Load Flow Assignments’ Definition from Day-Ahead Electricity Market Interconnection Power Flows: A Study for Transmission Networks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dataset Description
- simulations looking for possible frequency instability and obtaining an insight on the future transmission network inertia needs (to be satisfied either by new synchronous generator or compensator installations or by the provision of synthetic inertia by BESS or RES);
- short-circuit analysis to check whether the mass introduction of converter-based generation will result in an unacceptable reduction in short-circuit power.
2.2. Methods
2.2.1. Optimization Method
2.2.2. Analytical Method
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Impram, S.; Nese, S.V.; Oral, B. Challenges of renewable energy penetration on power system flexibility: A survey. Energy Strategy Rev. 2020, 31, 100539. [Google Scholar] [CrossRef]
- Fresia, M.; Bracco, S. Electric Vehicle Fleet Management for a Prosumer Building with Renewable Generation. Energies 2023, 16, 7213. [Google Scholar] [CrossRef]
- AhmadiAhangar, R.; Plaum, F.; Haring, T.; Drovtar, I.; Korotko, T.; Rosin, A. Impacts of grid-scale battery systems on power system operation, case of Baltic region. IET Smart Grid 2024. [Google Scholar] [CrossRef]
- Sinsel, S.R.; Riemke, R.L.; Hoffmann, V.H. Challenges and solution technologies for the integration of variable renewable energy sources—A review. Renew. Energy 2020, 145, 2271–2285. [Google Scholar] [CrossRef]
- Tielens, P.; Van Hertem, D. The relevance of inertia in power systems. Renew. Sustain. Energy Rev. 2016, 55, 999–1009. [Google Scholar] [CrossRef]
- ENTSO-E. Need for Synthetic Inertia (SI) for Frequency Regulation; ENTSO-E: Brussels, Belgium, 2017. [Google Scholar]
- Minetti, M.; Fresia, M. A Review of Primary and Secondary Control for Islanded No-Inertia Microgrids. In Proceedings of the 2021 IEEE International Conference on Environment and Electrical Engineering and 2021 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), Bari, Italy, 7–10 September 2021; pp. 1–7. [Google Scholar]
- Chawda, G.S.; Shaik, A.G.; Shaik, M.; Padmanaban, S.; Holm-Nielsen, J.B.; Mahela, O.P.; Kaliannan, P. Comprehensive review on detection and classification of power quality disturbances in utility grid with renewable energy penetration. IEEE Access 2020, 8, 146807–146830. [Google Scholar] [CrossRef]
- Bajaj, M.; Singh, A.K. Grid integrated renewable DG systems: A review of power quality challenges and state-of-the-art mitigation techniques. Int. J. Energy Res. 2020, 44, 26–69. [Google Scholar] [CrossRef]
- Anees, A.S. Grid integration of renewable energy sources: Challenges, issues and possible solutions. In Proceedings of the 2012 IEEE 5th India International Conference on Power Electronics (IICPE), Delhi, India, 6–8 December 2012; pp. 1–6. [Google Scholar]
- Nguyen, H.T.; Yang, G.; Nielsen, A.H.; Jensen, P.H. Combination of synchronous condenser and synthetic inertia for frequency stability enhancement in low-inertia systems. IEEE Trans. Sustain. Energy 2018, 10, 997–1005. [Google Scholar] [CrossRef]
- Lone, A.H.; Gedam, A.I.; Sekhar, K.R. Voltage Support and Imbalance Mitigation during Voltage Sags by Renewable Energy Fed Grid Connected Inverters. In Proceedings of the 2023 IEEE IAS Global Conference on Renewable Energy and Hydrogen Technologies (GlobConHT), Male, Maldives, 11–12 March 2023; pp. 1–6. [Google Scholar]
- Nguyen, H.T.; Yang, G.; Nielsen, A.H.; Jensen, P.H. Challenges and research opportunities of frequency control in low inertia systems. In E3S Web of Conferences, Proceedings of the 2019 The 2nd International Conference on Electrical Engineering and Green Energy (CEEGE 2019), Rome, Italy, 28–30 June 2019; EDP Sciences: Les Ulis, France, 2019; p. 02001. [Google Scholar]
- Pestana, R.; Khan, S.H.; Agreira, C.F. Optimum Voltage Droop Control in Transmission Systems to Support the Local Voltage Stability with High Share of RES. In Proceedings of the 2021 13th IEEE PES Asia Pacific Power & Energy Engineering Conference (APPEEC), Kerala, India, 21–23 November 2021; pp. 1–7. [Google Scholar]
- Shang, L.; Dong, X.; Liu, C.; Gong, Z. Fast grid frequency and voltage control of battery energy storage system based on the amplitude-phase-locked-loop. IEEE Trans. Smart Grid 2021, 13, 941–953. [Google Scholar] [CrossRef]
- Lal, N.K.; Mubeen, S.E. A review on load flow analysis. Int. J. Innov. Res. Dev. 2014, 3, 337–341. [Google Scholar]
- Andersson, G. Modelling and Analysis of Electric Power Systems; ETH Zurich: Zurich, Switzerland, 2008; pp. 5–6. [Google Scholar]
- Grisales-Noreña, L.F.; Morales-Duran, J.C.; Velez-Garcia, S.; Montoya, O.D.; Gil-González, W. Power flow methods used in AC distribution networks: An analysis of convergence and processing times in radial and meshed grid configurations. Results Eng. 2023, 17, 100915. [Google Scholar] [CrossRef]
- Bonfiglio, A.; Delfino, F.; Invernizzi, M.; Labella, A.; Mestriner, D.; Procopio, R.; Serra, P. Approximate characterization of large Photovoltaic power plants at the Point of Interconnection. In Proceedings of the Universities Power Engineering Conference, Stoke-on-Trent, UK, 1–4 September 2015. [Google Scholar]
- Grainger, J. Power System Analysis; McGraw-Hill: New York, NY, USA, 1999. [Google Scholar]
- Borkowska, B. Probabilistic load flow. IEEE Trans. Power Appar. Syst. 1974, 3, 752–759. [Google Scholar] [CrossRef]
- Chen, P.; Chen, Z.; Bak-Jensen, B. Probabilistic load flow: A review. In Proceedings of the 2008 3rd International Conference on Electric Utility Deregulation and Restructuring and Power Technologies, Nanjing, China, 6–9 April 2008; pp. 1586–1591. [Google Scholar]
- Allan, R.; Da Silva, A.L.; Burchett, R. Evaluation methods and accuracy in probabilistic load flow solutions. IEEE Trans. Power Appar. Syst. 1981, 5, 2539–2546. [Google Scholar] [CrossRef]
- Huang, Y.-F.; Werner, S.; Huang, J.; Kashyap, N.; Gupta, V. State estimation in electric power grids: Meeting new challenges presented by the requirements of the future grid. IEEE Signal Process. Mag. 2012, 29, 33–43. [Google Scholar] [CrossRef]
- Winter, A.; Igel, M.; Schegner, P. Supervised Learning Approach for State Estimation in Distribution Systems with missing Input Data. In Proceedings of the 2021 IEEE PES Innovative Smart Grid Technologies Europe (ISGT Europe), Espoo, Finland, 18–21 October 2021; pp. 1–5. [Google Scholar]
- Bonfiglio, A.; Fresia, M.; Minetti, M.; Procopio, R.; Rosini, A.; Lisciandrello, G.; Orrù, L. Inertia Requirements Assessment for the Italian Transmission Network in the Future Network Scenario. In Proceedings of the 2023 IEEE Belgrade PowerTech, Belgrade, Serbia, 25–29 June 2023; pp. 1–5. [Google Scholar]
- Fresia, M.; Minetti, M.; Rosini, A.; Procopio, R.; Bonfiglio, A.; Invernizzi, M.; Denegri, G.B.; Lisciandrello, G.; Orrù, L. A Techno-Economic Assessment to Define Inertia Needs of the Italian Transmission Network in the 2030 Energy Scenario; IEEE Transactions on Power Systems: Piscataway, NJ, USA, 2023; pp. 1–12. [Google Scholar]
- TERNA. Documento di Descrizione degli Scenari; TERNA: Rome, Italy, 2022. [Google Scholar]
- TERNA. Allegato A.24 al Codice di Rete; TERNA: Rome, Italy, 2021. [Google Scholar]
- Marconato, R. Steady State Behavior Controls, Short Circuits and Protection Systems; Electric Power Systems: North Logan, UT, USA, 2004; Volume 2. [Google Scholar]
- Nocedal, J.; Öztoprak, F.; Waltz, R. An interior point method for nonlinear programming with infeasibility detection capabilities. Optim. Methods Softw. 2014, 29, 837–854. [Google Scholar] [CrossRef]
- MathWorks Italia. Solve System of Nonlinear Qquations-MATLAB fsolve. Available online: https://it.mathworks.com/help/optim/ug/fsolve.html#bqbnh0l-1 (accessed on 20 January 2024).
Network Parameters | Hourly Data | Optimization Parameters | |
---|---|---|---|
Analytical method | Rk Xk k = 1, …, NL | Pi i = 1, …, N ΦTerna,k k = 1, …, NL | - |
Optimization method | Rk Xk k = 1, …, NL | Pi i = 1, …, N ΦTerna,k k = 1, …, NL | Vmax Vmin δmax δmin |
Hour | Optimization Method | Analytical Method |
---|---|---|
Computation Time [s] | ||
7 AM, 22 March 2030 | 0.3112 | 0.0633 |
2 PM, 9 April 2030 | 0.2921 | 0.1062 |
9 PM, 25 August 2030 | 0.3008 | 0.0604 |
Node | Optimization Method | Analytical Method | ||
---|---|---|---|---|
Voltage Amplitude [p.u.] | Voltage Phase [deg] | Voltage Amplitude [p.u.] | Voltage Phase [deg] | |
1 | 1.00000 | 0 | 1.00000 | 0 |
2 | 0.99939 | −0.34 | 0.99702 | −0.24 |
3 | 0.99999 | −1.95 | 0.98940 | −1.83 |
4 | 0.99999 | −1.08 | 0.98907 | −0.95 |
5 | 1.00000 | 1.83 | 1.00074 | 1.95 |
6 | 1.00008 | 1.83 | 0.99784 | 1.97 |
7 | 0.99992 | 1.65 | 0.99705 | 1.79 |
8 | 0.99999 | −0.91 | 0.97735 | −0.33 |
Line | Optimization Method | Analytical Method | ||
---|---|---|---|---|
Active Power Flow Deviation [%] | Active Power Losses [%] | Active Power Flow Deviation [%] | Active Power Losses [%] | |
1 | 0.46 | 0.39 | 0.37 | 0.30 |
2 | 0.90 | 0.24 | 0.90 | 0.26 |
3 | −3.59 | 0.13 | −3.57 | 0.13 |
4 | −0.31 | 0.35 | −0.31 | 0.36 |
5 | N/C 1 | N/C 1 | N/C 1 | N/C 1 |
6 | 0.04 | 0.07 | −0.01 | 0.07 |
7 | 0.08 | 1.93 | −0.18 | 1.67 |
Node | Optimization Method | Analytical Method | ||
---|---|---|---|---|
Voltage Amplitude [p.u.] | Voltage Phase [deg] | Voltage Amplitude [p.u.] | Voltage Phase [deg] | |
1 | 1.00000 | 0 | 1.00000 | 0 |
2 | 0.99999 | −0.29 | 0.99758 | −0.19 |
3 | 1.00179 | 3.92 | 0.99205 | 4.1 |
4 | 0.95719 | 22.4 | 1.01327 | 21.5 |
5 | 1.01686 | 29.0 | 0.99824 | 28.1 |
6 | 1.02561 | 31.6 | 0.98994 | 30.9 |
7 | 1.02078 | 31.4 | 0.98752 | 30.6 |
8 | 0.99765 | 28.6 | 0.95856 | 27.7 |
Line | Optimization Method | Analytical Method | ||
---|---|---|---|---|
Active Power Flow Deviation [%] | Active Power Losses [%] | Active Power Flow Deviation [%] | Active Power Losses [%] | |
1 | 1.17 | 0.36 | 0.90 | 0.24 |
2 | −3.02 | 0.65 | −2.46 | 0.68 |
3 | −2.21 | 3.02 | −1.68 | 2.74 |
4 | −0.27 | 0.97 | −0.11 | 0.82 |
5 | 2.12 | 0.32 | 2.10 | 0.36 |
6 | −1.50 | 0.17 | −1.50 | 0.13 |
7 | 0.76 | 2.13 | 0.96 | 2.33 |
Node | Optimization Method | Analytical Method | ||
---|---|---|---|---|
Voltage Amplitude [p.u.] | Voltage Phase [deg] | Voltage Amplitude [p.u.] | Voltage Phase [deg] | |
1 | 1 | 0 | 1 | 0 |
2 | 0.99948 | −1.94 | 0.99742 | −0.21 |
3 | 1.00216 | 1.49 | 1.00126 | 3.91 |
4 | 0.95568 | 17.4 | 1.02641 | 22.2 |
5 | 1.02394 | 23.6 | 0.99748 | 29.3 |
6 | 1.02370 | 24.9 | 0.98650 | 31.3 |
7 | 1.01872 | 23.7 | 0.98388 | 30.9 |
8 | 0.99778 | 19.8 | 0.95385 | 28.1 |
Line | Optimization Method | Analytical Method | ||
---|---|---|---|---|
Active Power Flow Deviation [%] | Active Power Losses [%] | Active Power Flow Deviation [%] | Active Power Losses [%] | |
1 | 1.77 | 0.35 | 1.52 | 0.26 |
2 | −5.83 | 0.59 | −5.11 | 0.64 |
3 | −4.39 | 3.12 | −3.78 | 2.88 |
4 | −0.76 | 1.06 | −0.60 | 0.91 |
5 | 3.39 | 0.24 | 3.35 | 0.28 |
6 | −1.50 | 0.17 | −1.50 | 0.13 |
7 | 0.77 | 2.15 | 0.99 | 2.36 |
Hour | Optimization Method | Analytical Method | ||||
---|---|---|---|---|---|---|
MAE [MW] | RMSE [MW] | cvRMSE [%] | MAE [MW] | RMSE [MW] | cvRMSE [%] | |
7 AM, 22 March 2030 | 11.58 | 22.74 | 1.32 | 9.91 | 18.39 | 0.76 |
2 PM, 9 April 2030 | 44.61 | 60.87 | 1.86 | 70.88 | 95.66 | 2.76 |
9 PM, 25 August 2030 | 25.41 | 32.59 | 1.26 | 24.73 | 31.22 | 1.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fresia, M.; Minetti, M.; Procopio, R.; Bonfiglio, A.; Lisciandrello, G.; Orrù, L. Load Flow Assignments’ Definition from Day-Ahead Electricity Market Interconnection Power Flows: A Study for Transmission Networks. Energies 2024, 17, 1391. https://doi.org/10.3390/en17061391
Fresia M, Minetti M, Procopio R, Bonfiglio A, Lisciandrello G, Orrù L. Load Flow Assignments’ Definition from Day-Ahead Electricity Market Interconnection Power Flows: A Study for Transmission Networks. Energies. 2024; 17(6):1391. https://doi.org/10.3390/en17061391
Chicago/Turabian StyleFresia, Matteo, Manuela Minetti, Renato Procopio, Andrea Bonfiglio, Giuseppe Lisciandrello, and Luca Orrù. 2024. "Load Flow Assignments’ Definition from Day-Ahead Electricity Market Interconnection Power Flows: A Study for Transmission Networks" Energies 17, no. 6: 1391. https://doi.org/10.3390/en17061391
APA StyleFresia, M., Minetti, M., Procopio, R., Bonfiglio, A., Lisciandrello, G., & Orrù, L. (2024). Load Flow Assignments’ Definition from Day-Ahead Electricity Market Interconnection Power Flows: A Study for Transmission Networks. Energies, 17(6), 1391. https://doi.org/10.3390/en17061391