# Development and Validation of a Novel Zero-Dimensional Heat Rejection Model for High-Efficiency Engines

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Materials and Methods

- ${A}_{g,p}$ is the cross-section area of the piston head normal to the cylinder axis.
- ${A}_{g,w}$represents the cylinder surface in contact with the gases, including the head and the liner.
- ${A}_{w,c}$ is the external surface of the liner.
- ${A}_{p,oil}$ includes the bottom surface of the piston, including the piston bosses and the pins.
- ${A}_{c,eb}$ is the external surface of the water jacket.
- ${A}_{gex,ex}$ and ${A}_{ex,c}$ are left unknown.

## 3. Results

## 4. Conclusions

## Author Contributions

## Funding

## Data Availability Statement

## Conflicts of Interest

## References

- Kern, J.; Ambros, P. Concepts for a Controlled Optimized Vehicle Engine Cooling System; SAE Technical Paper 971816; SAE International: Warrendale, PA, USA, 1997. [Google Scholar]
- Guzzella, L.; Onder, C.H. Introduction to Modeling and Control of Internal Combustion Engine Systems, 2nd ed.; Springer: Berlin, Germany, 2010. [Google Scholar]
- Mauro, S.; Şener, R.; Gül, M.Z.; Lanzafame, Z.; Messina, M.; Brusca, S. Internal combustion engine heat release calculation using single-zone and CFD 3D numerical models. Int. J. Energy Environ. Eng.
**2018**, 9, 215–226. [Google Scholar] [CrossRef] - Yoshimura, K.; Isobe, K.; Kawashima, M.; Yamaguchi, K.; Sok, R.; Tokuhara, S.; Kusaka, J. Effects of Pre-spark Heat Release of Ethanol-Blended Gasoline Surrogate Fuels on Engine Combustion Behavior. SAE Int. J. Fuels Lubr.
**2024**, 17, 37–50. [Google Scholar] [CrossRef] - Singh, V.; Rijpkema, J.; Li, X.; Munch, K.; Andersson, S.; Verhelst, S. Optimization and Evaluation of a Low Temperature Waste Heat Recovery System for a Heavy-Duty Engine over a Transient Cycle. SAE Int. J. Adv. Curr. Prac. Mobil.
**2021**, 3, 159–170. [Google Scholar] [CrossRef] - Pamminger, M.; Hall Carrie, M.; Wang, B.; Wallner, T. A control-oriented combustion model framework for compression ignition engines operating on low-reactivity fuel. Int. J. Engine Res.
**2021**, 22, 1924–1938. [Google Scholar] [CrossRef] - Mohand Said, L.; Khaled, L.; Mourad, B.; Mohand, T. Investigation on heat transfer evaluation for a more efficient two-zone combustion model in the case of natural gas SI engines. Appl. Therm. Eng.
**2011**, 31, 319–328. [Google Scholar] - Ponti, F.; Ravaglioli, V.; Moro, D.; Serra, G. MFB50 on-board estimation methodology for combustion control. Control. Eng. Pract.
**2013**, 21, 1821–1829. [Google Scholar] [CrossRef] - Zongyu, Y.; Rolf, D.R. Numerical investigation of radiative heat transfer in internal combustion engines. Appl. Energy
**2019**, 235, 147–163. [Google Scholar] - Foster, D. An Overview of Zero-Dimensional Thermodynamic Models for IC Engine Data Analysis; SAE Technical Paper 852070; SAE International: Warrendale, PA, USA, 1985. [Google Scholar]
- Rezaei, R.; Eckert, P.; Seebode, J.; Behnk, K. Zero-Dimensional Modeling of Combustion and Heat Release Rate in DI Diesel Engines. SAE Int. J. Engines
**2012**, 5, 874–885. [Google Scholar] [CrossRef] - Huegel, P.; Kubach, H.; Koch, T.; Velji, A. Investigations on the Heat Transfer in a Single Cylinder Research SI Engine with Gasoline Direct Injection. SAE Int. J. Engines
**2015**, 8, 557–569. [Google Scholar] [CrossRef] - Cortona, E.; Onder, C.H.; Guzzella, L. Engine thermomanagement with electrical components for fuel consumption reduction. Int. J. Engine Res.
**2002**, 3, 157–170. [Google Scholar] [CrossRef] - Heywood, J.B. Internal Combustion Engine Fundamentals, 2nd ed.; McGraw-Hill Education Ltd.: New York, NY, USA, 2018. [Google Scholar]
- Hariram, V.; Bharathwaaj, R. Application of zero-dimensional thermodynamic model for predicting combustion parameters of CI engine fuelled with biodiesel-diesel blends. Alex. Eng. J.
**2016**, 55, 3345–3354. [Google Scholar] [CrossRef] - Zhang, D.; Shen, Z.; Xu, N.; Zhu, T.; Chang, L.; Song, H. Development of a Zero-Dimensional Model for a Low-Speed Two-Stroke Marine Diesel Engine with Exhaust Gas Bypass and Performance Evaluation. Processes
**2023**, 11, 936. [Google Scholar] [CrossRef] - Pamminger, M.; Hall, C.; Wang, B.; Wallner, T.; Rajkumar, M. Zero-Dimensional Heat Release Modeling Framework for Gasoline Compression-Ignition Engines with Multiple Injection Events; SAE Technical Paper 2019-24-0083; SAE International: Warrendale, PA, USA, 2019. [Google Scholar]
- Hunicz, J.; Mikulski, M.; Geca, M.; Rybak, A. Applicable approach to mitigate pressure rise rate in an HCCI engine with negative valve overlap. Appl. Energy
**2019**, 257, 114018. [Google Scholar] [CrossRef] - Saric, S.; Basara, B. A Hybrid Wall Heat Transfer Model for IC Engine Simulations. SAE Int. J. Engines
**2015**, 8, 411–418. [Google Scholar] [CrossRef] - Chen, S.; Flynn, P. Development of a Single Cylinder Compression Ignition Research Engine; SAE Technical Paper 650733; SAE International: Warrendale, PA, USA, 1965. [Google Scholar]
- Shibata, Y.; Shimonosono, H.; Yamai, Y. New Design of Cooling System with Computer Simulation and Engine Compartment Simulator; SAE Technical Paper 931075; SAE International: Warrendale, PA, USA, 1993. [Google Scholar]
- Rajput, R.K. Engineering Thermodynamics, 3rd ed.; Laxmi Publications: New Delhi, India, 2007. [Google Scholar]
- Lienhard, J.H., IV; Lienhard, J.H., V. A Heat Transfer Textbook, 5th ed.; Phlogiston Press: Cambridge, MA, USA, 2020. [Google Scholar]
- Moran, M.J.; Shapiro, H.N.; Boettner, D.D.; Bailey, M.B. Fundamentals of Engineering Thermodynamics, 8th ed.; Wiley: Hoboken, NJ, USA, 2014. [Google Scholar]
- Zak, Z.; Emrich, M.; Takats, M.; Macek, J. In-Cylinder Heat Transfer Modelling. February. MECCA J. Middle Eur. Constr. Des. Cars
**2016**, 14, 2–10. [Google Scholar] [CrossRef] - Arici, O.; Johnson, J.; Kulkarni, A. The Vehicle Engine Cooling System Simulation Part 1—Model Development; SAE Technical Paper 1999-01-0240; SAE International: Warrendale, PA, USA, 1999. [Google Scholar]
- Sinyavski, V.V.; Shatrov, M.G.; Dunin, A.Y.; Shishlov, I.G.; Vakulenko, A.V. A Zero-Dimensional Model for Internal Combustion Engine Simulation and Some Modeling Results. In Proceedings of the International Conference on Engineering Management of Communication and Technology (EMCTECH), Vienna, Austria, 20–22 October 2022; pp. 1–6. [Google Scholar]

**Figure 1.**Engine heat fluxes (red arrows represent the convective fluxes and the heat transfers due to friction forces considered in the model development).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Furia, F.; Ravaglioli, V.; Cerofolini, A.; Bussi, C.
Development and Validation of a Novel Zero-Dimensional Heat Rejection Model for High-Efficiency Engines. *Energies* **2024**, *17*, 2116.
https://doi.org/10.3390/en17092116

**AMA Style**

Furia F, Ravaglioli V, Cerofolini A, Bussi C.
Development and Validation of a Novel Zero-Dimensional Heat Rejection Model for High-Efficiency Engines. *Energies*. 2024; 17(9):2116.
https://doi.org/10.3390/en17092116

**Chicago/Turabian Style**

Furia, Francesca, Vittorio Ravaglioli, Alberto Cerofolini, and Carlo Bussi.
2024. "Development and Validation of a Novel Zero-Dimensional Heat Rejection Model for High-Efficiency Engines" *Energies* 17, no. 9: 2116.
https://doi.org/10.3390/en17092116