Selection of Renewable Energy Sources for Modular and Mobile “Green Classroom” Facilities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Method
2.2. Research Assumptions
- maximum use of the potential of renewable energy sources,
- connection to 0.4 kV grid,
- power supply autonomy time—island operation up to 2 h,
- method of power supply (from the grid and/or from its own equipment, i.e., photovoltaic cells), cooperation of renewable energy sources with the grid,
- island operation and associated energy storage.
2.3. Potential of Renewable Energy Sources
- -
- 75% of the roof area (approx. 14.1 m2) to be covered with PV panels allows for the installation of 2 kWp;
- -
- 70% of the wall area with dimensions of 7.5 × 3 m (approx. 22.5 m2) allows for the installation of PV with a power of 3 kWp.
Slope Angle [°]: | 39 (opt) |
Azimuth angle [°]: | 180 (opt) |
Yearly PV energy production [kWh]: | 2079.19 |
Yearly in-plane irradiation [kWh/m2]: | 1348.66 |
Year-to-year variability [kWh]: | 104.34 |
Changes in output due to the following: | |
Angle of incidence [%]: | −2.89 |
Spectral effects [%]: | 1.74 |
Temperature and low irradiance [%]: | −9.28 |
Total loss [%]: | −22.92 |
2.4. Optimization of the Panel Arrangement on the Roof
- Horizontal arrangement
- Slope of the entire roof surface
- Split pitch (gable)
2.5. Optimization of the Panel Arrangement on the Wall
3. Analysis of Solutions
- self-sufficient module—all the energy is used to meet the needs of the module or set of modules;
- energy storage—the energy harvested is used by an adjacent building (e.g., a school);
- hybrid—the energy is used primarily for the energy needs of the module, while the surplus energy covers the needs of the adjacent building (school).
3.1. Daily PV Energy Production Profiles
3.2. Selection of Electricity Storage Capacity
4. Analysis of Facility’s Electricity Demand
5. Summary and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- GUS. Budownictwo. 2019. Available online: https://stat.gov.pl/obszary-tematyczne/przemysl-budownictwo-srodki-trwale/budownictwo/budownictwo-w-2019-roku,13,5.html (accessed on 1 March 2024).
- Dragan, W.; Zdyrko, A. The spatial dimension of coal phase-out: Exploring economic transformation and city pathways in Poland. Energy Res. Soc. Sci. 2023, 99, 103058. [Google Scholar] [CrossRef]
- Blazy, R.; Błachut, J.; Ciepiela, A.; Łabuz, R.; Papież, R. Thermal Modernization Cost and the Potential Ecological Effect—Scenario Analysis for Thermal Modernization in Southern Poland. Energies 2021, 14, 2033. [Google Scholar] [CrossRef]
- Grantham, A.; Pudney, P.; Ward, L.; Whaley, D.; Boland, J. The viability of electrical energy storage for low-energy households. Sol. Energy 2017, 155, 1216–1224. [Google Scholar] [CrossRef]
- Rana, M.M.; Uddin, M.; Sarkar, M.R.; Shafiullah, G.M.; Mo, H.; Atef, M. A review on hybrid photovoltaic—Battery energy storage system: Current status, challenges, and future directions. J. Energy Storage 2022, 51, 104597. [Google Scholar] [CrossRef]
- Blazy, R.; Błachut, J.; Ciepiela, A.; Łabuz, R.; Papież, R. Renewable energy sources vs. an air quality improvement in urbanized areas-the metropolitan area of Kraków case. Front. Energy Res. 2021, 9, 767418. [Google Scholar] [CrossRef]
- Mousavi, S.; Gijón-Rivera, M.; Rivera-Solorio, C.I.; Rangel, C.G. Energy, comfort, and environmental assessment of passive techniques integrated into low-energy residential buildings in semi-arid climate. Energy Build. 2022, 263, 112053. [Google Scholar] [CrossRef]
- Kozłowski, J. Difficult road to decarbonize economy. Nauka 2022, 7–35. Available online: https://www.dnibetonu.com/wp-content/pdfs/2023/Witkowski_Moczko_Schabowicz.pdf (accessed on 1 March 2024). [CrossRef]
- Romano, G.; Baiani, S.; Mancini, F.; Tucci, F. Reducing CO2 Emissions and Improving Water Resource Circularity by Optimizing Energy Efficiency in Buildings. Sustainability 2023, 15, 13050. [Google Scholar] [CrossRef]
- Mujeebu, M.A.; Bano, F. Energy-saving potential and cost-effectiveness of active energy-efficiency measures for residential building in warm-humid climate. Energy Sustain. Dev. 2022, 67, 163–176. [Google Scholar] [CrossRef]
- Bughio, M.; Khan, M.S.; Mahar, W.A.; Schuetze, T. Impact of Passive Energy Efficiency Measures on Cooling Energy Demand in an Architectural Campus Building in Karachi, Pakistan. Sustainability 2021, 13, 7251. [Google Scholar] [CrossRef]
- Albayyaa, H.; Hagare, D.; Saha, S. Energy conservation in residential buildings by incorporating Passive Solar and Energy Efficiency Design Strategies and higher thermal mass. Energy Build. 2019, 182, 205–213. [Google Scholar] [CrossRef]
- Papadakis, N.; Katsaprakakis, D.A. A Review of Energy Efficiency Interventions in Public Buildings. Energies 2023, 16, 6329. [Google Scholar] [CrossRef]
- Koronen, C.; Åhman, M.; Nilsson, L.J. Data centres in future European energy systems—Energy efficiency, integration and policy. Energy Effic. 2020, 13, 129–144. [Google Scholar] [CrossRef]
- Desvallées, L. Low-carbon retrofits in social housing: Energy efficiency, multidimensional energy poverty, and domestic comfort strategies in southern Europe. Energy Res. Soc. Sci. 2022, 85, 102413. [Google Scholar] [CrossRef]
- Shnapp, S.; Paci, D.; Bertoldi, P. Enabling Positive Energy Districts across Europe: Energy Efficiency Couples Renewable Energy; Publication Office of the European Union: Luxembourg, 2020. [Google Scholar]
- Malinauskaite, J.; Jouhara, H.; Ahmad, L.; Milani, M.; Montorsi, L.; Venturelli, M. Energy efficiency in industry: EU and national policies in Italy and the UK. Energy 2019, 172, 255–269. [Google Scholar] [CrossRef]
- Snape, J.R.; Boait, P.J.; Rylatt, R.M. Will domestic consumers take up the renewable heat incentive? An analysis of the barriers to heat pump adoption using agent-based modelling. Energy Policy 2015, 85, 32–38. [Google Scholar] [CrossRef]
- Czarnecka, M.; Ogłódek, T. Prawo Energetyczne. Efektywność Energetyczna Tom I. 2023. Available online: https://son.uni.lodz.pl/info/book/UL5b839e67ddf544739ab79ab27b9158e4/Publication%2B%25E2%2580%2593%2BPrawo%2Benergetyczne.%2BEfektywno%25C5%259B%25C4%2587%2Benergetyczna%2BTom%2BI.%2BKomentarz%2B%25E2%2580%2593%2BUniwersytet%2B%25C5%2581%25C3%25B3dzki+title?ps=20&lang=en&pn=1 (accessed on 1 March 2024).
- Barwińska Małajowicz, A.; Knapková, M.; Szczotka, K.; Martinkovičová, M.; Pyrek, R. Energy Efficiency Policies in Poland and Slovakia in the Context of Individual Well-Being. Energies 2023, 16, 116. [Google Scholar] [CrossRef]
- Economidou, M.; Todeschi, V.; Bertoldi, P.; D’Agostino, D.; Zangheri, P.; Castellazzi, L. Review of 50 years of EU energy efficiency policies for buildings. Energy Build. 2020, 225, 110322. [Google Scholar] [CrossRef]
- Wrona, A.; Czyżak, P. A Missed Opportunity. Neglects in Polish Climate Policy. Available online: https://instrat.pl/zaniedbania-klimatyczne/ (accessed on 1 March 2024).
- School of the Future—Modular and Mobile Green Classroom System. 2021. Available online: https://zielonaklasa.pk.edu.pl/ (accessed on 1 March 2024).
- Buonanno, G.; Ricolfi, L.; Morawska, L.; Stabile, L. Increasing ventilation reduces SARS-CoV-2 airborne transmission in schools: A retrospective cohort study in Italy’s Marche region. Front. Public Health 2022, 10, 1087087. [Google Scholar] [CrossRef]
- Lasser, J.; Sorger, J.; Richter, L.; Thurner, S.; Schmid, D.; Klimek, P. Assessing the impact of SARS-CoV-2 prevention measures in Austrian schools using agent-based simulations and cluster tracing data. Nat. Commun. 2022, 13, 554. [Google Scholar] [CrossRef]
- Polish Power Grids, Instruction for the Operation and Operation of the Transmission Network—Conditions of Use, Operation, Operation and Planning of Network Development Approved by the Decision of the President of the Energy Regulatory Office No. DPK-4320-1(4)/2011/LK of 15 December 2011 (In Polish). Available online: https://bip.ure.gov.pl/download/3/13035/IRESPPSE.pdf (accessed on 1 March 2024).
- Photovoltaic Geographical Information System. Available online: https://re.jrc.ec.europa.eu/pvg_tools/en/ (accessed on 1 March 2024).
- Hassaine, L.; Olias, E.; Quintero, J.; Salas, V. Overview of power inverter topologies and control structures for grid connected photovoltaic systems. Renew. Sustain. Energy Rev. 2014, 30, 796–807. [Google Scholar] [CrossRef]
- Kolantla, D.; Mikkili, S.; Pendem, S.R.; Desai, A. Critical review on various inverter topologies for PV system architectures. IET Renew. Power Gener. 2020, 14, 3418–3438. [Google Scholar] [CrossRef]
- Borkowski, D.; Oramus, P.; Brzezinka, M. Battery energy storage system for grid-connected photovoltaic farm—Energy management strategy and sizing optimization algorithm. J. Energy Storage 2023, 72 Pt A, 108201. [Google Scholar] [CrossRef]
- Oramus, P.; Borkowski, D.; Brzezinka, M. Optimization algorithm for selecting parameters of an electrical energy storage dedicated to cooperation with an existing photovoltaic power plant. Przegląd Elektrotechniczny 2023, 99, 200–204. (In Polish) [Google Scholar] [CrossRef]
- Yuan, M.; Thellufsen, J.Z.; Sorknæs, P.; Lund, H.; Liang, Y. District heating in 100% renewable energy systems: Combining industrial excess heat and heat pumps. Energy Convers. Manag. 2021, 244, 114527. [Google Scholar] [CrossRef]
- Grossi, I.; Dongellini, M.; Piazzi, A.; Morini, G.L. Dynamic modelling and energy performance analysis of an innovative dual-source heat pump system. Appl. Therm. Eng. 2018, 142, 745–759. [Google Scholar] [CrossRef]
- Mrzygłód, M.; Wojtalewicz, A. Analysis of Material Solutions for Building Envelopes in a Low-Energy Standard in Modern Design and Implementation of Building Structures; Wydawnictwo Politechniki Krakowskiej: Cracow, Poland, 2016. (In Polish) [Google Scholar]
- Pawłowski, K. Principles of Designing Energy-Efficient Buildings; Grupa MEDIUM: Warszawa, Poland, 2017. (In Polish) [Google Scholar]
- Pawłowski, K. Designing Horizontal Partitions in Energy-Saving Construction. Thermal and Humidity Calculations of Partitions in Contact with the Ground, Ceilings, Roofs and Flat Roofs in the Light of Applicable Legal Regulations; Grupa MEDIUM: Warszawa, Poland, 2018. (In Polish) [Google Scholar]
- Pawłowski, K. Design of Horizontal Partitions Taking into Account Thermal and Humidity Requirements from January 1, 2021; IZOLACJE 3/2020; 2020 (In Polish). Available online: https://www.izolacje.com.pl/artykul/sciany-stropy/194941,projektowanie-przegrod-poziomych-z-uwzglednieniem-wymagan-cieplno-wilgotnosciowych-od-1-stycznia-2021-roku (accessed on 1 March 2024).
- Rolando, D.; Mazzotti Pallard, W.; Molinari, M. Long-Term Evaluation of Comfort, Indoor Air Quality and Energy Performance in Buildings: The Case of the KTH Live-In Lab Testbeds. Energies 2022, 15, 4955. [Google Scholar] [CrossRef]
- Samadi, N.; Shahbakhti, M. Energy Efficiency and Optimization Strategies in a Building to Minimize Airborne Infection Risks. Energies 2023, 16, 4960. [Google Scholar] [CrossRef]
- Kuczyński, T.; Staszczuk, A. Experimental study of the influence of thermal mass on thermal comfort and cooling energy demand in residential buildings. Energy 2020, 195, 116984. [Google Scholar] [CrossRef]
No. | Month | VAV | WSP | VAV_Month | PAV | E | E |
---|---|---|---|---|---|---|---|
m/s | m/s | kW | kWh/Month | kWh/Year | |||
1 | January | 6.25 | 1.13 | 7.05 | 0.35 | 260 | 2189 |
2 | February | 6.25 | 1.08 | 6.72 | 0.3 | 212 | |
3 | March | 6.25 | 1.1 | 6.88 | 0.32 | 242 | |
4 | April | 6.25 | 0.97 | 6.08 | 0.22 | 162 | |
5 | May | 6.25 | 0.94 | 5.85 | 0.22 | 149 | |
6 | June | 6.25 | 0.85 | 5.31 | 0.15 | 108 | |
7 | July | 6.25 | 0.89 | 5.59 | 0.17 | 130 | |
8 | August | 6.25 | 0.89 | 5.59 | 0.17 | 130 | |
9 | September | 6.25 | 0.97 | 6.08 | 0.22 | 162 | |
10 | October | 6.25 | 1 | 6.26 | 0.24 | 182 | |
11 | November | 6.25 | 1.08 | 6.72 | 0.3 | 218 | |
12 | December | 6.25 | 1.09 | 6.8 | 0.31 | 234 |
Azimuth | ||||||||
---|---|---|---|---|---|---|---|---|
West | South-West | South | South-East | East | ||||
Tilt | 270 | 240 | 210 | 180 | 150 | 120 | 90 | |
Vertical | 90 | 51% | 62% | 69% | 72% | 70% | 63% | 52% |
80 | 58% | 71% | 80% | 82% | 80% | 71% | 51% | |
70 | 65% | 78% | 87% | 90% | 87% | 79% | 65% | |
60 | 71% | 84% | 93% | 96% | 94% | 85% | 72% | |
50 | 76% | 89% | 97% | 99% | 98% | 89% | 77% | |
40 | 80% | 92% | 99% | 100% | 99% | 92% | 81% | |
30 | 83% | 93% | 99% | 100% | 100% | 93% | 84% | |
20 | 85% | 93% | 97% | 99% | 97% | 93% | 86% | |
10 | 87% | 90% | 93% | 95% | 94% | 92% | 87% | |
Horizontal | 0 | 90% | 90% | 90% | 90% | 90% | 90% | 90% |
PV Positioning | Horizontal Position on the Roof | Vertical Position on the South Wall | |
---|---|---|---|
Case | |||
Self-sufficient module | ● | ||
Energy storage | ● | ||
Hybrid | ● | ● |
PV Positioning | Horizontal Position on the Roof | Vertical Position on the South Wall | |
---|---|---|---|
Daily Energy | |||
Minimal | 680 Wh | 4250 Wh | |
Maximal | 1555 Wh | 2555 Wh |
Battery Capacity (Wh) | |||||||||
---|---|---|---|---|---|---|---|---|---|
500 | 1000 | 1500 | 2000 | 2500 | 3000 | 3500 | 4000 | ||
Average daily energy consumption (Wh) | 500 | 40.6 | 9 | 4 | 2 | 1.2 | 0.8 | 0.5 | 0.4 |
1000 | 100 | 54 | 34 | 24 | 20 | 16 | 13 | 10 | |
1500 | 100 | 100 | 64 | 50 | 43 | 37 | 33 | 30 | |
2000 | 100 | 100 | 100 | 74 | 62 | 58 | 53 | 49 | |
2500 | 100 | 100 | 100 | 100 | 83 | 74 | 72 | 70 | |
3000 | 100 | 100 | 100 | 100 | 100 | 92 | 88 | 87 | |
3500 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 94 | |
4000 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 99 |
Battery Capacity (Wh) | |||||||||
---|---|---|---|---|---|---|---|---|---|
500 | 1000 | 1500 | 2000 | 2500 | 3000 | 3500 | 4000 | ||
Average daily energy consumption (Wh) | 500 | 36 | 7 | 4 | 3.15 | 2.5 | 1.8 | 1.41 | 1 |
1000 | 100 | 46 | 32 | 29 | 27 | 26 | 25 | 25 | |
1500 | 100 | 100 | 54 | 46 | 42 | 40 | 38 | 38 | |
2000 | 100 | 100 | 100 | 62 | 56 | 53 | 50 | 48 | |
2500 | 100 | 100 | 100 | 98 | 68 | 65 | 62 | 60 | |
3000 | 100 | 100 | 100 | 100 | 92 | 74 | 71 | 69 | |
3500 | 100 | 100 | 100 | 100 | 100 | 90 | 80 | 78 | |
4000 | 100 | 100 | 100 | 100 | 100 | 100 | 91 | 86 |
No. | Structure | Building Area (m2) | Cubage (m3) | Heated Cubage (m3) | Cooled Cubage (m3) | Power of Installed PV Panels |
---|---|---|---|---|---|---|
1 | Classroom composed of two basic units (four basic modules) | 52 | 156 | 156 | 156 | 4 kWp–roof; 3 kWp–side wall; + energy storage |
2 | Technical or sanitary room | 9 | 27 | 27 | 0 | 0 |
Maximum Power of the Heating Device (kW) | Average Heating Power (kW) | Heating Power at Bivalent Temperature −5 °C (kW) | Design Annual Thermal Energy Consumption (kWh) | Estimation of Useful Heat Energy on the Basis of Climate Data (kWh) | Daily Thermal Energy Consumption during the Heating Season/Day (kWh) | Electricity Needed to Prepare 100 Liters of DHW /Day (kWh) |
---|---|---|---|---|---|---|
3.4 | 1.5 (56 W/m2) | 2.1 | 6415 | 6497 | 37 | 0.3 |
Month | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 8 | 10 | 11 | 12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Average temperature (°C) | 2.3 | −0.9 | 3.3 | 9.3 | 14.1 | 17.5 | 19.5 | 19.1 | 14.4 | 9.2 | 4.3 | −0.1 |
Electricity Needed to Prepare 100 Liters of DHW | Electricity Needed for Recuperation | Electricity Required for Daily Function, Including Lighting and Electrical Equipment | |||
---|---|---|---|---|---|
Daily | Monthly | Daily | Monthly | Daily | Monthly |
1 kWh | 22 kWh | 1.5 kWh | 33 kWh | 5 kWh | 110 kWh |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Węgiel, T.; Borkowski, D.; Blazy, R.; Ciepiela, A.; Łysień, M.; Dudek, J.; Błachut, J.; Hrehorowicz-Gaber, H.; Hrehorowicz-Nowak, A. Selection of Renewable Energy Sources for Modular and Mobile “Green Classroom” Facilities. Energies 2024, 17, 2033. https://doi.org/10.3390/en17092033
Węgiel T, Borkowski D, Blazy R, Ciepiela A, Łysień M, Dudek J, Błachut J, Hrehorowicz-Gaber H, Hrehorowicz-Nowak A. Selection of Renewable Energy Sources for Modular and Mobile “Green Classroom” Facilities. Energies. 2024; 17(9):2033. https://doi.org/10.3390/en17092033
Chicago/Turabian StyleWęgiel, Tomasz, Dariusz Borkowski, Rafał Blazy, Agnieszka Ciepiela, Mariusz Łysień, Jakub Dudek, Jakub Błachut, Hanna Hrehorowicz-Gaber, and Alicja Hrehorowicz-Nowak. 2024. "Selection of Renewable Energy Sources for Modular and Mobile “Green Classroom” Facilities" Energies 17, no. 9: 2033. https://doi.org/10.3390/en17092033
APA StyleWęgiel, T., Borkowski, D., Blazy, R., Ciepiela, A., Łysień, M., Dudek, J., Błachut, J., Hrehorowicz-Gaber, H., & Hrehorowicz-Nowak, A. (2024). Selection of Renewable Energy Sources for Modular and Mobile “Green Classroom” Facilities. Energies, 17(9), 2033. https://doi.org/10.3390/en17092033