Modeling of Selected Parameters of Used Lubricating Oil Diluted with Diesel Oil Using the Characteristics of Fresh Lubricating Oil
Abstract
:1. Introduction
- the deterioration of the lubricating and lubricity properties of oil diluted with fuel, relative to pure oil,
- an increase in the volatility and improvement of the ignition properties of fuel-diluted oil, relative to pure oil,
- an increase in the proportion of droplets with the smallest diameters in the oil mist produced from diluted oil, relative to pure oil.
2. Materials and Methods
- A clean glass vessel was placed on the scale, and the balance tared.
- Using a precise laboratory pipette, the lubricating oil weighing mLO was measured into the vessel placed on the scale.
- The scale was tared, and fuel with a mass of mDO was measured using a precise laboratory pipette.
- The resulting mixture was agitated with a magnetic stirrer for 15 min.
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
a1, a2, a3, a4, a5 | coefficients of the model approximating the flash point |
ASTM | American Society for Testing and Materials |
b1, b2, b3 | coefficients of the model approximating the initial boiling point |
C | exact (expected) mass concentration of diesel oil in the lubricating oil |
c1, c2 | coefficients of the model approximating density at 15 °C |
CDO | contamination of used lubricating oil with diesel oil |
CH2O | contamination of used lubricating oil with water |
CV | elemental composition of the tested oil |
d | measurement scale resolution |
d1, d2 | coefficients of the model approximating kinematic viscosity at 40 °C |
DCN | derived cetane number |
DIN | German Institute for Standardization (ger. Deutsches Institut für Normung) |
e1, e2 | coefficients of the kinematic viscosity model at 100 °C |
ESR | electron spin resonance |
f1, f2 | coefficients of the model approximating the viscosity index |
FDM | fuel dilution meter |
FILM | oil film resistance drop |
ffresh(C) | general designation of the fresh lubricating oil parameter depending on the value of C |
fused(C) | general designation of the used lubricating oil parameter depending on the value of C |
FTIR | Fourier-transform infrared spectroscopy |
GC | gas chromatography |
GC-MS | gas chromatography and mass spectrometry |
GUM | Guide to the Expression of Uncertainty in Measurement |
ISO | International Organization for Standardization |
JPI | Japan Petroleum Institute |
K, K1, K2, K3, K4, K5, K6 | coefficients for the oil degradation process |
mDO | mass of diesel oil |
mLO | mass of lubricating oil |
MDO | marine diesel oil |
MGO | marine gas oil |
NMR | nuclear magnetic resonance |
MP | content of contaminant particulates |
MR | marine residua (residual fuel) |
R2 | coefficient of determination |
RMSE | root mean square error |
SAE | Society of Automotive Engineers |
SAE 30 | viscosity grade of lubricating oils according to the SAE J300-2021 standard [41] |
SAW | surface acoustic wave |
Sm | total sediment contents |
tFP | flash point temperature |
flash point of fresh lubricating oil | |
flash point of used lubricating oil | |
u(δ) | initial boiling point temperature |
initial boiling point of fresh lubricating oil | |
initial boiling point of used lubricating oil | |
u(δ) | uncertainty of the balance indication error from the calibration certificate |
u(r) | combined uncertainty of repeatability of scale indications |
uB | type-B standard uncertainty of measurement |
type-B standard uncertainty of the mass fraction C measurement | |
um | uncertainty of the determined mass of fuel or lubricating oil |
us | type-B standard uncertainty of mass indication with a laboratory scale |
UV | ultraviolet |
VI | viscosity index |
viscosity index of fresh lubricating oil | |
viscosity index of used lubricating oil | |
WD1.4 | normalized HFFR wear scar diameter |
δ | error of the balance indications from the calibration certificate |
μ | friction coefficient |
ν100 | kinematic viscosity at 100 °C |
kinematic viscosity of fresh lubricating oil at 100 °C | |
kinematic viscosity of used lubricating oil at 100 °C | |
ν40 | kinematic viscosity at 40 °C |
kinematic viscosity of fresh lubricating oil at 40 °C | |
kinematic viscosity of used lubricating oil at 40 °C | |
ρ15 | density at 15 °C |
density of fresh lubricating oil at 15 °C | |
density of used lubricating oil at 15 °C |
Appendix A. Data Tables
Parameter | Value |
---|---|
Kinematic viscosity at 100 °C (ASTM D445 [42]) | 11.5 mm2/s |
Pour point (ASTM D5950 [43]) | –24 °C |
Flash point in open cup (EN ISO 2592 [39]) | 220–255 °C |
Total base number (PN-ISO 3771 [44]) | 12 mg KOH/g |
Viscosity index (ASTM D2270 [29]) | 99.00 |
Corrosiveness to copper (EN ISO 2160 [45]) | Corrosion copper strip (24 h/100 °C), Class 1 |
Parameter | Value |
---|---|
Cetane index | ≤51 |
Initial boiling point | 75–180 °C |
Boiling temperature range | 95% vol. distils at 360 °C |
Flashpoint (determined in a closed cup) | >56 °C |
Autoignition temperature (according to DIN 51794:2003-05 [46]) | approx. 240 °C |
Kinematic viscosity (according to EN ISO 3104 [28]) | 1.5–4.5 mm2/s (average 2.549 mm2/s) at 40 °C ~2.151 mm2/s at 50 °C |
Density | 820–845 kg/m3 at 15 °C |
Relative vapor density | approx. 6 (air = 1) |
Cloud point | −7 °C |
Cold filter plugging point | −28 °C |
Parameter | Value/Description |
---|---|
Number of cylinders | 5 |
Cylinder bore | 0.22 m |
Piston stroke | 0.32 m |
Nominal effective power | 220 kW |
Nominal speed | 500 rpm |
Mean piston speed | 5.33 m/s |
Nominal specific diesel oil consumption | 232 g/kWh |
Parameter | Value |
---|---|
Lubricating oil temperature at cooler outlet | 45–55 °C |
Lubricating oil temperature at cooler inlet | 48–62 °C |
Maximum lubricating oil temperature difference between inlet and outlet of the cooler | 7 °C |
Lubricating oil pressure at filter and cooler inlet | 0.30–0.35 MPa |
Lubricating oil pressure at filter and cooler outlet | 0.25–0.27 MPa |
Alarm of low lubricating oil pressure at engine inlet | 0.20 MPa |
Parameter | Method | Apparatus | Symbol | Unit | Value | ||
---|---|---|---|---|---|---|---|
Fresh Lubricating Oil | Used Lubricating Oil at 60 h of Working Time | Fresh Diesel Oil | |||||
Density at 15 °C | Apparatus with oscillating U-tube performing measurements (PN-EN ISO 12185:2002 [27]) | DMA 4500 density analyzer (from Anton Paar GmbH, Graz, Austria) | ρ15 | kg/m3 | 890.6 | 889.6 | 828.3 |
Kinematic viscosity at 40 °C | Glass capillary viscometer measurements (PN-EN ISO 3104:2021-3 [28]) | Cannon-Fenske Opaque viscometer (from Paradise Scientific Company Ltd., Dhaka, Bangladesh) and a TV 2000 viscometric bath (from Labovisco bv, Zoetermeer, The Netherlands) | ν40 | mm2/s | 110.310 | 102.740 | 2.480 |
Kinematic viscosity at 100 °C | ν100 | mm2/s | 11.770 | 11.420 | 1.067 | ||
Viscosity index | Calculated parameter (ASTM D2270-10(2016) [29]) | Anton Paar calculator [47] (from GmbH, Graz, Austria) | VI | – | 94.13 | 94.13 | 274.35 |
Initial boiling point | Flashpoint Pensky–Martens method (PN-EN ISO 2719:2016 [35]) | Semi-automatic apparatus (from Walter Herzog GmbH, Lauda-Königshofen, Germany) | tIBP | °C | 276.0 | 240.5 | 175 |
Flash point in closed cup | tFP | °C | 216.0 | 190.0 | 56.0 | ||
Derived cetane number | Ignition delay and combustion delay using a constant volume combustion chamber method (ASTM D7668(2017) [48]) | Herzog Cetane ID 510 instrument [49] (PAC L.P., Houston, TX, USA) | DCN | – | N/A | N/A | 52 |
Lubricity—HFFR wear scar diameter (normalized [50]) | High-frequency reciprocating rig—HFFR (PN-EN ISO 12156-1:2018 [51] and HFFR V.1.0.3 procedure [52]) | PCS HFFR V1.0.3 tribometer (from PCS Instruments, London, UK) and optical microscope with vertical illumination HFR2 (from PCS Instruments, London, UK) | WD1.4 | μm | 212 | 149 | 331 |
HFFR friction coefficient | μ | – | 0.123 | 0.121 | 0.191 | ||
Oil film resistance drop | FILM | % | 100 | 100 | 76 |
Chemical Element | Content (ppm) | ||
---|---|---|---|
Fresh Lubricating Oil | Used Lubricating Oil @ 60 h | Fresh Diesel Oil | |
Fe | 0.0 | 0.0 | 0.0 |
Cr | 1.0 | 5.0 | 0.0 |
Pb | 7.4 | 16.6 | 3.7 |
Cu | 0.0 | 0.0 | 0.0 |
Sn | 7.1 | 18.0 | 11.4 |
Al | 5.8 | 12.2 | 5.3 |
Ni | 7.5 | 17.4 | 4.6 |
Ag | 0.7 | 4.0 | 0.3 |
Si | 4.1 | 17.3 | 2.1 |
B | 0.8 | 3.0 | 0.1 |
Na | 4.9 | 7.7 | 4.6 |
Mg | 0.1 | 1.0 | 0.2 |
Ca | 4.8 | 5.4 | 3.1 |
Ba | 0.0 | 0.0 | 0.0 |
P | 0.0 | 0.0 | 0.0 |
Zn | 1.1 | 10.2 | 0.0 |
Mo | 2.1 | 2.6 | 1.0 |
Ti | 0.0 | 0.0 | 0.0 |
V | 0.0 | 0.0 | 0.0 |
Parameter | Method | Apparatus | Symbol | Unit | Value |
---|---|---|---|---|---|
Content of diesel oil | Surface acoustic wave sensing (ASTM D8004-15 (2023) [53]) | Spectro FDM 6001 [54] (from Spectro Scientific, Chelmsford, MA, USA) | CDO | % m/m | 0.01 |
Content of water | Coulometric titration by the Karl Fischer method (PN -EN ISO 12937:2005+AP1:2021-11P [55]) | Metrohm coulometer 831 KF (from Metrohm, Herisau, Switzerland) | CH2O | % m/m | 0.05 |
Determination of total sediment | Filtration, by weight method (PN-ISO 10307-1:2001 [56]) | Setaclean—Total Sediment Tester (from Stanhope-Seta, Chertsey, UK) | Sm | mg/g | 0.35 |
Determination of the contaminant particulates content | Filtration, by weight method (PN-ISO 4405:1994 [57]) | Millipore vacuum filtration kit (from Merck Millipore, Burlington, MA, USA), PL 2/4 vacuum pump (from AgaLabor, Warsaw, Poland), POL-EKO dryer (from POL-EKO, Wodzisław Śląski, Poland) | MP | mg/100 mL | 77.1 |
Content of chemical elements | Rotating disc electrode atomic emission spectrometry (ASTM D6595-17 (2022) [58]) | SPECTROIL M spark spectrometer with rotating electrode (from AMETEK, Berwyn, PA, USA) | CV | ppm | See: Table A6 |
References
- Total Energies Fuel Dilution of Engine Oil: Causes and Effects. Available online: https://lubricants.totalenergies.com/fuel-dilution-engine-oil-causes-and-effects (accessed on 14 June 2022).
- Technomics International Case Study—Fuel Dilution of Engine Oil in Locomotives. Available online: https://www.techenomics.net/case-studies/fuel-dilution-engine-oil/ (accessed on 8 June 2022).
- Critchley, L. Fuel Dilution in Engine Oil—How It Happens and What It Leads to. Available online: https://www.azom.com/article.aspx?ArticleID=16891 (accessed on 16 June 2022).
- Dieselhub Fuel Dilution in Diesel Engines. Fuel Dilution Causes, How to Protect Your Engine. Available online: https://www.dieselhub.com/maintenance/fuel-dilution.html (accessed on 14 June 2022).
- Taylor, R.I. Fuel-Lubricant Interactions: Critical Review of Recent Work. Lubricants 2021, 9, 92. [Google Scholar] [CrossRef]
- Bowen, P.J. Current Understanding of Oil-Mist Explosions. In Crankcase Explosions; IMAREST: London, UK, 2002; pp. 149–164. [Google Scholar]
- Krupowies, J. Badania Pierwiastków Śladowych w Oleju Obiegowym Jako Element Diagnostyki Silnika; Wyższa Szkoła Morska w Szczecinie: Szczecin, Poland, 2001. [Google Scholar]
- Krupowies, J. Badania i Ocena Zmian Właściwości Użytkowych Olejów Urządzeń Okrętowych; Maritime University of Szczecin: Szczecin, Poland, 2009. [Google Scholar]
- Sejkorová, M.; Hurtová, I.; Jilek, P.; Novák, M.; Voltr, O. Study of the Effect of Physicochemical Degradation and Contamination of Motor Oils on Their Lubricity. Coatings 2021, 11, 60. [Google Scholar] [CrossRef]
- Baczewski, K.; Kałdoński, T. Paliwa do Silników o Zapłonie Samoczynnym; WKiŁ: Warszawa, Poland, 2018. [Google Scholar]
- Baczewski, K.; Szczawiński, P. Badanie właściwości reologicznych estrów metylowych oleju rzepakowego i ich mieszanin z olejami napędowymi. J. KONES Powertrain Transp. 2007, 14, 29–38. [Google Scholar]
- Abdullah, M.; Abdollach, M.; Mat-Nuri, N.; Amiruddin, H.; Tamaldin, N. Comparison of the frictional properties of nano-oil and SAE 15W40 oil diluted with biodiesel fuel. In Proceedings of the Malaysian International Tribology Conference, Penang, Malaysia, 16–17 November 2015; pp. 190–191. [Google Scholar]
- Mori, K.; Sugimoto, N.; Yamane, K.; Kawasaki, K. Influence of Biodiesel Fuel on Lubricant Oil Oxidative Degradation. In Proceedings of the JSAE/SAE 2015 International Powertrains, Fuels & Lubricants Meeting, Kyoto, Japan, 1–4 September 2015; SSAE Technical Paper Series, JSAE 20159. pp. 1–7. [Google Scholar] [CrossRef]
- Urzędowska, W.; Stępień, Z. Olej silnikowy a biopaliwa—Współdziałanie w eksploatacji. In Nafta-Gaz, Październi; Instytut Nafty i Gazu: Kraków, Poland, 2010; pp. 914–921. [Google Scholar]
- Watson, S.A.G.; Wong, V.W. The Effects of Fuel Dilution with Biodiesel on Lubricant Acidity, Oxidation and Corrosion—A Study with CJ-4 and CI-4 PLUS Lubricants. In Proceedings of the 2008 Diesel Engine-Efficiency and Emissions Research (DEER) Conference, Cambridge, MA, USA, 7 August 2008. [Google Scholar]
- Chybowski, L.; Kowalak, P.; Dąbrowski, P. Assessment of the Impact of Lubricating Oil Contamination by Biodiesel on Trunk Piston Engine Reliability. Energies 2023, 16, 5056. [Google Scholar] [CrossRef]
- CEC M-12-T-91; Representative Sampling In-Service of Marine Crankcase Lubricants. CEC: London, UK, 1991.
- CEC M-13-T-92; Recommended Standard Methods for Used Engine Oil Analyses. CEC: London, UK, 1992.
- CEC L-47-M-97; Recommended Standard Methods for Analysis of Used Oil from Large Diesel Engines. CEC: London, UK, 1997.
- Carter, B.H.; Green, D. Marine Lubricants. In Chemistry and Technology of Lubricants; Springer: Dordrecht, The Netherlands, 2009; pp. 389–409. [Google Scholar]
- Krupowies, J. Badania Zmian Właściwości Oleju Obiegowego Okrętowych Silników Pomocniczych; Wyższa Szkoła Morska w Szczecinie: Szczecin, Poland, 2002. [Google Scholar]
- Ehsan, M.; Rahman, M.M.; Hasan, M.S. Effect of Fuel Adulteration on Engine Crankcase Dilution. J. Mech. Eng. 2010, 41, 114–120. [Google Scholar] [CrossRef]
- Chybowski, L. Rozcieńczenie Oleju Paliwem Jako Czynnik Ryzyka Eksplozji w Skrzyniach Korbowych Okrętowych Bezwodzikowych Silników Spalinowych; Maritime University of Szczecin Press: Szczecin, Poland, 2023; ISBN 978-83-64434-56-3. [Google Scholar]
- Ferguson, G.W. Diesel Engine Crankcase Explosion Investigation. SAE Tech. Pap. 1951, 510104, 1–28. [Google Scholar] [CrossRef]
- Chybowski, L.; Szczepanek, M.; Gawdzińska, K.; Klyus, O. Particles Morphology of Mechanically Generated Oil Mist Mixtures of SAE 40 Grade Lubricating Oil with Diesel Oil in the Context of Explosion Risk in the Crankcase of a Marine Engine. Energies 2023, 16, 3915. [Google Scholar] [CrossRef]
- JCGM. Evaluation of Measurement Data—Guide to the Expression of Uncertainty in Measurement. Int. Organ. Stand. 2008, 50, 134. [Google Scholar]
- PN-EN ISO 12185:2002; Ropa Naftowa i Przetwory Naftowe—Oznaczanie Gęstości—Metoda Oscylacyjna z U-Rurką. PKN: Warszawa, Poland, 2002.
- PN-EN ISO 3104:2021-03; Petroleum Products—Transparent and Opaque Liquids—Determination of Kinematic Viscosity and Calculation of Dynamic Viscosity. PKN: Warszawa, Poland, 2021.
- ASTM D 2270-10(2016); Standard Practice for Calculating Viscosity Index from Kinematic Viscosity at 40 °C and 100 °C. ASTM: West Conshohocken, PA, USA, 2016.
- PN-EN IEC 60079-10-1:2021-09; Explosive Atmospheres—Part 10-1: Classification of Areas—Explosive Gas Atmospheres. PKN: Warszawa, Poland, 2021.
- CNBOP-PIB-BW03P:2016; Metody Badania Temperatury Zapłonu Substancji Ciekłych Niebezpiecznych Pożarowo—Wytyczne. CNBOP-PIB Standard: Józefów, Poland, 2016.
- Świerżewski, M. Uwaga Wybuch; Instytut Wydawniczy CRZZ: Warszawa, Poland, 1972. [Google Scholar]
- Babrauskas, V. Ignition Handbook; Society of Fire Protection Engineers: Gaithersburg, MD, USA, 2003. [Google Scholar]
- ISO 13736:2021; Determination of Flash Point—Abel Closed-Cup Method, 4th ed. ISO: Geneva, Switzerland, 2021.
- ISO 2719:2016; Determination of Flash Point—Pensky-Martens Closed Cup Method, 4th ed. ISO: Geneva, Switzerland, 2016.
- ISO 1516:2002; Determination of Flash/No Flash—Closed Cup Equilibrium Method, 3rd ed. ISO: Geneva, Switzerland, 2002.
- ISO 1523:2002; Determination of Flash Point—Closed Cup Equilibrium Method, 3rd ed. ISO: Geneva, Switzerland, 2002.
- TSE-TS 1080; Method of Test for Flash Point with Tagliabue Open Cup. TSE: Ankara, Turkey, 1993.
- ISO 2592:2017; Petroleum and Related Products—Determination of Flash and Fire Points—Cleveland Open Cup Method, 3rd ed. ISO: Geneva, Switzerland, 2017.
- ISO 3679:2015; Determination of Flash No-Flash and Flash Point—Rapid Equilibrium Closed Cup Method, 5th ed. ISO: Geneva, Switzerland, 2015.
- SAE J300-2021; Engine Oil Viscosity Classification. Society of Automotive Engineers International: Warrendale, PA, USA, 2021.
- ASTM D445-21e1; Standard Test Method for Kinematic Viscosity of Transparent and Opaque Liquids (and Calculation of Dynamic Viscosity). ASTM: West Conshohocken, PA, USA, 2022.
- ASTM D5950-14(2020); Standard Test Method for Pour Point of Petroleum Products (Automatic Tilt Method). ASTM: West Conshohocken, PA, USA, 2020.
- PN-ISO 3771:2012; Przetwory Naftowe—Oznaczanie Liczby Zasadowej—Metoda Potencjometrycznego Miareczkowania Kwasem Nadchlorowym. PKN: Warszawa, Poland, 2012.
- PN-EN ISO 2160:2004; Przetwory Naftowe—Korodujące Działanie na Miedź—Badanie na Płytce Miedzianej. PKN: Warszawa, Poland, 2004.
- DIN 51794:2003-05; Testing of Mineral Oil Hydrocarbons—Determination of Ignition Temperature. German Institute for Standardisation (Deutsches Institut für Normung): Berlin/Heidelberg, Germany, 2003.
- Anton Paar ASTM D 2270—Viscosity Index (VI) from 40 °C and 100 °C. Available online: https://wiki.anton-paar.com/pl-pl/wskaznik-lepkosci-vi-od-40c-i-100c-astm-d2270/ (accessed on 7 September 2022).
- ASTM D 7668-17; Standard Test Method for Determination of Derived Cetane Number (DCN) of Diesel Fuel OilsIgnition Delay and Combustion Delay Using a Constant Volume Combustion Chamber Method. ASTM: West Conshohocken, PA, USA, 2017.
- PAC L.P. Herzog Cetane ID 510; PAC L.P.: Houston, TX, USA, 2019. [Google Scholar]
- PN-EN ISO 12156-1:2008; Oleje Napędowe—Ocena Smarności z Zastosowaniem Aparatu O Ruchu Posuwisto-Zwrotnym Wysokiej Częstotliwości (HFFR)—Część 1: Metoda Badania. PKN: Warszawa, Poland, 2006.
- EN ISO 12156-1:2018; Diesel Fuel—Assesment of Lubricity Using the High-Frequency Reciporating Rig (HFFR)—Part 1: Test Method. ISO: Geneva, Switzerland, 2018.
- PCS Instruments. Aparat do Badania Paliw i Środków Smarnych. Instrukcja Obsługi Systemu HFFR V1.0.3; Inkom Instruments Co.: Warszawa, Poland.
- ASTM D8004-15; Standard Test Method for Fuel Dilution of In-Service Lubricants Using Surface Acoustic Wave Sensing. ASTM: West Conshohocken, PA, USA, 2023.
- Spectro Scientific FDM 6000 Series—Portable Fuel Dilution Meter. Available online: https://www.spectro.cz/store/datasheet-fdm-6000.pdf (accessed on 21 July 2023).
- PN-EN 12937: 2005; Przetwory Naftowe—Oznaczanie Wody—Miareczkowanie Kulometryczne Metodą Karla Fischera. PKN: Warszawa, Poland, 2005.
- ISO 10307-1:2009; Petroleum Products—Total Sediment in Residual Fuel Oils—Part 1: Determination by Hot Filtration. ISO: Geneva, Switzerland, 2009.
- PN-ISO 4405:1994; Zawartość Zanieczyszczeń Nierozpuszczalnych. PKN: Warszawa, Poland, 1994.
- ASTM D 6595-17; Standard Test Method for Determination of Wear Metals and Contaminants in Used Lubricating Oils or Used Hydraulic Fluids by Rotating Disc Electrode Atomic Emission Spectrometry. ASTM: West Conshohocken, PA, USA, 2022.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chybowski, L.; Szczepanek, M.; Sztangierski, R.; Brożek, P. Modeling of Selected Parameters of Used Lubricating Oil Diluted with Diesel Oil Using the Characteristics of Fresh Lubricating Oil. Energies 2024, 17, 2047. https://doi.org/10.3390/en17092047
Chybowski L, Szczepanek M, Sztangierski R, Brożek P. Modeling of Selected Parameters of Used Lubricating Oil Diluted with Diesel Oil Using the Characteristics of Fresh Lubricating Oil. Energies. 2024; 17(9):2047. https://doi.org/10.3390/en17092047
Chicago/Turabian StyleChybowski, Leszek, Marcin Szczepanek, Robert Sztangierski, and Piotr Brożek. 2024. "Modeling of Selected Parameters of Used Lubricating Oil Diluted with Diesel Oil Using the Characteristics of Fresh Lubricating Oil" Energies 17, no. 9: 2047. https://doi.org/10.3390/en17092047
APA StyleChybowski, L., Szczepanek, M., Sztangierski, R., & Brożek, P. (2024). Modeling of Selected Parameters of Used Lubricating Oil Diluted with Diesel Oil Using the Characteristics of Fresh Lubricating Oil. Energies, 17(9), 2047. https://doi.org/10.3390/en17092047