.09% | 0.0113 | ** | 130 | −7.10% | 0.0000 | *** | ||||
RSI25 | 100 | 85 | 26.15% | 0.0000 | *** | 33 | 42.85% | 0.0000 | *** | 47 | −32.94% | 0.0000 | *** | 130 | 2.36% | 0.1982 | ||||
RSI25 | 250 | 85 | 30.39% | 0.0004 | *** | 33 | 45.63% | 0.0022 | *** | 47 | −15.79% | 0.0001 | *** | 130 | −4.30% | 0.1073 | ||||
RSI30 | 10 | 176 | 0.29% | 0.7305 | 117 | 0.33% | 0.7542 | 130 | −0.32% | 0.6677 | 246 | −4.92% | 0.0000 | *** | ||||||
RSI30 | 25 | 176 | −2.26% | 0.1785 | 117 | 9.42% | 0.0000 | *** | 130 | −2.68% | 0.0340 | ** | 246 | −5.39% | 0.0000 | *** | ||||
RSI30 | 100 | 176 | 16.98% | 0.0000 | *** | 117 | 26.15% | 0.0000 | *** | 130 | −23.23% | 0.0000 | *** | 246 | 4.28% | 0.0024 | *** | |||
RSI30 | 250 | 176 | 16.56% | 0.0004 | *** | 115 | 27.25% | 0.0000 | *** | 130 | −6.56% | 0.0244 | ** | 246 | 8.97% | 0.0016 | *** | |||
RSI35 | 10 | 312 | 0.54% | 0.3589 | 259 | 0.74% | 0.1982 | 259 | 0.34% | 0.4913 | 444 | −4.01% | 0.0000 | *** | ||||||
RSI35 | 25 | 312 | −1.20% | 0.2693 | 259 | 6.68% | 0.0000 | *** | 259 | −1.11% | 0.1679 | 441 | −4.71% | 0.0000 | *** | |||||
RSI35 | 100 | 312 | 13.49% | 0.0000 | *** | 259 | 26.91% | 0.0000 | *** | 259 | −16.09% | 0.0000 | *** | 439 | 4.85% | 0.0000 | *** | |||
RSI35 | 250 | 306 | 12.61% | 0.0000 | *** | 250 | 21.05% | 0.0000 | *** | 259 | −0.54% | 0.8004 | 439 | 11.95% | 0.0000 | *** |
Panel A: Performance in aggregate | ||||||||||||||||||||||
Holding period (HP) | Number (N) | Mean (M) | p value (p) | Sig. (S) | ||||||||||||||||||
K15 | 10 | 1017 | 0.05% | 0.8513 | ||||||||||||||||||
K15 | 25 | 1014 | −0.16% | 0.7360 | ||||||||||||||||||
K15 | 100 | 1012 | 6.68% | 0.0000 | *** | |||||||||||||||||
K15 | 250 | 1003 | 11.01% | 0.0000 | *** | |||||||||||||||||
K20 | 10 | 1461 | −0.10% | 0.6474 | ||||||||||||||||||
K20 | 25 | 1455 | −0.01% | 0.9740 | ||||||||||||||||||
K20 | 100 | 1446 | 6.37% | 0.0000 | *** | |||||||||||||||||
K20 | 250 | 1431 | 11.09% | 0.0000 | *** | |||||||||||||||||
K25 | 10 | 1862 | 0.01% | 0.9740 | ||||||||||||||||||
K25 | 25 | 1856 | 0.28% | 0.4433 | ||||||||||||||||||
K25 | 100 | 1841 | 6.32% | 0.0000 | *** | |||||||||||||||||
K25 | 250 | 1820 | 11.12% | 0.0000 | *** | |||||||||||||||||
Panel B: Performance in diverse quarters | ||||||||||||||||||||||
Quarter 1 | Quarter 2 | Quarter 3 | Quarter 4 | |||||||||||||||||||
HP | N | M | p | S | N | M | p | S | N | M | p | S | N | M | p | S | ||||||
K15 | 10 | 247 | −0.21% | 0.7553 | 207 | 2.43% | 0.0000 | *** | 222 | 2.01% | 0.0001 | *** | 341 | −2.48% | 0.0000 | *** | ||||||
K15 | 25 | 247 | 0.06% | 0.9568 | 207 | 6.40% | 0.0000 | *** | 222 | 1.61% | 0.0661 | 338 | −5.52% | 0.0000 | *** | |||||||
K15 | 100 | 247 | 14.37% | 0.0000 | *** | 207 | 21.57% | 0.0000 | *** | 222 | −11.86% | 0.0000 | *** | 336 | 4.10% | 0.0012 | *** | |||||
K15 | 250 | 244 | 16.40% | 0.0000 | *** | 201 | 18.85% | 0.0000 | *** | 222 | 2.33% | 0.3171 | 336 | 8.16% | 0.0009 | *** | ||||||
K20 | 10 | 351 | −0.40% | 0.4648 | 296 | 1.83% | 0.0000 | *** | 323 | 1.53% | 0.0001 | *** | 491 | −2.12% | 0.0000 | *** | ||||||
K20 | 25 | 351 | 0.28% | 0.7596 | 296 | 5.54% | 0.0000 | *** | 323 | 1.58% | 0.0229 | ** | 485 | −4.67% | 0.0000 | *** | ||||||
K20 | 100 | 351 | 11.92% | 0.0000 | *** | 296 | 19.55% | 0.0000 | *** | 321 | −9.84% | 0.0000 | *** | 478 | 5.03% | 0.0000 | *** | |||||
K20 | 250 | 344 | 13.03% | 0.0000 | *** | 288 | 16.91% | 0.0000 | *** | 321 | 3.52% | 0.0693 | 478 | 11.27% | 0.0000 | *** | ||||||
K25 | 10 | 443 | −0.36% | 0.4567 | 396 | 2.02% | 0.0007 | *** | 419 | 1.15% | 0.0006 | *** | 604 | −1.84% | 0.0000 | *** | ||||||
K25 | 25 | 443 | 0.38% | 0.6242 | 396 | 5.60% | 0.0000 | *** | 419 | 1.43% | 0.0146 | ** | 598 | −4.11% | 0.0000 | *** | ||||||
K25 | 100 | 443 | 10.37% | 0.0000 | *** | 396 | 18.76% | 0.0000 | *** | 417 | −8.79% | 0.0000 | *** | 585 | 5.62% | 0.0000 | *** | |||||
K25 | 250 | 433 | 11.38% | 0.0000 | *** | 385 | 17.51% | 0.0000 | *** | 417 | 3.97% | 0.0178 | ** | 585 | 11.80% | 0.0000 | *** |
Panel A: Performance in aggregate | ||||||||||||||||||||||
Holding period (HP) | Number (N) | Mean (M) | p value (p) | Sig. (S) | ||||||||||||||||||
RSI65 | 10 | 1713 | 0.34% | 0.0645 | ||||||||||||||||||
RSI65 | 25 | 1713 | 1.05% | 0.0002 | *** | |||||||||||||||||
RSI65 | 100 | 1688 | 3.39% | 0.0000 | *** | |||||||||||||||||
RSI65 | 250 | 1667 | 8.74% | 0.0000 | *** | |||||||||||||||||
RSI70 | 10 | 925 | 0.39% | 0.1019 | ||||||||||||||||||
RSI70 | 25 | 925 | 1.26% | 0.0010 | *** | |||||||||||||||||
RSI70 | 100 | 906 | 3.80% | 0.0000 | *** | |||||||||||||||||
RSI70 | 250 | 896 | 9.95% | 0.0000 | *** | |||||||||||||||||
RSI75 | 10 | 428 | 1.23% | 0.0006 | *** | |||||||||||||||||
RSI75 | 25 | 428 | 2.99% | 0.0000 | *** | |||||||||||||||||
RSI75 | 100 | 419 | 6.32% | 0.0000 | *** | |||||||||||||||||
RSI75 | 250 | 418 | 15.00% | 0.0000 | *** | |||||||||||||||||
Panel B: Performance in diverse quarters | ||||||||||||||||||||||
Quarter 1 | Quarter 2 | Quarter 3 | Quarter 4 | |||||||||||||||||||
HP | N | M | p | S | N | M | p | S | N | M | p | S | N | M | p | S | ||||||
RSI65 | 10 | 434 | 0.81% | 0.0291 | ** | 474 | 0.55% | 0.0732 | 450 | 0.54% | 0.1864 | 355 | −0.79% | 0.0226 | ** | |||||||
RSI65 | 25 | 434 | 2.53% | 0.0000 | *** | 474 | 0.55% | 0.1638 | 450 | 2.96% | 0.0000 | *** | 355 | −2.52% | 0.0000 | *** | ||||||
RSI65 | 100 | 434 | 8.40% | 0.0000 | *** | 474 | 1.06% | 0.2561 | 428 | 1.61% | 0.0786 | 352 | 2.53% | 0.0644 | ||||||||
RSI65 | 250 | 434 | 7.46% | 0.0000 | *** | 465 | 7.91% | 0.0000 | *** | 416 | 10.35% | 0.0000 | *** | 352 | 9.54% | 0.0000 | *** | |||||
RSI70 | 10 | 222 | 0.28% | 0.4868 | 242 | 0.83% | 0.0592 | 254 | 1.00% | 0.0764 | 207 | −0.78% | 0.0649 | |||||||||
RSI70 | 25 | 222 | 2.26% | 0.0049 | *** | 242 | 0.68% | 0.2176 | 254 | 4.00% | 0.0000 | *** | 207 | −2.51% | 0.0003 | *** | ||||||
RSI70 | 100 | 222 | 8.76% | 0.0000 | *** | 242 | 0.21% | 0.8682 | 237 | 2.06% | 0.0859 | 205 | 4.69% | 0.0065 | *** | |||||||
RSI70 | 250 | 222 | 4.07% | 0.0879 | 237 | 12.93% | 0.0000 | *** | 232 | 11.73% | 0.0000 | *** | 205 | 10.85% | 0.0000 | *** | ||||||
RSI75 | 10 | 91 | 1.72% | 0.0008 | *** | 116 | 2.00% | 0.0018 | *** | 127 | 1.08% | 0.2397 | 94 | 0.03% | 0.9579 | |||||||
RSI75 | 25 | 91 | 3.70% | 0.0096 | *** | 116 | 1.90% | 0.0227 | ** | 127 | 5.85% | 0.0001 | *** | 94 | −0.23% | 0.8064 | ||||||
RSI75 | 100 | 91 | 10.75% | 0.0000 | *** | 116 | 2.78% | 0.0785 | 118 | 3.33% | 0.0545 | 94 | 10.13% | 0.0002 | *** | |||||||
RSI75 | 250 | 91 | 10.95% | 0.0027 | *** | 115 | 22.48% | 0.0000 | *** | 118 | 12.79% | 0.0000 | *** | 94 | 12.56% | 0.0001 | *** |
Panel A: Performance in aggregate | ||||||||||||||||||||||
Holding period (HP) | Number (N) | Mean (M) | p value (p) | Sig. (S) | ||||||||||||||||||
K75 | 10 | 2500 | 1.00% | 0.0000 | *** | |||||||||||||||||
K75 | 25 | 2500 | 1.44% | 0.0000 | *** | |||||||||||||||||
K75 | 100 | 2481 | 3.58% | 0.0000 | *** | |||||||||||||||||
K75 | 250 | 2442 | 10.77% | 0.0000 | *** | |||||||||||||||||
K80 | 10 | 1992 | 1.09% | 0.0000 | *** | |||||||||||||||||
K80 | 25 | 1992 | 1.43% | 0.0000 | *** | |||||||||||||||||
K80 | 100 | 1976 | 3.71% | 0.0000 | *** | |||||||||||||||||
K80 | 250 | 1943 | 10.78% | 0.0000 | *** | |||||||||||||||||
K85 | 10 | 1443 | 1.27% | 0.0000 | *** | |||||||||||||||||
K85 | 25 | 1443 | 1.51% | 0.0000 | *** | |||||||||||||||||
K85 | 100 | 1429 | 3.68% | 0.0000 | *** | |||||||||||||||||
K85 | 250 | 1405 | 11.23% | 0.0000 | *** | |||||||||||||||||
Panel B: Performance in diverse quarters | ||||||||||||||||||||||
Quarter 1 | Quarter 2 | Quarter 3 | Quarter 4 | |||||||||||||||||||
HP | N | M | p | S | N | M | p | S | N | M | p | S | N | M | p | S | ||||||
K75 | 10 | 673 | 0.87% | 0.0007 | *** | 655 | 1.53% | 0.0000 | *** | 676 | 1.24% | 0.0001 | *** | 496 | 0.17% | 0.5166 | ||||||
K75 | 25 | 673 | 2.25% | 0.0000 | *** | 655 | 1.86% | 0.0000 | *** | 676 | 1.81% | 0.0004 | *** | 496 | −0.72% | 0.1262 | ||||||
K75 | 100 | 673 | 9.23% | 0.0000 | *** | 655 | 2.12% | 0.0162 | ** | 657 | 1.34% | 0.0934 | 496 | 0.83% | 0.4926 | |||||||
K75 | 250 | 662 | 11.24% | 0.0000 | *** | 646 | 10.68% | 0.0000 | *** | 638 | 11.82% | 0.0000 | *** | 496 | 8.89% | 0.0000 | *** | |||||
K80 | 10 | 538 | 0.71% | 0.0124 | ** | 526 | 1.60% | 0.0000 | *** | 538 | 1.34% | 0.0001 | *** | 390 | 0.58% | 0.0442 | ** | |||||
K80 | 25 | 538 | 1.98% | 0.0002 | *** | 526 | 1.70% | 0.0011 | *** | 538 | 2.02% | 0.0006 | *** | 390 | −0.50% | 0.3582 | ||||||
K80 | 100 | 538 | 9.30% | 0.0000 | *** | 526 | 1.99% | 0.0414 | ** | 522 | 1.24% | 0.1677 | 390 | 1.63% | 0.2349 | |||||||
K80 | 250 | 530 | 10.54% | 0.0000 | *** | 518 | 10.95% | 0.0000 | *** | 505 | 11.67% | 0.0000 | *** | 390 | 9.73% | 0.0000 | *** | |||||
K85 | 10 | 383 | 0.69% | 0.0338 | ** | 387 | 1.79% | 0.0000 | *** | 400 | 1.75% | 0.0000 | *** | 273 | 0.62% | 0.0646 | ||||||
K85 | 25 | 383 | 1.62% | 0.0070 | *** | 387 | 1.89% | 0.0016 | *** | 400 | 2.52% | 0.0005 | *** | 273 | −0.67% | 0.3021 | ||||||
K85 | 100 | 383 | 9.19% | 0.0000 | *** | 387 | 1.54% | 0.1307 | 386 | 0.91% | 0.4001 | 273 | 2.93% | 0.0683 | ||||||||
K85 | 250 | 380 | 10.32% | 0.0000 | *** | 379 | 12.04% | 0.0000 | *** | 373 | 11.11% | 0.0000 | *** | 273 | 11.57% | 0.0000 | *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, P.; Ni, Y.; Day, M.-Y.; Chen, Y. Enhancing Investment Profitability: Study on Contrarian Technical Strategies in Brent Crude Oil Markets. Energies 2025, 18, 2735. https://doi.org/10.3390/en18112735
Huang P, Ni Y, Day M-Y, Chen Y. Enhancing Investment Profitability: Study on Contrarian Technical Strategies in Brent Crude Oil Markets. Energies. 2025; 18(11):2735. https://doi.org/10.3390/en18112735
Chicago/Turabian StyleHuang, Paoyu, Yensen Ni, Min-Yuh Day, and Yuhsin Chen. 2025. "Enhancing Investment Profitability: Study on Contrarian Technical Strategies in Brent Crude Oil Markets" Energies 18, no. 11: 2735. https://doi.org/10.3390/en18112735
APA StyleHuang, P., Ni, Y., Day, M.-Y., & Chen, Y. (2025). Enhancing Investment Profitability: Study on Contrarian Technical Strategies in Brent Crude Oil Markets. Energies, 18(11), 2735. https://doi.org/10.3390/en18112735