Facile Composition of CoNi and Graphene as a Free-Standing Cathode for a High-Performance Solid-State Zinc–Air Battery
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Preparation of the Cathodes
2.3. Electrode Characterization and Electrochemical Measurement
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zuo, Y.; Wang, K.; Zhao, S.; Wei, M.; Liu, X.; Zhang, P.; Xiao, Y.; Xiong, J. A high areal capacity solid-state zinc-air battery via interface optimization of electrode and electrolyte. Chem. Eng. J. 2022, 430, 132996. [Google Scholar] [CrossRef]
- Li, B.-Q.; Zhang, S.-Y.; Wang, B.; Xia, Z.-J.; Tang, C.; Zhang, Q. A porphyrin covalent organic framework cathode for flexible Zn–air batteries. Energy Environ. Sci. 2018, 11, 1723–1729. [Google Scholar] [CrossRef]
- Yu, M.; Wang, Z.; Hou, C.; Wang, Z.; Liang, C.; Zhao, C.; Tong, Y.; Lu, X.; Yang, S. Nitrogen-doped Co3O4 mesoporous nanowire arrays as an additive-free air-cathode for flexible solid-state zinc-air batteries. Adv. Mater. 2017, 29, 1602868. [Google Scholar] [CrossRef]
- Meng, F.; Zhong, H.; Bao, D.; Yan, J.; Zhang, X. In situ coupling of strung Co4N and intertwined N–C fibers toward free-standing bifunctional cathode for robust, efficient, and flexible Zn–air batteries. J. Am. Chem. Soc. 2016, 138, 10226–10231. [Google Scholar] [CrossRef]
- Wang, X.; Li, W.; Xiong, D.; Petrovykh, D.Y.; Liu, L. Bifunctional nickel phosphide nanocatalysts supported on carbon fiber paper for highly efficient and stable overall water splitting. Adv. Funct. Mater. 2016, 26, 4067–4077. [Google Scholar] [CrossRef]
- Wang, Y.; Jin, M.; Zhang, X.; Zhao, C.; Wang, H.; Li, S.; Liu, Z. Direct conversion of biomass into compact air electrode with atomically dispersed oxygen and nitrogen coordinated copper species for flexible zinc–air batteries. ACS Appl. Energy Mater. 2019, 2, 8659–8666. [Google Scholar] [CrossRef]
- Liu, T.; Mou, J.; Wu, Z.; Lv, C.; Huang, J.; Liu, M. A facile and scalable strategy for fabrication of superior bifunctional freestanding air electrodes for flexible zinc–air batteries. Adv. Funct. Mater. 2020, 30, 2003407. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, Z.; Li, Z.; Zhao, N.; Xie, Y.; Du, Y.; Xuan, J.; Xiong, D.; Zhou, J.; Cai, L. CoNi nanoalloy-Co-N4 composite active sites embedded in hierarchical porous carbon as bi-functional catalysts for flexible Zn-air battery. Nano Energy 2022, 99, 107325. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, L.; Fu, H. Research progress on the construction of synergistic electrocatalytic ORR/OER self-supporting cathodes for zinc–air batteries. J. Mater. Chem. A 2023, 11, 4400–4427. [Google Scholar] [CrossRef]
- Yuan, Z.; Xiao, X.; Li, J.; Zhao, Z.; Yu, D.; Li, Q. Self-assembled graphene-based architectures and their applications. Adv. Sci. 2018, 5, 1700626. [Google Scholar] [CrossRef]
- Torrisi, L.; Cutroneo, M.; Havranek, V.; Silipigni, L.; Fazio, B.; Fazio, M.; Di Marco, G.; Stassi, A.; Torrisi, A. Self-supporting graphene oxide films preparation and characterization methods. Vacuum 2019, 160, 1–11. [Google Scholar] [CrossRef]
- Liu, H.; Hua, D.; Wang, R.; Liu, Z.; Li, J.; Wang, X.; Song, B. High-performance bifunctional oxygen electrocatalysts for zinc-air batteries over nitrogen-doped carbon encapsulating CoNi nanoparticles. J. Phys. D Appl. Phys. 2022, 55, 484005. [Google Scholar] [CrossRef]
- Singh, S.B.; Haskin, N.; Dastgheib, S.A. Coal-based graphene oxide-like materials: A comprehensive review. Carbon 2023, 215, 118447. [Google Scholar] [CrossRef]
- Yang, S.; Xie, M.; Chen, L.; Wei, W.; Lv, X.; Xu, Y.; Ullah, N.; Judith, O.C.; Adegbemiga, Y.B.; Xie, J. Cobalt phosphide nanoparticles embedded in 3D N-doped porous carbon for efficient hydrogen and oxygen evolution reactions. Int. J. Hydrogen Energy 2019, 44, 4543–4552. [Google Scholar] [CrossRef]
- Phuc, N.H.H.; Anh Tu, T.; Cam Loc, L.; Xuan Viet, C.; Thi Thuy Phuong, P.; Tri, N.; Van Thang, L. A Review of Bifunctional Catalysts for Zinc-Air Batteries. Nanoenergy Adv. 2023, 3, 13–47. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, D.; Wang, Y.; Liu, X.; Sun, H.; Cai, T.; Li, X.; Hu, H.; Zhang, X.; Xing, W. Facile electrochemically induced vacancy modulation of NiCo2O4 cathode toward high-performance aqueous Zn-based battery. Chem. Eng. J. 2023, 453, 139736. [Google Scholar] [CrossRef]
- Xu, L.; Deng, D.; Tian, Y.; Li, H.; Qian, J.; Wu, J.; Li, H. Dual-active-sites design of CoNx anchored on zinc-coordinated nitrogen-codoped porous carbon with efficient oxygen catalysis for high-stable rechargeable zinc-air batteries. Chem. Eng. J. 2021, 408, 127321. [Google Scholar] [CrossRef]
- Han, J.; Meng, X.; Lu, L.; Bian, J.; Li, Z.; Sun, C. Single-atom Fe-Nx-C as an efficient electrocatalyst for zinc-air batteries. Adv. Funct. Mater. 2019, 29, 1808872. [Google Scholar] [CrossRef]
- Deng, Z.; Yi, Q.; Li, G.; Chen, Y.; Yang, X.; Nie, H. NiCo-doped CN nano-composites for cathodic catalysts of Zn-air batteries in neutral media. Electrochim. Acta 2018, 279, 1–9. [Google Scholar] [CrossRef]
- Hou, Y.; Yuan, H.; Wen, Z.; Cui, S.; Guo, X.; He, Z.; Chen, J. Nitrogen-doped graphene/CoNi alloy encased within bamboo-like carbon nanotube hybrids as cathode catalysts in microbial fuel cells. J. Power Sources 2016, 307, 561–568. [Google Scholar] [CrossRef]
- Yu, L.; Yi, Q.; Yang, X.; Chen, Y. An easy synthesis of Ni-Co doped hollow CN tubular nanocomposites as excellent cathodic catalysts of alkaline and neutral zinc-air batteries. Sci. China Mater. 2019, 62, 1251–1264. [Google Scholar] [CrossRef]
- Li, Z.; He, H.; Cao, H.; Sun, S.; Diao, W.; Gao, D.; Lu, P.; Zhang, S.; Guo, Z.; Li, M. Atomic Co/Ni dual sites and Co/Ni alloy nanoparticles in N-doped porous Janus-like carbon frameworks for bifunctional oxygen electrocatalysis. Appl. Catal. B Environ. 2019, 240, 112–121. [Google Scholar] [CrossRef]
- Wan, W.; Liu, X.; Li, H.; Peng, X.; Xi, D.; Luo, J. 3D carbon framework-supported CoNi nanoparticles as bifunctional oxygen electrocatalyst for rechargeable Zn-air batteries. Appl. Catal. B Environ. 2019, 240, 193–200. [Google Scholar] [CrossRef]
- Zeng, L.; Cui, X.; Chen, L.; Ye, T.; Huang, W.; Ma, R.; Zhang, X.; Shi, J. Non-noble bimetallic alloy encased in nitrogen-doped nanotubes as a highly active and durable electrocatalyst for oxygen reduction reaction. Carbon 2017, 114, 347–355. [Google Scholar] [CrossRef]
- Li, J.-C.; Zhao, S.-Y.; Hou, P.-X.; Fang, R.-P.; Liu, C.; Liang, J.; Luan, J.; Shan, X.-Y.; Cheng, H.-M. A nitrogen-doped mesoporous carbon containing an embedded network of carbon nanotubes as a highly efficient catalyst for the oxygen reduction reaction. Nanoscale 2015, 7, 19201–19206. [Google Scholar] [CrossRef]
- Pan, F.; Cao, Z.; Zhao, Q.; Liang, H.; Zhang, J. Nitrogen-doped porous carbon nanosheets made from biomass as highly active electrocatalyst for oxygen reduction reaction. J. Power Sources 2014, 272, 8–15. [Google Scholar] [CrossRef]
- Yuan, W.; Li, J.; Xie, A.; Chen, P.; Li, S.; Shen, Y. Practical, cost-effective and large-scale production of nitrogen-doped porous carbon particles and their use as metal-free electrocatalysts for oxygen reduction. Electrochim. Acta 2015, 165, 29–35. [Google Scholar] [CrossRef]
- Osmieri, L.; Videla, A.H.M.; Specchia, S. Activity of Co–N multi walled carbon nanotubes electrocatalysts for oxygen reduction reaction in acid conditions. J. Power Sources 2015, 278, 296–307. [Google Scholar] [CrossRef]
- Yasuda, S.; Furuya, A.; Uchibori, Y.; Kim, J.; Murakoshi, K. Iron–nitrogen-doped vertically aligned carbon nanotube electrocatalyst for the oxygen reduction reaction. Adv. Funct. Mater. 2016, 26, 738–744. [Google Scholar] [CrossRef]
- Ouyang, T.; Ye, Y.Q.; Wu, C.Y.; Xiao, K.; Liu, Z.Q. Heterostructures composed of N-doped carbon nanotubes encapsulating cobalt and β-Mo2C nanoparticles as bifunctional electrodes for water splitting. Angew. Chem. Int. Ed. 2019, 58, 4923–4928. [Google Scholar] [CrossRef]
- Tian, G.L.; Zhang, Q.; Zhang, B.; Jin, Y.G.; Huang, J.Q.; Su, D.S.; Wei, F. Toward full exposure of “active sites”: Nanocarbon electrocatalyst with surface enriched nitrogen for superior oxygen reduction and evolution reactivity. Adv. Funct. Mater. 2014, 24, 5956–5961. [Google Scholar] [CrossRef]
- Pei, Z.; Tang, Z.; Liu, Z.; Huang, Y.; Wang, Y.; Li, H.; Xue, Q.; Zhu, M.; Tang, D.; Zhi, C. Construction of a hierarchical 3D Co/N-carbon electrocatalyst for efficient oxygen reduction and overall water splitting. J. Mater. Chem. A 2018, 6, 489–497. [Google Scholar] [CrossRef]
- Yang, H.B.; Miao, J.; Hung, S.-F.; Chen, J.; Tao, H.B.; Wang, X.; Zhang, L.; Chen, R.; Gao, J.; Chen, H.M. Identification of catalytic sites for oxygen reduction and oxygen evolution in N-doped graphene materials: Development of highly efficient metal-free bifunctional electrocatalyst. Sci. Adv. 2016, 2, e1501122. [Google Scholar] [CrossRef]
- Cao, X.; Zheng, X.; Tian, J.; Jin, C.; Ke, K.; Yang, R. Cobalt sulfide embedded in porous nitrogen-doped carbon as a bifunctional electrocatalyst for oxygen reduction and evolution reactions. Electrochim. Acta 2016, 191, 776–783. [Google Scholar] [CrossRef]
- He, K.; Zai, J.; Liu, X.; Zhu, Y.; Iqbal, A.; Tsega, T.T.; Zhang, Y.; Ali, N.; Qian, X. One-step construction of multi-doped nanoporous carbon-based nanoarchitecture as an advanced bifunctional oxygen electrode for Zn-Air batteries. Appl. Catal. B Environ. 2020, 265, 118594. [Google Scholar] [CrossRef]
- Li, X.; Liu, Y.; Chen, H.; Yang, M.; Yang, D.; Li, H.; Lin, Z. Rechargeable Zn–air batteries with outstanding cycling stability enabled by ultrafine FeNi nanoparticles-encapsulated N-doped carbon nanosheets as a bifunctional electrocatalyst. Nano Lett. 2021, 21, 3098–3105. [Google Scholar] [CrossRef]
- Li, Y.; Ding, Y.; Zhang, B.; Huang, Y.; Qi, H.; Das, P.; Zhang, L.; Wang, X.; Wu, Z.-S.; Bao, X. N, O symmetric double coordination of an unsaturated Fe single-atom confined within a graphene framework for extraordinarily boosting oxygen reduction in Zn–air batteries. Energy Environ. Sci. 2023, 16, 2629–2636. [Google Scholar] [CrossRef]
- Pan, J.; Xu, Y.Y.; Yang, H.; Dong, Z.; Liu, H.; Xia, B.Y. Advanced architectures and relatives of air electrodes in Zn–air batteries. Adv. Sci. 2018, 5, 1700691. [Google Scholar] [CrossRef]
- Peera, S.G.; Kwon, H.J.; Lee, T.G.; Balamurugan, J.; Hussain, A.M. Recent advances on metal organic framework–derived catalysts for electrochemical oxygen reduction reaction. Nov. Catal. Mater. Bioelectrochem. Syst. Fundam. Appl. 2020, 1342, 231–278. [Google Scholar]
- Jiang, M.; Zhu, J.; Chen, C.; Lu, Y.; Ge, Y.; Zhang, X. Poly (vinyl alcohol) borate gel polymer electrolytes prepared by electrodeposition and their application in electrochemical supercapacitors. ACS Appl. Mater. Interfaces 2016, 8, 3473–3481. [Google Scholar] [CrossRef]
- Wei, Y.; Shi, Y.; Chen, Y.; Xiao, C.; Ding, S. Development of solid electrolytes in Zn–air and Al–air batteries: From material selection to performance improvement strategies. J. Mater. Chem. A 2021, 9, 4415–4453. [Google Scholar] [CrossRef]
- Liu, L.; Wang, Y.; Yan, F.; Zhu, C.; Geng, B.; Chen, Y.; Chou, S.L. Cobalt-encapsulated nitrogen-doped carbon nanotube arrays for flexible zinc-air batteries. Small Methods 2020, 4, 1900571. [Google Scholar] [CrossRef]
- Zeng, S.; Tong, X.; Zhou, S.; Lv, B.; Qiao, J.; Song, Y.; Chen, M.; Di, J.; Li, Q. All-in-one bifunctional oxygen electrode films for flexible Zn-air batteries. Small 2018, 14, 1803409. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, J.; Liu, Y.; Han, T.; Xu, L.; Sun, N. Facile Composition of CoNi and Graphene as a Free-Standing Cathode for a High-Performance Solid-State Zinc–Air Battery. Energies 2024, 17, 2045. https://doi.org/10.3390/en17092045
Hu J, Liu Y, Han T, Xu L, Sun N. Facile Composition of CoNi and Graphene as a Free-Standing Cathode for a High-Performance Solid-State Zinc–Air Battery. Energies. 2024; 17(9):2045. https://doi.org/10.3390/en17092045
Chicago/Turabian StyleHu, Jian, Yuan Liu, Tian Han, Lei Xu, and Ningkang Sun. 2024. "Facile Composition of CoNi and Graphene as a Free-Standing Cathode for a High-Performance Solid-State Zinc–Air Battery" Energies 17, no. 9: 2045. https://doi.org/10.3390/en17092045
APA StyleHu, J., Liu, Y., Han, T., Xu, L., & Sun, N. (2024). Facile Composition of CoNi and Graphene as a Free-Standing Cathode for a High-Performance Solid-State Zinc–Air Battery. Energies, 17(9), 2045. https://doi.org/10.3390/en17092045