Mechanisms of Waterflood Inefficiency: Analysis of Geological, Petrophysical and Reservoir History, a Field Case Study of FWU (East Section)
Abstract
:1. Introduction
2. The Farnsworth Unit—Lithostratigraphic and Geological Settings
2.1. Diagenesis
2.2. General Description of FWU—Morrow B
3. Data and Methods
Properties of FWU Crude Oil
4. Results and Discussion
4.1. Reservoir Rock Description and Mineralogical Composition
4.2. Clay Composition/Content
4.3. Heterogeneity Analysis and Review of the Morrow B Reservoir
4.3.1. Preliminary Analysis/Data Control
4.3.2. Controls on Flow and Storage Capacity
4.3.3. Implementation of Porosity and Permeability on Storage and Flow Capacity
4.3.4. Controls on Flow Units (Zonation into HFUs)
4.4. Reservoir Engineering Data
Production and Injection History
5. Summary
5.1. Key Findings
5.2. Inefficiency of Waterflooding (East of FWU)
5.3. Conclusions
5.4. Recommendations
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Preliminary Analysis and Data Control
Appendix B. Elemental and Heterogenous Reservoir Analysis
Appendix C. Wells and Injection Data Information
References
- Ahmed, T. Reservoir Engineering Handbook, 5th ed.; Gulf Professional Publishing: Oxford, UK, 2019. [Google Scholar]
- Morgan, A.; Akanji, L.; Udoh, T.; Mohammed, S.; Anumah, P.; Kyeremeh, S.J. Fractional Flow Behaviour and Transport Mechanisms During Low salinity and Protein Enzyme Bio-surfactant EOR Flooding. In Proceedings of the SPE Nigeria Annual International Conference and Exhibition, Virtual, 11–13 August 2020; p. D013S009R002. [Google Scholar] [CrossRef]
- Baker, R.; Dieva, R.; Jobling, R.; Lok, C. The myths of waterfloods, eor floods and how to optimize real injection schemes. In Proceedings of the SPE Improved Oil Recovery Conference, Tulsa, OK, USA, 11–13 April 2016. [Google Scholar] [CrossRef]
- Skauge, A. Low Salinity Flooding—A Critical Review. In Proceedings of the IOR 2013—17th European Symposium on Improved Oil Recovery, Saint Petersburg, Russia, 16–18 April 2013; pp. 16–18. [Google Scholar]
- Mwangi, P. An Experimental Study of Surfactant Enhanced Waterflooding. Master’s Thesis, Louisiana State University and Agricultural & Mechanical College, Baton Rouge, LA, USA, 2010; p. 77. [Google Scholar]
- Romero, M.I.; Gamage, P.; Jiang, H.; Chopping, C.; Thyne, G. Study of low-salinity waterflooding for single- and two-phase experiments in Berea sandstone cores. J. Pet. Sci. Eng. 2013, 110, 149–154. [Google Scholar] [CrossRef]
- Sheng, J.J. Critical review of low-salinity waterflooding. J. Pet. Sci. Eng. 2014, 120, 216–224. [Google Scholar] [CrossRef]
- Skauge, A.; Shiran, B.S. Low salinity polymer flooding. In Proceedings of the IOR 2013-17th European Symposium on Improved Oil Recovery, Saint Petersburg, Russia, 16–18 April 2013. [Google Scholar]
- Goolsby, J.E.; Neumiller, W.P. Enhanced Recovery from Lower Muddy Fluvial Sandstone Reservoirs of the Northern Powder River Basin, Wyoming. In Proceedings of the SPE/DOE Enhanced Oil Recovery Symposium, Tulsa, OK, USA, 22–24 April 1992; p. SPE-24123-MS. [Google Scholar] [CrossRef]
- McDiarmid, A.; Ivor, A.; Ion, A.; Thompson, J. Experience of a Reservoir Waterflood Failure and Remediation Treatment in the Stag Reservoir, Australia. In Proceedings of the SPE Asia Pacific Improved Oil Recovery Conference, Kuala Lumpur, Malaysia, 8–9 October 2001; p. SPE-72117-MS. [Google Scholar] [CrossRef]
- Teufel, L.W.; Rhett, D.W. Failure of Chalk During Waterflooding of the Ekofisk Field. In Proceedings of the SPE Annual Technical Conference and Exhibition, Washington, DC, USA, 4–7 October 1992; p. SPE-24911-MS. [Google Scholar] [CrossRef]
- Radwan, A.E.; Nabawy, B.S.; Kassem, A.A.; Hussein, W.S. Implementation of Rock Typing on Waterflooding Process During Secondary Recovery in Oil Reservoirs: A Case Study, El Morgan Oil Field, Gulf of Suez, Egypt. Nat. Resour. Res. 2021, 30, 1667–1696. [Google Scholar] [CrossRef]
- Tang, G.-Q.; Morrow, N.R. Influence of brine composition and fines migration on crude oil/brine/rock interactions and oil recovery. J. Pet. Sci. Eng. 1999, 24, 99–111. [Google Scholar] [CrossRef]
- Yuan, B.; Wood, D.A. Overview of Formation Damage during Improved and Enhanced Oil Recovery; Gulf Professional Publishing: Oxford, UK, 2018. [Google Scholar] [CrossRef]
- Hollingworth, R.S.; Leary, R.J.; Heizler, M.T. Detrital U-Pb zircon and 40Ar/39Ar muscovite geochronology from Middle Pennsylvanian strata in the Anadarko Basin, Texas Panhandle, USA. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2021, 579, 110573. [Google Scholar] [CrossRef]
- Rascoe, B., Jr.; Adler, F.J. Permo-Carboniferous Hydrocarbon Accumulations, Mid-Continent, U.S.A. Am. Assoc. Pet. Geol. Bull. 1983, 67, 979–1001. [Google Scholar] [CrossRef]
- Cather, M.; Rose-Coss, D.; Gallagher, S.; Trujillo, N.; Cather, S.; Hollingworth, R.S.; Mozley, P.; Leary, R.J. Deposition, Diagenesis, and Sequence Stratigraphy of the Pennsylvanian Morrowan and Atokan Intervals at Farnsworth Unit. Energies 2021, 14, 1057. [Google Scholar] [CrossRef]
- Ross, C.A.; Ross, J.R.P. Late Paleozoic Transgressive-Regressive Deposition. No. 42, 2012. Available online: https://archives.datapages.com/data/sepm_sp/SP42/Late_Paleozoic_Transgressive-Regressive_Deposition.htm (accessed on 15 March 2023).
- Bowen, D.; Weimer, P. Reservoir geology of Nicholas and Liverpool cemetery fields (lower Pennsylvanian), Stanton county, Kansas, and their significance to the regional interpretation of the Morrow Formation incised-valley- fill systems in eastern Colorado and western Kansas. Am. Assoc. Pet. Geol. Bull. 2004, 88, 47–70. [Google Scholar] [CrossRef]
- Scotese, C.R.; Boucot, A.J.; McKerrow, W.S. Gondwanan palaeogeography and paloclimatology. J. Afr. Earth Sci. 1999, 28, 99–114. [Google Scholar] [CrossRef]
- Domeier, M.; Torsvik, T.H. Plate tectonics in the late Paleozoic. Geosci. Front. 2014, 5, 303–350. [Google Scholar] [CrossRef]
- Wengerd, J.W.S.S.A. Pennsylvanian Stratigraphy of Paradox Salt Basin, Four Corners Region, Colorado and Utah. Am. Assoc. Pet. Geol. Bull. 1954, 38, 2157–2199. [Google Scholar] [CrossRef]
- Rose-Coss, D. A Refined Depositional Sequence Stratigraphic and Structural Model for the Reservoir and Caprock Intervals at the Farnsworth Unit, Ochiltree County TX. Ph.D. Thesis, New Mexico Institute of Mining and Technology, Socorro, NM, USA, 2017. [Google Scholar]
- Gallagher, S.R. Depositional and Diagenetic Controls on Reservoir Heterogeneity: Upper Morrow Sandstone, Farnsworth Unit, Ochiltree County, Texas. Ph.D. Thesis, New Mexico Institute of Mining and Technology, Socorro, NM, USA, 2014. [Google Scholar]
- Munson, T.W. Depositional, diagenetic, and production history of the Upper Morrowan Buckhaults Sandstone, Farnsworth Field, Ochiltree County Texas. In Shale Shaker Digest XIII; Oklahoma City Geological Society: Oklahoma City, OK, USA, 1989; Volume 40, pp. 1–19. [Google Scholar]
- Swanson, D. Deltaic Deposits in the Pennsylvanian upper Morrow Formation in the Anadarko Basin, in Pennsylvanian sandstones of the mid-continent. Tulsa Geol. Soc. Spec. Publ. 1979, 1, 115–168. [Google Scholar]
- Puckette, J.; Al-Shaieb, Z.; Van Evera, E.; Andrews, R.D. Sequence stratigraphy, lithofacies, and reservoir quality, Upper Morrow sandstones, northwestern shelf, Anadarko Basin. In Morrow Springer in the Southern Midcontinent, 2005 Symposium; Circular 111; Oklahoma Geological Survey: Norman, OK, USA, 2008; pp. 81–97. [Google Scholar]
- DeVries, A.A. Sequence Stratigraphy and Micro-Image Analysis of the Upper Morrow Sandstone in the Mustang East Field, Morton County, Kansas. Master’s Thesis, Oklahoma State University, Stillwater, OK, USA, 2005. [Google Scholar]
- Sonnenberg, S.A. Tectonic and Sedimentation Model for Morrow Sandstone Deposition, Sorrento Field Area, Denver Basin, Colorado. Mt. Geol. 1985, 22, 180–191. [Google Scholar] [CrossRef]
- Sonnenberg, S.A.; Shannon, L.T.; Rader, K.; von Drehle, W.F. Regional Structure and Stratigraphy of the Morrowan Series, Southeast Colorado and Adjacent Areas; Rocky Mountain Association of Geologists: Denver, CO, USA, 1990. [Google Scholar]
- Davis, H.G.; Northcutt, R.A.; Johnson, K.S. The greater Anadarko basin: An overview of petroleum exploration and development. In Anadarko Basin Symposium; University of Oklahoma: Norman, OK, USA, 1988; pp. 13–24. [Google Scholar]
- Krystinik, L.F.; Blakeney, B.A. Sedimentology of the upper Morrow Formation in eastern Colorado and western Kansas, in Sonnenberg; Rocky Mountain Association of Geologists: Denver, CO, USA, 1990; pp. 37–50. [Google Scholar]
- Ampomah, W.; Balch, R.S.; Grigg, R.B.; Will, R.; Dai, Z.; White, M.D. Farnsworth Field CO2-EOR Project: Performance Case History. In Proceedings of the SPE Improved Oil Recovery Conference, Society of Petroleum Engineers, Tulsa, OK, USA, 11–13 April 2016; p. 18. [Google Scholar] [CrossRef]
- Miall, A.D. Architectural-Element Analysis: A New Method of Facies Analysis Applied to Fluvial Deposits. In Recognition of Fluvial Depositional Systems and Their Resource Potential; SEPM Society for Sedimentary Geology: Tulsa, OK, USA, 1985. [Google Scholar] [CrossRef]
- Kolodzie, S. Analysis of Pore Throat Size and Use of the Waxman-Smits Equation to Determine Ooip in Spindle Field, Colorado. In Proceedings of the SPE Annual Technical Conference and Exhibition, Dallas, TX, USA, 21–24 September 1980. [Google Scholar] [CrossRef]
- Shahvar, M.B.; Kharrat, R.; Matin, M. Applying flow zone index approach and artificial neural networks modeling technique for characterizing a heterogeneous carbonate reservoir using dynamic data: Case Study of an Iranian reservoir. In Proceedings of the Trinidad and Tobago Energy Resources Conference, Port of Spain, Trinidad, 27–30 June 2010; Volume 2, pp. 677–690. [Google Scholar] [CrossRef]
- Porras, J.C.; Campos, O. Rock Typing: A Key Approach for Petrophysical Characterization and Definition of Flow Units, Santa Barbara Field, Eastern Venezuela Basin. In Proceedings of the SPE Latin American and Caribbean Petroleum Engineering Conference, Buenos Aires, Argentina, 25–28 March 2001. [Google Scholar] [CrossRef]
- You, J.; Ampomah, W.; Tu, J.; Morgan, A.; Sun, Q.; Wei, B.; Wang, D. Optimization of Water-Alternating-CO2 Injection Field Operations Using a Machine-Learning-Assisted Workflow. SPE Reserv. Eval. Eng. 2022, 25, 214–231. [Google Scholar] [CrossRef]
- Ampomah, W.; Balch, R.S.; Grigg, R.B.; McPherson, B.; Will, R.A.; Lee, S.; Dai, Z.; Pan, F. Co-optimization of CO2-EOR and storage processes in mature oil reservoirs. Greenh. Gases Sci. Technol. 2016, 7, 128–142. [Google Scholar] [CrossRef]
- Koray, A.-M.; Bui, D.; Ampomah, W.; Kubi, E.A.; Klumpenhower, J. Application of Machine Learning Optimization Workflow to Improve Oil Recovery. In Proceedings of the SPE Oklahoma City Oil and Gas Symposium, Oklahoma City, OK, USA, 17–19 April 2023; p. D021S003R001. [Google Scholar] [CrossRef]
- Takahashi, S.; Kovscek, A.R. Wettability estimation of low-permeability, siliceous shale using surface forces. J. Pet. Sci. Eng. 2010, 75, 33–43. [Google Scholar] [CrossRef]
- Soltanian, M.R.; Hajirezaie, S.; Hosseini, S.A.; Dashtian, H.; Amooie, M.A.; Meyal, A.; Ershadnia, R.; Ampomah, W.; Islam, A.; Zhang, X. Multicomponent reactive transport of carbon dioxide in fluvial heterogeneous aquifers. J. Nat. Gas Sci. Eng. 2019, 65, 212–223. [Google Scholar] [CrossRef]
- Esfahani, M.R.; Haghighi, M. Wettability evaluation of Iranian carbonate formations. J. Pet. Sci. Eng. 2004, 42, 257–265. [Google Scholar] [CrossRef]
- Ampomah, W.; Balch, R.; Cather, M.; Will, R.; Gunda, D.; Dai, Z.; Soltanian, M. Optimum design of CO2 storage and oil recovery under geological uncertainty. Appl. Energy 2017, 195, 80–92. [Google Scholar] [CrossRef]
- León-Pabón, J.A.; Mejía-Pilonieta, T.J.; Carrillo-Moreno, L.F.; Buendía-Lombana, H.; Zapata, J.F.; Díaz-Prada, C.A. Experimental comparison for the calculation of rock wettability using the Amott-Harvey method and a new visual method. CTyF Ciencia Tecnol. Future 2014, 5, 5–22. [Google Scholar] [CrossRef]
- Trujillo, N.A. Influence of Lithology and Diagenesis on Mechanical and Sealing Properties of the Thirteen Finger Limestone and Upper Morrow Shale, Farnsworth Unit, Ochiltree County, Texas; New Mexico Institute of Mining and Technology: Ann Arbor, MI, USA, 2018. [Google Scholar]
- Acheampong, W.A.S.; McMillan, M.; El-Kaseeh, G. Development of a Machine Learning Assisted Framework in Calibrating In-situ Stress Changes Through Time-lapse Vertical Seismic Profiling. In Proceedings of the 16th Greenhouse Gas Control Technologies Conference, Paris, France, 23–24 October 2022. [Google Scholar] [CrossRef]
- Ahmed, T. Advanced Reservoir Engineering; Gulf Professional Publishing: Houston, TX, USA, 2005; ISBN 978-0-7506-7733-2. [Google Scholar]
- Lee, S.Y.; Webb, K.J.; Collins, I.R.; Lager, A.; Clarke, S.; O’Sullivan, M.; Routh, A.F.; Wang, X. Low Salinity Oil Recovery—Increasing Understanding of the Underlying Mechanisms. In Proceedings of the SPE Improved Oil Recovery Symposium, Tulsa, OK, USA, 24–28 April 2010; Volume 129722, pp. 1–11. [Google Scholar] [CrossRef]
- Neasham, J.W. The morphology of dispersed clay in sandstone reservoirs and its effect on sandstone shaliness, pore space and fluid flow properties. In Proceedings of the SPE Annual Fall Technical Conference and Exhibition, Denver, CO, USA, 9–12 October 1977. [Google Scholar] [CrossRef]
- Sharma, M.M.; Pang, S.H.; Wennberg, K.E.; Morgenthaler, L.N. Injectivity decline in water-injection wells: An offshore Gulf of Mexico case study. SPE Prod. Facil. 2000, 15, 6–13. [Google Scholar] [CrossRef]
- Shutong, P.; Sharma, M.M. A model for predicting injectivity decline in water-injection wells. SPE Form. Eval. 1997, 12, 194–201. [Google Scholar]
- Bedrikovetsky, P.G.; Silva, M.J.; Fonseca, R.D.; Silva, M.F.; Siqueira, A.G.; Souza, A.L. Well-history-based prediction of injectivity decline during seawater flooding. In Proceedings of the SPE European Formation Damage Conference, Sheveningen, The Netherlands, 25–27 May 2005. [Google Scholar] [CrossRef]
- Nunes, M.; Bedrikovetsky, P.; Newbery, B.; Paiva, R.; Furtado, C.; de Souza, A.L. Theoretical Definition of Formation Damage Zone With Applications to Well Stimulation. J. Energy Resour. Technol. 2010, 132, 033101. [Google Scholar] [CrossRef]
- Dambani, S.L.; Blunt, M.J.; Tendo, F.; Lawal, K.A. Analysis of injectivity decline in some offshore water injectors. In Proceedings of the SPE Nigeria Annual International Conference and Exhibition, Lagos, Nigeria, 5–7 August 2014; p. SPE-172469-MS. [Google Scholar]
- Rasmussen, L.; Fan, T.; Rinehart, A.; Luhmann, A.; Ampomah, W.; Dewers, T.; Heath, J.; Cather, M.; Grigg, R. Carbon Storage and Enhanced Oil Recovery in Pennsylvanian Morrow Formation Clastic Reservoirs: Controls on Oil–Brine and Oil–CO2 Relative Permeability from Diagenetic Heterogeneity and Evolving Wettability. Energies 2019, 12, 3663. [Google Scholar] [CrossRef]
- Yuan, B.; Moghanloo, R.G.; Zheng, D. Enhanced oil recovery by combined nanofluid and low salinity water flooding in multi-layer heterogeneous reservoirs. In Proceedings of the SPE Annual Technical Conference and Exhibition; Society of Petroleum Engineers (SPE), Dubai, United Arab Emirates, 26–28 September 2016. [Google Scholar] [CrossRef]
- Wei, P.; Pu, W.; Sun, L.; Pu, Y.; Wang, S.; Fang, Z. Oil recovery enhancement in low permeable and severe heterogeneous oil reservoirs via gas and foam flooding. J. Pet. Sci. Eng. 2018, 163, 340–348. [Google Scholar] [CrossRef]
- Kalam, S. An empirical Correlation for Water Flooding Performance in a Layered Reservoir. Master’s Thesis, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia, 2016. [Google Scholar]
- Kalam, S.; Abu-Khamsin, S.A.; Al-Yousef, H.Y.; Gajbhiye, R. A novel empirical correlation for waterflooding performance prediction in stratified reservoirs using artificial intelligence. Neural Comput. Appl. 2020, 33, 2497–2514. [Google Scholar] [CrossRef]
Clay Minerals | Specie | Problems |
---|---|---|
Illite KAl2(AlSiO)O(OH)2 | illite | migratory, microporosity |
Smectite (0.5Ca, Na)0.7(Al, Mg, Fe)4 [(Si,Al)8O20](OH)4x nH2O | Montmorillonite, sapionite, montronite, hectorite | sensitive, macroporosity |
Kaolinite Al4[Si4O10](OH)8 | Kaolinite, nacrite, hallosite | migratory |
Chlorite (Mg,Fe,Al)6 (Si,Al)4O10(OH)8 | Chamosite, greenalite, clinochlore | sensitive |
Mixed-layer clays | Smectite-chlorite, smectite-illite | Sensitive, microporosity |
% of Whole Rock | |||||
---|---|---|---|---|---|
Quartz | Feldspar | Calcite | Dolomite | Clay | |
West | 84.67 | 8.44 | 1.22 | 0 | 5.67 |
East | 83.08 | 8 | 0.92 | 0 | 6.08 |
Differences | 1.53 | 0.44 | 0.31 | 0 | 0.42 |
Clay Fraction Weight % | ||||
---|---|---|---|---|
Smectite | Illite | Chlorite | Kaolinite | |
West | 3.56 | 9.22 | 31 | 55.67 |
East | 4.8 | 12.75 | 28 | 55.75 |
Differences | 0.47 | 3.53 | 3 | 0.08 |
Percentiles Before | Percentiles After | |||||
---|---|---|---|---|---|---|
25th | 50th | 75th | 25th | 50th | 75th | |
East | 12.5 | 13.5 | 15 | 12.5 | 14 | 15 |
West | 13.5 | 15 | 17 | 15.5 | 17.5 | 19 |
Percentiles Before | Percentiles After | |||||
---|---|---|---|---|---|---|
25th | 50th | 75th | 25th | 50th | 75th | |
East | 0.8 | 2.9 | 6.8 | 0.6 | 0.8 | 1.5 |
West | 8 | 20 | 70 | 4.4 | 27.1 | 67.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morgan, A.; Ampomah, W.; Grigg, R.; Wang, S.; Czarnota, R. Mechanisms of Waterflood Inefficiency: Analysis of Geological, Petrophysical and Reservoir History, a Field Case Study of FWU (East Section). Energies 2024, 17, 1565. https://doi.org/10.3390/en17071565
Morgan A, Ampomah W, Grigg R, Wang S, Czarnota R. Mechanisms of Waterflood Inefficiency: Analysis of Geological, Petrophysical and Reservoir History, a Field Case Study of FWU (East Section). Energies. 2024; 17(7):1565. https://doi.org/10.3390/en17071565
Chicago/Turabian StyleMorgan, Anthony, William Ampomah, Reid Grigg, Sai Wang, and Robert Czarnota. 2024. "Mechanisms of Waterflood Inefficiency: Analysis of Geological, Petrophysical and Reservoir History, a Field Case Study of FWU (East Section)" Energies 17, no. 7: 1565. https://doi.org/10.3390/en17071565
APA StyleMorgan, A., Ampomah, W., Grigg, R., Wang, S., & Czarnota, R. (2024). Mechanisms of Waterflood Inefficiency: Analysis of Geological, Petrophysical and Reservoir History, a Field Case Study of FWU (East Section). Energies, 17(7), 1565. https://doi.org/10.3390/en17071565