Investigating the Potential of a Transparent Xanthan Polymer for Enhanced Oil Recovery: A Comprehensive Study on Properties and Application Efficacy
Abstract
:1. Introduction
- Viscosity at reservoir conditions and long-term stability: Since polymer flooding extends for over 6 months, it must retain its viscosity under reservoir conditions. Under ideal conditions (no dissolved oxygen, pH 7 to 8, and moderate-to-high salinities), xanthan solutions may exhibit half-lives of up to five years at temperatures between 75 and 80 °C [23]. Xanthan’s stability in seawater for 800 days at 80 °C and even better stability at 90 °C in a 50 g/L NaCl solution than 1 g/L NaCl have been confirmed [24,25]. Furthermore, it was found that xanthan remained stable for more than three years in a successful polymer pilot test conducted in the Eddesse-Nord EOR project in Germany [26].
- Adsorption behavior: As polymers flow through porous rock, some degree of polymer retention occurs due to physicochemical adsorption, mechanical entrapment in pores, and hydrodynamic retention [28]. Xanthan adsorption has been shown to depend on soil type and polymer concentration, typically remaining below 0.3 mg/g for all tested soil types at a xanthan concentration of 1 g/L [20]. In a polymer pilot test, adsorption was reported to range from 30 to 40 µg xanthan per gram of soil [26].
2. Methodology
2.1. Raw Material
2.2. Preparation of Xanthan Solution
2.3. Filtration
2.4. Calculation of Energy
2.5. Rheological Measurement
2.6. Molecular Analysis of Xanthan
2.7. Core Flooding
3. Results and Discussion
3.1. Viscosity of Various Xanthan Materials
3.2. Filterability of Xanthan
3.3. Viscosity and Temperature Dependency of Xanthan
3.4. Shear Stability of Xanthan
3.5. Core Flooding Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ghoumrassi-Barr, S.; Aliouche, D. A Rheological Study of Xanthan Polymer for Enhanced Oil Recovery. J. Macromol. Sci. Part B Phys. 2016, 55, 793–809. [Google Scholar] [CrossRef]
- Muhammed, N.S.; Haq, M.B.; Ai-Shehri, D.; Rahman, M.M.; Keshavarz, A.; Hossain, S.M.Z. Comparative Study of Green and Synthetic Polymers for Enhanced Oil Recovery. Polymers 2020, 12, 2429. [Google Scholar] [CrossRef]
- Ogunkunle, T.F.; Oni, B.A.; Afolabi, R.O.; Fadairo, A.S.; Ojo, T.; Adesina, O. Comparative analysis of the performance of hydrophobically associating polymers, Xanthan, and guar gum as mobility controlling agents in enhanced oil recovery application. J. King Saud Univ.—Eng. Sci. 2022, 34, 402–407. [Google Scholar] [CrossRef]
- Gbadamosi, A.; Shirish Patil, S.; Kamal, M.S.; Adewunmi, A.A.; Yusuff, A.S.; Agi, A.; Oseh, J. Application of Polymers for Chemical Enhanced Oil Recovery: A Review. Polymers 2022, 14, 1433. [Google Scholar] [CrossRef] [PubMed]
- Xia, S.; Zhang, L.; Davletsin, A.; Li, Z.; You, J.; Tan, S. Application of polysaccharide biopolymer in petroleum recovery. Polymers 2020, 12, 1860. [Google Scholar] [CrossRef] [PubMed]
- American Petroleum Institute. Filterability testing of polymer solutions. In Recommended Practices for Evaluation of Polymers Used in Enhanced Oil Recovery Operations, 1st ed.; API Recommended Practice: Washington, DC, USA, 1990; Volume 63. [Google Scholar]
- Yadali, J.; Kharrat, R. Fundamental Study of Pore Morphology Effect in Low Tension Polymer Flooding or Polymer-Assisted Dilute Surfactant Flooding. Transp. Porous Media 2009, 76, 199–218. [Google Scholar] [CrossRef]
- Emami, H.; Kharrat, R.; Wang, X. Study of Microscopic and Macroscopic Displacement Behaviors of Polymer Solution in Water-Wet and Oil-Wet Media. J. Transp. Porous Med. 2011, 89, 97–120. [Google Scholar] [CrossRef]
- Standnes, D.C.; Skjevrak, I. Literature review of implemented polymer field projects. J. Pet. Sci. Eng. 2014, 122, 761–775. [Google Scholar] [CrossRef]
- Lake, L.W.; Johns, R.T.; Rossen, W.R.; Pope, G.A. Polymer methods. In Fundamentals of Enhanced Oil Recovery; Society of Petroleum Engineers: Richardson, TX, USA, 2014; Chapter 8; ISBN 978-1-61399-328-6. [Google Scholar]
- Veiga de Moura, M.R.; Moren, R.Z.L. Concentration, Brine Salinity and Temperature effects on Xanthan Gum Solutions Rheology. Appl. Rheol. 2019, 29, 69–79. [Google Scholar] [CrossRef]
- Levitt, D.; Pope, G.A. Selection and screening of polymers for enhanced oil recovery. In Proceedings of the SPE Symposium on Improved Oil Recovery, Tulsa, OK, USA, 19–23 April 2008. [Google Scholar] [CrossRef]
- Zaitoun, A.; Makakou, P.; Blin, N.; Al-Maamari, R.S.; Al-Hashmi, A.R.; Abdel-Goad, M.; Al-Sharji, H.H. Shear Stability of EOR Polymers. SPE J. 2012, 17, 335–339. [Google Scholar] [CrossRef]
- Oil & Gas Authority. Polymer Enhanced Oil Recovery—Industry Lessons Learned. 2017. Available online: https://www.ogauthority.co.uk/news-publications/publications/2017/polymer-enhanced-oil-recovery-industry-lessons-learned/ (accessed on 30 September 2021).
- Wennberg, A.C.; Petersen, K.; Grung, M. Biodegradation of Selected Offshore Chemicals; NIVA Report 7218-2017; Norwegian Environment Agency: Oslo, Norway, 2017; ISBN 978-82-577-6953-6.
- Guo, X.H.; Li, W.D.; Tian, J.; Liu, Y.Z. Pilot test of xanthan gum flooding in Shengli oilfield. In Proceedings of the SPE Asia Pacific Improved Oil Recovery Conference, Kuala Lumpur, Malaysia, 25–26 October 1999. [Google Scholar] [CrossRef]
- Seright, R.S.; Wang, D. Polymer flooding: Current status and future directions. Pet. Sci. 2023, 20, 910–921. [Google Scholar] [CrossRef]
- Jouenne, S. Polymer flooding in high temperature, high salinity conditions: Selection of polymer type and polymer chemistry, thermal stability. J. Pet. Sci. Eng. 2020, 195, 107545. [Google Scholar] [CrossRef]
- Coolman, T.; Alexander, D.; Maharaj, R.; Soroush, M. An evaluation of the enhanced oil recovery potential of the xanthan gum and hydrogel in a heavy oil reservoir in Trinidad. J. Petrol. Explor. Prod. Technol. 2020, 10, 3779–3789. [Google Scholar] [CrossRef]
- Saleh, L.D.; Wei, M.; Zhang, Y.; Bai, B. Data analysis for polymer flooding that is based on a comprehensive database. SPE Reserv. Eval. Eng. 2017, 20, 876–893. [Google Scholar] [CrossRef]
- Urkedal, H.; Selle, O.M.; Seime, O.J.; Brandal, Ø.; Grøstad, T.; Todosijevic, A.; Dillen, M.; Prasad, D.; Ernst, B.; Lehr, F.; et al. Qualification of Biopolymer in Offshore Single Well Test. In Proceedings of the Offshore Technology Conference, Rio de Janeiro, Brazi, 24–26 October 2017. [Google Scholar] [CrossRef]
- Selle, E.M.; Fischer, H.; Standnes, D.C.; Auflem, I.H.; Lambertsen, A.M.; Mebratu, A.; Gundersen, E.B.; Melien, I. Offshore polymer/lps injectivity test with focus on operational feasibility and near wellbore response in a Heidrun injector. In Proceedings of the SPE Annual Technical Conference and Exhibition, New Orleans, LA, USA, 30 September–2 October 2013. [Google Scholar] [CrossRef]
- Seright, R.S.; Henrici, B.J. Xanthan stability at elevated temperatures. SPE Reserv. Eng. 1990, 5, 52–60. [Google Scholar] [CrossRef]
- Kierulf, C.; Sutherland, I.W. Thermal stability of xanthan preparations. Carbohydr. Polym. 1988, 9, 185–194. [Google Scholar] [CrossRef]
- Lund, T.; Lecourtier, J.; Müller, G. Properties of xanthan solutions after long-term heat treatment at 90 °C. Polym. Degrad. Stab. 1990, 27, 211–225. [Google Scholar] [CrossRef]
- Littmann, W.; Kleinitz, W.; Christensen, B.E.; Stokke, B.T.; Haugvallstad, T. Late results of a polymer pilot test: Performance, simulation adsorption, and xanthan stability in the reservoir. In Proceedings of the SPE Enhanced Oil Recovery Symposium, Tulsa, OK, USA, 22–24 April 1992. [Google Scholar] [CrossRef]
- Reinoso, D.; Martin-Alfonso, M.J.; Luckham, P.F.; Martinez-Boza, F.J. Rheological characterization of xanthan gum in brine solutions at high temperature. Carbohydr. Polym. 2019, 203, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Scott, A.J.; Romero-Zeron, L.; Penlidis, A. Evaluation of polymeric materials for chemical-enhanced oil recovery. Processes 2020, 8, 361. [Google Scholar] [CrossRef]
- Said, M.; Hag, B.; Al Shehri, D.; Rhman, M.M.; Muhammed, N.S.; Mahmoud, M. Modification of Xanthan Gum for a High-Temperature and High-Salinity Reservoir. Polym. Polym. 2021, 13, 4212. [Google Scholar] [CrossRef]
- Hublik, G. Xanthan. In Reference Module in Materials Science and Materials Engineering; Hashmi, S., Ed.; Elsevier: Oxford, UK, 2016; pp. 1–9. [Google Scholar]
- Nsengiyumva, E.M.; Heitz, M.; Alexandrids, P. Salt and Temperature Effects on Xanthan Gum Polysaccharide in Aqueous Solutions. Int. J. Mol. Sci. 2024, 25, 490. [Google Scholar] [CrossRef]
- Leonhardt, B.; Ernst, B.; Reimann, S.; Steigerwald, A.; Lehr, F. Field testing the polysaccharide schizophyllan: Results of the first year. In Proceedings of the SPE Improved Oil Recovery Symposium, Tulsa, OK, USA, 14–18 April 2014. [Google Scholar] [CrossRef]
- Chauveteau, G.; Kohler, N. Influence of microgels in polysaccharide solutions on their flow behavior through porous media. SPE J. 1984, 24, 361–368. [Google Scholar] [CrossRef]
- Seright, R.S.; Seheult, J.M.; Talashek, T. Injectivity characteristics of EOR polymers. SPE Reserv. Eval. Eng. 2009, 12, 783–792. [Google Scholar] [CrossRef]
- Kennedy, J.F.; Bradshaw, I.J. Production, properties, and application of Xanthan. In Progress of Industrial Microbiology; Bushell, M.E., Ed.; Elsevier: Amsterdam, The Netherlands, 1984; pp. 319–371. [Google Scholar]
- Muller, G.; Aurhourrache, M.; Lecourtier, J.; Chauveteau, G. Salt dependence of the conformation of a single-stranded xanthan. Int. J. Biol. Macromol. 1986, 8, 167–172. [Google Scholar] [CrossRef]
- To, K.-M.; Mitchell, J.R.; Hill, S.E.; Bardon, L.A.; Matthews, P. Measurement of hydration of polysaccharides. Food Hydrocoll. 1994, 8, 243–249. [Google Scholar] [CrossRef]
- Teckentrup, J.; Al-Hammood, O.; Steffens, T.; Bednarz, H.; Walhorn, V.; Niehaus, K.; Anselmetti, D. Comparative analysis of different xanthan samples by atomic force microscopy. J. Biotechnol. 2017, 257, 2–8. [Google Scholar] [CrossRef] [PubMed]
- Southwick, J.G.; Jamieson, A.M.; Blackwell, J. Conformation of Xanthan dissolved in aqueous urea and sodium chloride solutions. Carbohydr. Res. 1982, 99, 117–127. [Google Scholar] [CrossRef]
- Kohler, N.; Chauveteau, G. Xanthan polysaccharide plugging behavior in porous media—Preferential use of fermentation broth. J. Pet. Technol. 1981, 33, 349–358. [Google Scholar] [CrossRef]
- Stokke, B.T.; Christensen, B.E.; Smidsrod, O. Macromolecular properties of Xanthan. In Polysaccharides: Structural Diversity and Functional Versatility; Dumitriu, S., Ed.; Marcel Dekker: New York, NY, USA, 1998; pp. 433–472. [Google Scholar]
- Jang, H.Y.; Zhang, K.; Chon, B.H.; Choi, H.J. Enhanced oil recovery performance and viscosity characteristics of polysaccharide Xanthan gum solution. J. Ind. Eng. Chem. 2015, 21, 741–745. [Google Scholar] [CrossRef]
- Milas, M.; Rinaudo, M. Conformational investigation on the bacterial polysaccharide xanthan. Carbohydr. Res. 1979, 76, 189–196. [Google Scholar] [CrossRef]
- Gulrez, S.K.H.; Al-Assaf, S.; Fang, Y.; Phillips, G.O.; Gunning, A.P. Revisiting the conformation of Xanthan and the effect of industrially relevant treatments. Carbohydr. Polym. 2012, 90, 1235–1243. [Google Scholar] [CrossRef]
Composition | Sea Water (g/L) | High-Salinity Water (g/L) | Formation Water (g/L) |
---|---|---|---|
NaCl | 30 | 85 | 132 |
KCl | 0.7 | 0 | 0 |
CaCl2·2H2O | 1.53 | 13.2 | 56 |
MgCl2·6H2O | 11.1 | 10.7 | 22 |
Total dissolved solids (TDS) | 37 | 100 | 185 |
pH value | 8.2 | 6.0 | 6.0 |
Properties | Bentheimer Sandstone | Estaillades Carbonate |
---|---|---|
Porosity, % | 18.72 | 29.21 |
Permeability, mD | 294.76 | 194.71 |
Core length (cm) | 5.06 | 5.06 |
Core diameter (cm) | 3.77 | 3.77 |
Sample ID | Acetate % | Pyruvate % | Na+ % | K+% | Xanthan Material |
---|---|---|---|---|---|
1 | 7.5 | 2.8 | 2.6 | 0.3 | Xanthan with reduced pyruvate |
2 | 6.8 | 2.7 | 2.9 | 0.2 | Xanthan with reduced pyruvate |
3 | 0.5 | 6.8 | 3.1 | 0.3 | Xanthan with low acetate |
4 | 0.4 | 6.6 | 3.3 | 0.2 | Xanthan with low acetate |
5 | 7.4 | 0.2 | 2.2 | 0.2 | Xanthan with low pyruvate |
6 | 3.9 | 5.4 | 3.4 | 0.2 | Xanthan from the original xanthan strain (NRRL B-1459) |
7 | 4.6 | 6.3 | 3.4 | 0.4 | Xanthan from the original xanthan strain (NRRL B-1459) |
8 | 4.7 | 5.7 | 3.8 | 0.3 | Xanthan with low viscosity |
9 | 5.1 | 5.6 | 3.6 | 0.3 | Xanthan with low viscosity |
10 | 6.2 | 6.8 | 3.5 | 0.4 | Xanthan with high pyruvate |
11 | 5.6 | 5.9 | 3.2 | 0.4 | Xanthan with high pyruvate |
12 | 5.7 | 5.5 | 0.4 | 3.4 | Xanthan with high pyruvate, produced with KOH instead of NaOH |
13 | 5.3 | 5.8 | 0.3 | 3.4 | Xanthan with high pyruvate, produced with KOH instead of NaOH |
Rock Type | Salinity | Water Flooding Recovery [%] | Polymer Flooding Recovery [%] | Incremental Recovery by Polymer [%] |
---|---|---|---|---|
Sandstone | 1 % NaCl | 68 | 75 | 10 |
Sandstone | 6 % NaCl | 62 | 70 | 13 |
Carbonate | 1 %NaCl | 60 | 83 | 38 |
Carbonate | 6 %NaCl | 46 | 77 | 67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hublik, G.; Kharrat, R.; Dastjerdi, A.M.; Ott, H. Investigating the Potential of a Transparent Xanthan Polymer for Enhanced Oil Recovery: A Comprehensive Study on Properties and Application Efficacy. Energies 2024, 17, 1266. https://doi.org/10.3390/en17051266
Hublik G, Kharrat R, Dastjerdi AM, Ott H. Investigating the Potential of a Transparent Xanthan Polymer for Enhanced Oil Recovery: A Comprehensive Study on Properties and Application Efficacy. Energies. 2024; 17(5):1266. https://doi.org/10.3390/en17051266
Chicago/Turabian StyleHublik, Gerd, Riyaz Kharrat, Ali Mirzaalian Dastjerdi, and Holger Ott. 2024. "Investigating the Potential of a Transparent Xanthan Polymer for Enhanced Oil Recovery: A Comprehensive Study on Properties and Application Efficacy" Energies 17, no. 5: 1266. https://doi.org/10.3390/en17051266
APA StyleHublik, G., Kharrat, R., Dastjerdi, A. M., & Ott, H. (2024). Investigating the Potential of a Transparent Xanthan Polymer for Enhanced Oil Recovery: A Comprehensive Study on Properties and Application Efficacy. Energies, 17(5), 1266. https://doi.org/10.3390/en17051266