A Novel Layout for Combined Heat and Power Production for a Hospital Based on a Solid Oxide Fuel Cell †
Abstract
:1. Introduction
Aim of the Paper
2. System Layout4
- HE-GA-A, where this exhaust stream heats up the fresh air entering the plant;
- HE-EG-CH, where the exhaust stream supplies thermal energy to the methane entering the plant;
- HRSG-3, where the exhaust stream produces steam.
3. System Model
Thermoeconomic Model
4. Case Study
5. Results
Sensitivity Analysis
6. Conclusions
- The proposed layout is extremely promising, as it was able to reduce the natural gas consumption of the hospital by almost 30%.
- The proposed system achieves a primary energy savings of 32%.
- From an economic point of view, despite the remarkable capital cost of EUR 17.7 M, the proposed plant achieves an interesting simple payback of 6.5 years.
- The PV field capacity should be equal to 9.00 MW to maximize the economic performance of the proposed plant.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
AEC | Alkaline electrolyzer cell |
AFC | Alkaline fuel cell |
A-SH | Auxiliary steam heater |
ASR | Area specific resistance (w/cm2) |
C | Cost (EUR) |
CHP | Cogeneration of heat and power |
CCHPO | Combined cooling, heating, power, and oxygen system |
E | Energy (kWh) or (MWh) |
F | Faraday’s constant (C/mol) |
GHG | Greenhouse gases |
HE | Heat exchanger |
HSS | Hydrogen storage system |
i | Current density (mA/cm2) |
LCOE | Levelized cost of energy (EUR) |
n | Molar flow rate (mol/s) |
NPV | Net present value (kEUR) |
OLR | Organic loading rate (kgCOD/(L d)) |
p | Pressure (bar) |
P | Power (kW) |
PE | Primary energy (MWh) |
PEM | Proton exchange membrane |
PES | Primary energy saving (%) |
PI | Profit index (%) |
PV | Photovoltaic |
R | Gas constant (J/mol K) |
RES | Renewable energy system |
rSOFC | Reversible solid oxide fuel cell |
SMR | Steam methane reforming |
SOEC | Solid oxide electrolyzer cell |
SOFC | Solid oxide fuel cell |
SPB | Simple pay back (years) |
T | Temperature (°C) or (K) |
V | Volume (m3) |
Subscripts | |
aux | Auxiliary |
EE | Electric energy |
fromGRID | Referred to electricity withdrawn from the electric grid |
NG | Natural gas |
toGRID | Referred to electricity exported to the electric grid |
Greek symbols | |
β | Compression factor |
η | Efficiency (adim.) |
References
- Zhang, S.-C.; Yang, X.-Y.; Xu, W.; Fu, Y.-J. Contribution of nearly-zero energy buildings standards enforcement to achieve carbon neutral in urban area by 2060. Adv. Clim. Change Res. 2021, 12, 734–743. [Google Scholar] [CrossRef]
- Gaspard, A.; Chateau, L.; Laruelle, C.; Lafitte, B.; Léonardon, P.; Minier, Q.; Motamedi, K.; Ougier, L.; Pineau, A.; Thiriot, S. Introducing sufficiency in the building sector in net-zero scenarios for France. Energy Build. 2023, 278, 112590. [Google Scholar] [CrossRef]
- Wang, T.; Li, X.; Liao, P.-C.; Fang, D. Building energy efficiency for public hospitals and healthcare facilities in China: Barriers and drivers. Energy 2016, 103, 588–597. [Google Scholar] [CrossRef]
- CADDET; IEA; OECD. Saving Energy with Energy Efficiency in Hospitals; CADDET: Sittard, The Netherlands, 2005. [Google Scholar]
- García-Sanz-Calcedo, J.; Al-Kassir, A.; Yusaf, T. Economic and Environmental Impact of Energy Saving in Healthcare Buildings. Appl. Sci. 2018, 8, 440. [Google Scholar] [CrossRef]
- Mohd Daud, A.K.; Ahmad, E.Z.; Razak, T.R.; Jarimi, H. Expertise-based systematic guidelines for chiller retrofitting in healthcare facilities. J. Build. Eng. 2023, 74, 106708. [Google Scholar] [CrossRef]
- Shen, C.; Zhao, K.; Ge, J.; Zhou, Q. Analysis of Building Energy Consumption in a Hospital in the Hot Summer and Cold Winter Area. Energy Procedia 2019, 158, 3735–3740. [Google Scholar] [CrossRef]
- Chung, M.; Park, H.-C. Comparison of building energy demand for hotels, hospitals, and offices in Korea. Energy 2015, 92, 383–393. [Google Scholar] [CrossRef]
- Atienza-Márquez, A.; Domínguez Muñoz, F.; Fernández Hernández, F.; Cejudo López, J.M. Domestic hot water production system in a hospital: Energy audit and evaluation of measures to boost the solar contribution. Energy 2022, 261, 125275. [Google Scholar] [CrossRef]
- Balali, A.; Valipour, A. Prioritization of passive measures for energy optimization designing of sustainable hospitals and health centres. J. Build. Eng. 2021, 35, 101992. [Google Scholar] [CrossRef]
- Short, C.A.; Lomas, K.J.; Giridharan, R.; Fair, A.J. Building resilience to overheating into 1960’s UK hospital buildings within the constraint of the national carbon reduction target: Adaptive strategies. Build. Environ. 2012, 55, 73–95. [Google Scholar] [CrossRef]
- Kim, S.H.; Augenbroe, G. Decision support for choosing ventilation operation strategy in hospital isolation rooms: A multi-criterion assessment under uncertainty. Build. Environ. 2013, 60, 305–318. [Google Scholar] [CrossRef]
- As, M.; Bilir, T. Enhancing energy efficiency and cost-effectiveness while reducing CO2 emissions in a hospital building. J. Build. Eng. 2023, 78, 107792. [Google Scholar] [CrossRef]
- Koirala, B.; Hers, S.; Morales-España, G.; Özdemir, Ö.; Sijm, J.; Weeda, M. Integrated electricity, hydrogen and methane system modelling framework: Application to the Dutch Infrastructure Outlook 2050. Appl. Energy 2021, 289, 116713. [Google Scholar] [CrossRef]
- Cappiello, F.L.; Erhart, T.G. Modular cogeneration for hospitals: A novel control strategy and optimal design. Energy Convers. Manag. 2021, 237, 114131. [Google Scholar] [CrossRef]
- Biglia, A.; Caredda, F.V.; Fabrizio, E.; Filippi, M.; Mandas, N. Technical-economic feasibility of CHP systems in large hospitals through the Energy Hub method: The case of Cagliari AOB. Energy Build. 2017, 147, 101–112. [Google Scholar] [CrossRef]
- Isa, N.M.; Tan, C.W.; Yatim, A. A comprehensive review of cogeneration system in a microgrid: A perspective from architecture and operating system. Renew. Sustain. Energy Rev. 2018, 81, 2236–2263. [Google Scholar] [CrossRef]
- Evins, R.; Orehounig, K.; Dorer, V.; Carmeliet, J. New formulations of the ‘energy hub’model to address operational constraints. Energy 2014, 73, 387–398. [Google Scholar] [CrossRef]
- Calise, F.; Cappiello, F.L.; Cimmino, L.; Dentice d’Accadia, M.; Vicidomini, M. Dynamic Simulation and Thermoeconomic Analysis of a Hybrid Renewable System Based on PV and Fuel Cell Coupled with Hydrogen Storage. Energies 2021, 14, 7657. [Google Scholar] [CrossRef]
- Renedo, C.J.; Ortiz, A.; Mañana, M.; Silió, D.; Pérez, S. Study of different cogeneration alternatives for a Spanish hospital center. Energy Build. 2006, 38, 484–490. [Google Scholar] [CrossRef]
- Alexis, G.; Liakos, P. A case study of a cogeneration system for a hospital in Greece. Economic and environmental impacts. Appl. Therm. Eng. 2013, 54, 488–496. [Google Scholar] [CrossRef]
- Gimelli, A.; Muccillo, M. Optimization criteria for cogeneration systems: Multi-objective approach and application in an hospital facility. Appl. Energy 2013, 104, 910–923. [Google Scholar] [CrossRef]
- Ghoreishinejad, M.; Deymi-Dashtebayaz, M.; Norani, M. Proposal and multi-objective optimization of a CCHP system based on heat recovery from oxygen generator in hospitals: A case study. J. Clean. Prod. 2023, 421, 138549. [Google Scholar] [CrossRef]
- Chen, X.; Chen, Y.; Zhang, M.; Jiang, S.; Gou, H.; Pang, Z.; Shen, B. Hospital-oriented quad-generation (HOQG)—A combined cooling, heating, power and gas (CCHPG) system. Appl. Energy 2021, 300, 117382. [Google Scholar] [CrossRef]
- Calise, F.; Cappiello, F.L.; Dentice d’Accadia, M.; Libertini, L.; Vicidomini, M. Dynamic simulation and thermoeconomic analysis of a trigeneration system in a hospital application. Energies 2020, 13, 3558. [Google Scholar] [CrossRef]
- Izzeldin, M.; Muradoğlu, Y.G.; Pappas, V.; Petropoulou, A.; Sivaprasad, S. The impact of the Russian-Ukrainian war on global financial markets. Int. Rev. Financ. Anal. 2023, 87, 102598. [Google Scholar] [CrossRef]
- Lo, G.-D.; Marcelin, I.; Bassène, T.; Sène, B. The Russo-Ukrainian war and financial markets: The role of dependence on Russian commodities. Financ. Res. Lett. 2022, 50, 103194. [Google Scholar] [CrossRef]
- Szafranek, K.; Papież, M.; Rubaszek, M.; Śmiech, S. How immune is the connectedness of European natural gas markets to exceptional shocks? Resour. Policy 2023, 85, 103917. [Google Scholar] [CrossRef]
- Zhou, E.; Wang, X. Dynamics of systemic risk in European gas and oil markets under the Russia–Ukraine conflict: A quantile regression neural network approach. Energy Rep. 2023, 9, 3956–3966. [Google Scholar] [CrossRef]
- European Commission. REPowerEU. Available online: https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal/repowereu-affordable-secure-and-sustainable-energy-europe_it (accessed on 15 May 2020).
- Lamioni, R.; Bronzoni, C.; Folli, M.; Tognotti, L.; Galletti, C. Impact of H2-enriched natural gas on pollutant emissions from domestic condensing boilers: Numerical simulations of the combustion chamber. Int. J. Hydrogen Energy 2023, 48, 19686–19699. [Google Scholar] [CrossRef]
- de Miranda, P.E.V. Hydrogen Energy: Sustainable and Perennial. In Science and Engineering of Hydrogen-Based Energy Technologies; Elsevier: Amsterdam, The Netherlands, 2019; pp. 1–38. [Google Scholar]
- Calise, F.; Cappiello, F.L.; Vicidomini, M. Chapter 9—Applications of Solar PV Systems in Hydrogen Production. In Photovoltaic Solar Energy Conversion; Gorjian, S., Shukla, A., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 275–312. [Google Scholar] [CrossRef]
- Harichandan, S.; Kar, S.K.; Bansal, R.; Mishra, S.K. Achieving sustainable development goals through adoption of hydrogen fuel cell vehicles in India: An empirical analysis. Int. J. Hydrogen Energy 2023, 48, 4845–4859. [Google Scholar] [CrossRef]
- Ahmad, M.Z.; Ahmad, S.H.; Chen, R.S.; Ismail, A.F.; Hazan, R.; Baharuddin, N.A. Review on recent advancement in cathode material for lower and intermediate temperature solid oxide fuel cells application. Int. J. Hydrogen Energy 2022, 47, 1103–1120. [Google Scholar] [CrossRef]
- Mehr, A.; Lanzini, A.; Santarelli, M.; Rosen, M.A. Polygeneration systems based on high temperature fuel cell (MCFC and SOFC) technology: System design, fuel types, modeling and analysis approaches. Energy 2021, 228, 120613. [Google Scholar] [CrossRef]
- Peters, R.; Deja, R.; Engelbracht, M.; Frank, M.; Nguyen, V.N.; Blum, L.; Stolten, D. Efficiency analysis of a hydrogen-fueled solid oxide fuel cell system with anode off-gas recirculation. J. Power Sources 2016, 328, 105–113. [Google Scholar] [CrossRef]
- Calise, F.; Cappiello, F.L.; Cimmino, L.; Vicidomini, M. Dynamic simulation modelling of reversible solid oxide fuel cells for energy storage purpose. Energy 2022, 260, 124893. [Google Scholar] [CrossRef]
- Sun, L.; Wang, X.; Hua, Q.; Lee, K.Y. Energy scheduling of a fuel cell based residential cogeneration system using stochastic dynamic programming. Process Saf. Environ. Prot. 2023, 175, 272–279. [Google Scholar] [CrossRef]
- Bhogilla, S.; Pandoh, A.; Singh, U.R. Cogeneration system combining reversible PEM fuel cell, and metal hydride hydrogen storage enabling renewable energy storage: Thermodynamic performance assessment. Int. J. Hydrogen Energy 2024, 52, 1147–1155. [Google Scholar] [CrossRef]
- Tariq, A.H. Optimal sizing of photovoltaic/fuel cell-based energy system with autonomous oxygen production for hospitals in four climatic zones of Pakistan: An economic-energy-environmental feasibility analysis. Renew. Energy Focus 2023, 47, 100494. [Google Scholar] [CrossRef]
- Isa, N.M.; Das, H.S.; Tan, C.W.; Yatim, A.H.M.; Lau, K.Y. A techno-economic assessment of a combined heat and power photovoltaic/fuel cell/battery energy system in Malaysia hospital. Energy 2016, 112, 75–90. [Google Scholar] [CrossRef]
- Zhang, M.; Chen, X.; Chen, Y.; Jiang, S.; Shen, B. Combined cooling, heating, power and oxygen for hospital buildings employing photovoltaic power and liquefied methane. Energy Rep. 2022, 8, 815–821. [Google Scholar] [CrossRef]
- Sleiti, A.K.; Al-Ammari, W.A.; Arshad, R.; El Mekkawy, T. Energetic, economic, and environmental analysis of solid oxide fuel cell-based combined cooling, heating, and power system for cancer care hospital. Build. Simul. 2022, 15, 1437–1454. [Google Scholar] [CrossRef]
- Ghimire, R.; Niroula, S.; Pandey, B.; Subedi, A.; Thapa, B.S. Techno-economic assessment of fuel cell-based power backup system as an alternative to diesel generators in Nepal: A case study for hospital applications. Int. J. Hydrogen Energy 2024, 56, 289–301. [Google Scholar] [CrossRef]
- Calise, F.; Cappiello, F.L.; Cimmino, L.; Dentice d’Accadia, M.; Vicidomini, M. Renewable smart energy network: A thermoeconomic comparison between conventional lithium-ion batteries and reversible solid oxide fuel cells. Renew. Energy 2023, 214, 74–95. [Google Scholar] [CrossRef]
- Buonomano, A.; Palombo, A. Building energy performance analysis by an in-house developed dynamic simulation code: An investigation for different case studies. Appl. Energy 2014, 113, 788–807. [Google Scholar] [CrossRef]
- Buonomano, A.; Calise, F.; Ferruzzi, G. Thermoeconomic analysis of storage systems for solar heating and cooling systems: A comparison between variable-volume and fixed-volume tanks. Energy 2013, 59, 600–616. [Google Scholar] [CrossRef]
- Cui, Z.; Kang, L.; Li, L.; Wang, L.; Wang, K. A hybrid neural network model with improved input for state of charge estimation of lithium-ion battery at low temperatures. Renew. Energy 2022, 198, 1328–1340. [Google Scholar] [CrossRef]
- Rashad, M.; Żabnieńska-Góra, A.; Norman, L.; Jouhara, H. Analysis of energy demand in a residential building using TRNSYS. Energy 2022, 254, 124357. [Google Scholar] [CrossRef]
- Sornek, K.; Wiercioch, J.; Kurczyna, D.; Figaj, R.; Wójcik, B.; Borowicz, M.; Wieliński, M. Development of a solar-powered small autonomous surface vehicle for environmental measurements. Energy Convers. Manag. 2022, 267, 115953. [Google Scholar] [CrossRef]
- Calise, F.; Cappiello, F.L.; Dentice d’Accadia, M.; Petrakopoulou, F.; Vicidomini, M. A solar-driven 5th generation district heating and cooling network with ground-source heat pumps: A thermo-economic analysis. Sustain. Cities Soc. 2022, 76, 103438. [Google Scholar] [CrossRef]
- Calise, F.; Cappiello, F.L.; Dentice d’Accadia, M.; Vicidomini, M. A novel smart energy network paradigm integrating combined heat and power, photovoltaic and electric vehicles. Energy Convers. Manag. 2022, 260, 115599. [Google Scholar] [CrossRef]
- Karacavus, B.; Aydın, K. Hydrogen production and storage analysis of a system by using TRNSYS. Int. J. Hydrogen Energy 2020, 45, 34608–34619. [Google Scholar] [CrossRef]
- Jani, D.B. Chapter 4—Performance Assessment of Solar Powered Hybrid Solid Desiccant and Dehumidification Integrated Thermally Cooling System Using TRNSYS. In Advances in Clean Energy Technologies; Azad, A.K., Ed.; Academic Press: Cambridge, MA, USA, 2021; pp. 171–203. [Google Scholar] [CrossRef]
- Ma, Y.; Xi, J.; Cai, J.; Gu, Z. TRNSYS simulation study of the operational energy characteristics of a hot water supply system for the integrated design of solar coupled air source heat pumps. Chemosphere 2023, 338, 139453. [Google Scholar] [CrossRef] [PubMed]
- Buonomano, A.; Calise, F.; Ferruzzi, G.; Palombo, A. Dynamic energy performance analysis: Case study for energy efficiency retrofits of hospital buildings. Energy 2014, 78, 555–572. [Google Scholar] [CrossRef]
- Voit, P.; Lechner, T.; Schuler, M. Common EC validation procedure for dynamic building simulation programs–application with TRNSYS. In Proceedings of the Conference of International Simulation Societies, Zurich, Switzerland, 22–25 August 1994. [Google Scholar]
- Guercio, A.; Curto, D.; Franzitta, V.; Frascati, M.; Milone, D.; Martorana, P.; Mantegna, M. Energy Analyses and Optimization Proposals for Hotels in Sicily: A Case Study. Sustainability 2024, 16, 146. [Google Scholar] [CrossRef]
- Palaić, D.; Štajduhar, I.; Ljubic, S.; Wolf, I. Development, Calibration, and Validation of a Simulation Model for Indoor Temperature Prediction and HVAC System Fault Detection. Buildings 2023, 13, 1388. [Google Scholar] [CrossRef]
- Rezaei, E.; Dzuryk, S. Techno-economic comparison of reverse water gas shift reaction to steam and dry methane reforming reactions for syngas production. Chem. Eng. Res. Des. 2019, 144, 354–369. [Google Scholar] [CrossRef]
- Kumar, R.; Kumar, A.; Pal, A. Simulation modelling of hydrogen production from steam reforming of methane and biogas. Fuel 2024, 362, 130742. [Google Scholar] [CrossRef]
- Perry, R.H.; Green, D.W.; Maloney, J.O. (Eds.) Perry’s Chemical Engineers’ Handbook, 6th ed.; McGraw-Hill: New York, NY, USA, 1984. [Google Scholar]
- Maggio, G.; Squadrito, G.; Nicita, A. Hydrogen and medical oxygen by renewable energy based electrolysis: A green and economically viable route. Appl. Energy 2022, 306, 117993. [Google Scholar] [CrossRef]
- Nicita, A.; Maggio, G.; Andaloro, A.P.F.; Squadrito, G. Green hydrogen as feedstock: Financial analysis of a photovoltaic-powered electrolysis plant. Int. J. Hydrogen Energy 2020, 45, 11395–11408. [Google Scholar] [CrossRef]
- Koumi Ngoh, S.; Bakehe, J.F.; Edouma Fils, P. Green electricity and medical electrolytic oxygen from solar energy—A sustainable solution for rural hospitals. Sci. Afr. 2022, 17, e01389. [Google Scholar] [CrossRef]
- Squadrito, G.; Nicita, A.; Maggio, G. A size-dependent financial evaluation of green hydrogen-oxygen co-production. Renew. Energy 2021, 163, 2165–2177. [Google Scholar] [CrossRef]
- Katebah, M.; Al-Rawashdeh, M.m.; Linke, P. Analysis of hydrogen production costs in Steam-Methane Reforming considering integration with electrolysis and CO2 capture. Clean. Eng. Technol. 2022, 10, 100552. [Google Scholar] [CrossRef]
- Böhm, H.; Zauner, A.; Rosenfeld, D.C.; Tichler, R. Projecting cost development for future large-scale power-to-gas implementations by scaling effects. Appl. Energy 2020, 264, 114780. [Google Scholar] [CrossRef]
- Carr, S.; Premier, G.C.; Guwy, A.J.; Dinsdale, R.M.; Maddy, J. Hydrogen storage and demand to increase wind power onto electricity distribution networks. Int. J. Hydrogen Energy 2014, 39, 10195–10207. [Google Scholar] [CrossRef]
- Luyben, W.L. Capital cost of compressors for conceptual design. Chem. Eng. Process.-Process Intensif. 2018, 126, 206–209. [Google Scholar] [CrossRef]
- Calise, F.; Cappiello, F.L.; Dentice d’Accadia, M.; Vicidomini, M. Smart grid energy district based on the integration of electric vehicles and combined heat and power generation. Energy Convers. Manag. 2021, 234, 113932. [Google Scholar] [CrossRef]
- Calise, F.; Dentice d’Accadia, M.; Piacentino, A. A novel solar trigeneration system integrating PVT (photovoltaic/thermal collectors) and SW (seawater) desalination: Dynamic simulation and economic assessment. Energy 2014, 67, 129–148. [Google Scholar] [CrossRef]
- Musharavati, F.; Khanmohammadi, S. Performance improvement of a heat recovery system combined with fuel cell and thermoelectric generator: 4E analysis. Int. J. Hydrogen Energy 2021, 47, 26701–26714. [Google Scholar] [CrossRef]
- Nadir, M.; Ghenaiet, A.; Carcasci, C. Thermo-economic optimization of heat recovery steam generator for a range of gas turbine exhaust temperatures. Appl. Therm. Eng. 2016, 106, 811–826. [Google Scholar] [CrossRef]
- Zhai, H.; Rubin, E.S. Performance and cost of wet and dry cooling systems for pulverized coal power plants with and without carbon capture and storage. Energy Policy 2010, 38, 5653–5660. [Google Scholar] [CrossRef]
- Available online: https://eshop.czechminibreweries.com/ (accessed on 15 May 2020).
- Jenbacher-Werke. 2019. Available online: https://www.innio.com/en/products/jenbacher (accessed on 15 May 2020).
- Kupecki, J.; Motylinski, K.; Jagielski, S.; Wierzbicki, M.; Brouwer, J.; Naumovich, Y.; Skrzypkiewicz, M. Energy analysis of a 10 kW-class power-to-gas system based on a solid oxide electrolyzer (SOE). Energy Convers. Manag. 2019, 199, 111934. [Google Scholar] [CrossRef]
- Sanz-Bermejo, J.; Muñoz-Antón, J.; Gonzalez-Aguilar, J.; Romero, M. Part load operation of a solid oxide electrolysis system for integration with renewable energy sources. Int. J. Hydrogen Energy 2015, 40, 8291–8303. [Google Scholar] [CrossRef]
- Stempien, J.P.; Sun, Q.; Chan, S.H. Solid Oxide Electrolyzer Cell Modeling: A Review. J. Power Technol. 2013, 93, 216–246. [Google Scholar]
Parameter | Description | Value | Unit |
---|---|---|---|
jel,fromGRID | Electricity purchasing cost | 0.23 | EUR/kWh |
jel,toGRID | Electricity energy exporting cost | 0.06 | EUR/kWh |
jNG | Natural gas purchasing price | 1.30 | EUR/Sm3 |
jO2 | Oxygen purchasing price | 2.00 [64,65,66,67] | EUR/kg |
LHVH2 | Hydrogen lower heating value | 3.00 | kWh/Sm3 |
120.00 | MJ/kg | ||
LHVCH4 | Natural gas lower heating value | 9.59 | kWh/Sm3 |
JPV | PV cost | 1000 [15] | EUR/kW |
JREF | External steam methane reformer capital cost | 259.0 [68] | M EUR/MWNG |
JSOCF | r-SOFC cost | 3000 [69] | EUR/kW |
JTK-H2 | Hydrogen tank cost | 500 [70] | EUR/kg |
Ic | Compressor capital cost | [71] | EUR/compr |
IHE | Heat exchanger capital cost | [72] | EUR/HE |
ITK-SW | Superheated water capital cost | [73] | EUR |
JHRSG | Heat recovery steam generator | 0.368 [74,75] | M EUR/HRSG |
JdryC | Dry cooler specific cost | 200 [76] | EUR/kW |
JA-SH | Auxiliary steam heater specific cost | 125 [77] | EUR/kW |
ηel | Conventional thermo-electric power plant efficiency | 46 | % |
ηB | Boiler efficiency | 75 | % |
ηSG | Steam generator efficiency | 98 | % |
ηA-SH | Steam heater efficiency | 98 | % |
ηinv | District inverter efficiency | 95 | % |
Component | Parameter | Description | Value | Unit |
---|---|---|---|---|
CBH | Pth,CBH | Rated capacity of CBH | 6.20 | MWth |
Tset,CB | Set point temperature for CBH | 80 | °C | |
ηCBDHW | CBH efficiency | 86 | % | |
CBSHW | Pth,CBSHW | Rated CB for SHW thermal flow rate | 0.70 | MWth |
Tset,CBSHW | Set point temperature for CBSHW | 80 | °C | |
ηCBDHW | CBSHW efficiecy | 0.86 | % | |
SG | Pth,SG | Rated capacity steam generator | 6880 | |
ηSG | SG efficiency | 90 | % | |
Cogenerator [78] | - | Model Name | JMS-612-GS-N.L. | |
- | Manufacturer | GE Jenbacher GmbH & Co OHG (Austria) | ||
Pth,CHP | Rated thermal capacity | 1.90 | MW | |
Pel,CHP | Rated electrical capacity | 2.00 | ||
Pth,input | Rated fuel input | 4.42 | ||
ηel | Rated electrical efficiency | 45.2 | % | |
ηth | Rated thermal efficiency | 43.0 | ||
η | Global rated efficiency | 88.3 | ||
ACH | Prated | Rated cooling capacity | 0.77 | MWth |
COP | Rated coefficient of performance | 0.75 | - | |
CH | Pth,CH | Rated cooling capacity | 9.00 | MWth |
COP | Rated coefficient of performance | 5.95 | - | |
CT | Pth,CT | Rated thermal capacity of CT | 1.79 | MWth |
Nf,CT | Number of fans of CT | 2 | - | |
Pel,fan,CT | Fan power of CT | 15 | kW | |
PV | ηPV | Module efficiency | 0.20 | - |
Prated,PV | PV panel rated power | 6.00 | MW | |
Atot | PV field area | 30,000 | m2 | |
r-SOFC | Presscell | Cell operative pressure | 1 | |
NSOFC,cell | Number of cells in series | 8 | ||
NSOFC,par | Number of stacks in parallel | 4166 | ||
Pel,SOFC | Rated fuel cell/electrolyzer capacity | 2.00 | MW | |
Reformer | PressRef | Reformer operative pressure | 1 | bar |
Trated | Rated fuel feeding temperature | 450 | °C | |
Φ | Rated enthalpy flow of fuel | 3.63 | MW | |
Tank TK-H2 | VTK-H2 | Tank Volume | 28 | m3 |
PressTK-H2 | Max tank pressure | 200 | bar | |
Compressor C-H2 | ηcompressor | Compressor isentropic efficiency | 80 | % |
Nstages | Number of stages | 4 | - | |
β | Compression ratio | 3.75 | - | |
Press | Rated pressure | 200 | bar | |
Compressor C-O2 | ηcompressor | Compressor isentropic efficiency | 80 | % |
Nstages | Number of stages | 4 | - | |
β | Compression ratio | 3.65 | - | |
Press | Rated pressure | 150 | bar |
Parameter | Value | Unit |
---|---|---|
Eth,heat | 7.33 | GWhth/y |
Eth,SG | 8.61 | GWhth/y |
Eth,SHW | 0.47 | GWhth/y |
Eth,cool | 9.71 | GWhth/y |
Eel,LOAD | 16.36 | GWhel/y |
PE | 46.41 | GWh/y |
C | 6.21 | M EUR/y |
CO2 | 8388 | tCO2/y |
Parameter | Unit | RS | PS |
---|---|---|---|
PECHP | GWh/year | 35.62 | 17.46 |
Eel,load | GWh/year | 16.89 | 18.26 |
Eel,CHP | GWh/year | 15.03 | - |
Eel,PV | GWh/year | - | 10.20 |
Eel,SOEC | GWh/year | - | 2.08 |
Eel,SOFC(H2) | GWh/year | - | 0.98 |
Eel,SOFC(CH4) | GWh/year | - | 8.58 |
Eel,fromGRID | GWh/year | 1.85 | 1.06 |
Eel,toGRID | GWh/year | 0.00 | 0.48 |
Eel,self | GWh/year | 15.03 | 17.19 |
Eth,B | GWh/year | 2.60 | 3.77 |
Eth,SG | GWh/year | 3.39 | 8.61 |
Eth,CHP2Steam | GWh/year | 5.22 | 0.00 |
Eth,CHP2M-HE | GWh/year | 7.30 | 5.01 |
Eth,SOFC(H2)2M-HE | GWh/year | - | 4.29 |
Eth,SOFC(CH4)2M-HE | GWh/year | - | 0.72 |
Eth,M-HE2ACH | GWh/year | 2.96 | 1.05 |
Eth,ACH | GWh/year | 2.10 | 0.78 |
Eth,CH | GWh/year | 9.48 | 10.49 |
Eel,CH | GWh/year | 1.57 | 1.71 |
PEtot | GWh/year | 46.41 | 30.74 |
ΔPE | GWh/year | - | 15.67 |
PES | % | - | 29.64 |
Rrenew | % | - | 27.33 |
VNG,CHP | Sm3/year | 3.71 × 106 | |
VNG,SOFC | Sm3/year | 1.82 × 106 | |
VNG,aux | Sm3/year | 0.71 × 106 | 1.45 × 106 |
VNG | Sm3/year | 4.42 × 106 | 3.27 × 106 |
ΔMx | t/year | - | 2561.57 |
ΔMx | % | - | 30.53 |
ΔC | M EUR/year | - | 2.72 |
C | M EUR | - | 12.84 |
SPB | years | - | 4.71 |
PI | - | 0.69 | |
NPV | M EUR/year | - | 8.71 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calise, F.; Cappiello, F.L.; Cimmino, L.; Dentice d’Accadia, M.; Vicidomini, M. A Novel Layout for Combined Heat and Power Production for a Hospital Based on a Solid Oxide Fuel Cell. Energies 2024, 17, 979. https://doi.org/10.3390/en17050979
Calise F, Cappiello FL, Cimmino L, Dentice d’Accadia M, Vicidomini M. A Novel Layout for Combined Heat and Power Production for a Hospital Based on a Solid Oxide Fuel Cell. Energies. 2024; 17(5):979. https://doi.org/10.3390/en17050979
Chicago/Turabian StyleCalise, Francesco, Francesco Liberato Cappiello, Luca Cimmino, Massimo Dentice d’Accadia, and Maria Vicidomini. 2024. "A Novel Layout for Combined Heat and Power Production for a Hospital Based on a Solid Oxide Fuel Cell" Energies 17, no. 5: 979. https://doi.org/10.3390/en17050979
APA StyleCalise, F., Cappiello, F. L., Cimmino, L., Dentice d’Accadia, M., & Vicidomini, M. (2024). A Novel Layout for Combined Heat and Power Production for a Hospital Based on a Solid Oxide Fuel Cell. Energies, 17(5), 979. https://doi.org/10.3390/en17050979