The Impact of Deep Decarbonization Policy on the Level of Greenhouse Gas Emissions in the European Union
Abstract
:1. Introduction
2. Literature Review
3. Methods and Materials
- Yi—total level of greenhouse gas emissions in the i-th country (in CO2 equivalent);
- ai, β1i, β2i, β3i—parameters and coefficients of the regression function in the i-th country;
- X1—energy efficiency of the energy in the i-th country (in million tonnes of oil equivalent);
- X2—share of primary energy consumption, which comes from renewables in the i-th country (in %);
- X3—share of primary energy consumption, which comes from fossil fuels in the i-th country (in %);
- i = 1, …, 27—the EU member states.
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- European Commission, European Green Deal. Available online: https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal_en (accessed on 8 February 2024).
- Directive 2012/27/EU of the European Parliament and of the Council of 25 October 2012 on Energy Efficiency, Amending Directives 2009/125/EC and 2010/30/EU and repealing Directives 2004/8/EC and 2006/32/EC. OJ L 315, 14.11.2012, pp. 1–56. Available online: http://data.europa.eu/eli/dir/2012/27/oj (accessed on 8 February 2024).
- Directive (EU) 2023/1791 of the European Parliament and of the Council of 13 September 2023 on Energy Efficiency and Amending Regulation (EU) 2023/955. OJ L 231, 20.09.2023, pp. 1–111. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ:JOL_2023_231_R_0001 (accessed on 8 February 2024).
- Eurostat. Available online: https://ec.europa.eu/eurostat/databrowser/view/sdg_13_10__custom_9536062/default/table?lang=en (accessed on 27 January 2024).
- Safarzadeh, S.; Rasti-Barzoki, M.; Hejazi, S.R. A review of optimal energy policy instruments on industrial energy efficiency programs, rebound effects, and government policies. Energy Policy 2020, 139, 111342. [Google Scholar] [CrossRef]
- Von Malmborg, F.; Strachan, P.A. Advocacy Coalitions and Paths to Policy Change for Promoting Energy Efficiency in European Industry. Energies 2023, 16, 3785. [Google Scholar] [CrossRef]
- Chlechowitz, M.; Reuter, M.; Eichhammer, W. How first comes energy efficiency? Assessing the energy efficiency first principle in the EU using a comprehensive indicator-based approach. Energy Effic. 2022, 15, 59. [Google Scholar] [CrossRef]
- Gajdzik, B.; Wolniak, R.; Nagaj, R.; Grebski, W.W.; Romanyshyn, T. Barriers to Renewable Energy Source (RES) Installations as Determinants of Energy Consumption in EU Countries. Energies 2023, 16, 7364. [Google Scholar] [CrossRef]
- Aliabadi, D.E.; Chan, K.; Wulff, N.; Meisel, K.; Jordan, M.; Österle, I.; Pregger, T.; Thrän, D. Future renewable energy targets in the EU: Impacts on the German transport. Transp. Res. Part D Transp. Environ. 2023, 124, 103963. [Google Scholar] [CrossRef]
- Husain, S.; Sohag, K.; Wu, Y. The responsiveness of renewable energy production to geopolitical risks, oil market instability and economic policy uncertainty: Evidence from United States. J. Environ. Manag. 2024, 350, 119647. [Google Scholar] [CrossRef] [PubMed]
- Nagaj, R. Climate and energy policies and its impact on energy poverty in Poland [Polityka klimatyczno-energetyczna a ubóstwo energetyczne w Polsce]. Rynek Energii 2020, 146, 3–10. [Google Scholar]
- Directive (EU) 2023/2413 of the European Parliament and of the Council of 18 October 2023 Amending Directive (EU) 2018/2001, Regulation (EU) 2018/1999 and Directive 98/70/EC as Regards the Promotion of Energy from Renewable Sources, and Repealing Council Directive (EU) 2015/652. OJ L, 31.10.2023, pp. 1–77. Available online: http://data.europa.eu/eli/dir/2023/2413/oj (accessed on 11 February 2024).
- Van Leeuwen, J.; Monios, J. Decarbonisation of the shipping sector—Time to ban fossil fuels? Mar. Policy 2022, 146, 105310. [Google Scholar] [CrossRef]
- Adedoyin, F.F.; Erum, N.; Taşkin, D.; Chebab, D. Energy policy simulation in times of crisis: Revisiting the impact of renewable and non-renewable energy production on environmental quality in Germany. Energy Rep. 2023, 9, 4749–4762. [Google Scholar] [CrossRef]
- Kloo, Y.; Nilsson, L.J.; Palm, E. Reaching net-zero in the chemical industry—A study of roadmaps for industrial decarbonisation. Renew. Sustain. Energy Transit. 2024, 5, 100075. [Google Scholar] [CrossRef]
- Murphy, R. What is undermining climate change mitigation? How fossil-fuelled practices challenge low-carbon transitions. Energy Res. Soc. Sci. 2024, 108, 103390. [Google Scholar] [CrossRef]
- Georgatzi, V.V.; Stamboulis, Y.; Vetsikas, A. Examining the Determinants of CO2 Emissions Caused by the Transport Sector: Empirical Evidence from 12 European Countries. Econ. Anal. Policy 2020, 65, 11–20. [Google Scholar] [CrossRef]
- Nagaj, R.; Žuromskaitė, B. Tourism in the Era of COVID-19 and Its Impact on the Environment. Energies 2021, 14, 2000. [Google Scholar] [CrossRef]
- Kany, M.S.; Mathiesen, B.V.; Skov, I.R.; Korberg, A.D.; Thellufsen, J.Z.; Lund, H.; Sorknæs, P.; Chang, M. Energy efficient decarbonisation strategy for the Danish transport sector by 2045. Smart Energy 2022, 5, 100063. [Google Scholar] [CrossRef]
- Ghorbani, Y.; Zhang, S.E.; Nwaila, G.T.; Bourdeau, J.E.; Rose, D.H. Embracing a diverse approach to a globally inclusive green energy transition: Moving beyond decarbonisation and recognising realistic carbon reduction strategies. J. Clean. Prod. 2024, 434, 140414. [Google Scholar] [CrossRef]
- Sovacool, B.K.; Newell, P.J.; Carley, S. Equity, technological innovation and sustainable behaviour in a low-carbon future. Nat. Hum. Behav. 2022, 6, 326–337. [Google Scholar] [CrossRef] [PubMed]
- Nagaj, R.; Žuromskaitė, B. Young Travellers and Green Travel in the Post-COVID Era. Sustainability 2023, 15, 13822. [Google Scholar] [CrossRef]
- Chyong, C.K.; Pollitt, M.; Reiner, D.; Li, C. Modelling flexibility requirements in deep decarbonisation scenarios: The role of conventional flexibility and sector coupling options in the European 2050 energy system. Energy Strategy Rev. 2024, 52, 101322. [Google Scholar] [CrossRef]
- Bataille, C.; Waisman, H.; Colombier, M.; Segafredo, L.; Williams, J. The Deep Decarbonization Pathways Project (DDPP): Insights and emerging issues. Clim. Policy 2016, 16 (Suppl. S1), S1–S6. [Google Scholar] [CrossRef]
- Capros, P.; Tasios, N.; De Vita, A.; Mantzos, L.; Paroussos, L. Model-Based Analysis of Decarbonising the EU Economy in the Time Horizon to 2050. Energy Strategy Rev. 2012, 1, 76–84. [Google Scholar] [CrossRef]
- Capros, P.; Paroussos, L.; Fragkos, P.; Tsani, S.; Boitier, B.; Wagner, F.; Busch, S.; Resch, G.; Blesl, M.; Bollen, J. European Decarbonisation Pathways under Alternative Technological and Policy Choices: A Multi-Modal Analysis. Energy Strategy Rev. 2014, 2, 231–245. [Google Scholar] [CrossRef]
- IEA. Energy Technology Perspectives 2012: Pathways to a Clean Energy System; IEA/OECD: Paris, France, 2012. [Google Scholar]
- Hubler, M.; Loschel, A. The EU Decarbonisation Roadmap 2050—What Way to Walk? Energy Policy 2013, 55, 190–207. [Google Scholar] [CrossRef]
- Peng, B.; Streimikiene, D.; Agnusdei, G.P.; Balezentis, T. Is sustainable energy development ensured in the EU agriculture? Structural shifts and the energy-related greenhouse gas emission intensity. J. Clean. Prod. 2024, 445, 141325. [Google Scholar] [CrossRef]
- European Commission. Impact Assessment Accompanying the Document: Communication from the Commission to the European Parliament, The Council, the European Economic and Social Committee and the Committee of the Regions—Energy Roadmap 2050 (SEC (2011) 1565); European Commission: Brussels, Belgium, 2011. [Google Scholar]
- Pye, S.; McGlade, C.; Bataille, C.; Anandarajah, G.; Denis-Ryan, A.; Potashnikov, V. Exploring national decarbonisation pathways and global energy trade flows: A multi-scale analysis. Climate Policy 2016, 16, S92–S109. [Google Scholar] [CrossRef]
- Bataille, C.; Waisman, H.; Colombier, M.; Segafredo, L.; Williams, J.; Jotzo, F. The need for national deep decarbonization pathways for effective climate policy. Clim. Policy 2016, 16, S7–S26. [Google Scholar] [CrossRef]
- Solano, B.; Drummond, P. Techno-Economic Scenarios for Reaching Europe’s Long-Term Climate Targets: Using the European TIMES Model (ETM-UCL) to Model Energy System Development in the EU; University College: London, UK, 2014. [Google Scholar]
- Bataille, C.G. Physical and policy pathways to net-zero emissions industry. Wiley Interdisciplinary Reviews. Clim. Change 2020, 11, e633. [Google Scholar] [CrossRef]
- Oshiro, K.; Kainuma, M.; Masui, T. Assessing decarbonisation pathways and their implications for energy security policies in Japan. Clim. Policy 2016, 16, S63–S77. [Google Scholar] [CrossRef]
- Grubb, M.; Sha, F.; Spencer, T.; Hughes, N.; Zhang, Z.; Agnolucci, P. A review of Chinese CO2 emission projections to 2030: The role of economic structure and policy. Clim. Policy 2015, 15 (Suppl. S1), S7–S39. [Google Scholar] [CrossRef]
- Shao, T.; Pan, X.; Li, X.; Zhou, S.; Zhang, S.; Chen, W. China’s industrial decarbonization in the context of carbon neutrality: A subsectoral analysis based on integrated modelling. Renew. Sustain. Energy Rev. 2022, 170, 112992. [Google Scholar] [CrossRef]
- Lebling, K.; Byrum, Z.; Anderson, A. Decarbonizing US Industry: 3 Questions, Answered, 7 September 2022. World Resources Institute. Available online: https://www.wri.org/insights/industrial-decarbonization-momentum (accessed on 13 February 2024).
- Kermeli, K.; Crijns-Graus, W.; Johannsen, R.M.; Mathiesen, B.V. Energy efficiency potentials in the EU industry: Impacts of deep decarbonization technologies. Energy Effic. 2022, 15, 68. [Google Scholar] [CrossRef]
- Khatiwada, D.; Vasudevan, R.A.; Santos, B.H. Decarbonization of natural gas systems in the EU—Costs, barriers, and constraints of hydrogen production with a case study in Portugal. Renew. Sustain. Energy Rev. 2022, 168, 112775. [Google Scholar] [CrossRef]
- Wang, Z.; Li, J.; Wang, B.; Zhang, B.; Zheng, Y. The decarbonization pathway of power system by high-resolution model under different policy scenarios in China. Appl. Energy 2024, 355, 122235. [Google Scholar] [CrossRef]
- Roginko, S.A. EU green steel deal: Maneuvers on the decarbonization track. Chernye Metally 2022, 11, 66–72. [Google Scholar] [CrossRef]
- Gross, S. The challenge of decarbonizing heavy industry. Energy Climate. In Foreign Policy at Brookings; The Brookings Institution: Washington, DC, USA, 2021. [Google Scholar]
- Gajdzik, B.; Wolniak, R.; Grebski, W. Process of Transformation to Net Zero Steelmaking: Decarbonisation Scenarios Based on the Analysis of the Polish Steel Industry. Energies 2023, 16, 3384. [Google Scholar] [CrossRef]
- Gajdzik, B.; Sujová, E.; Biały, W. Decarbonisation of the steel industry: Theoretical and practical approaches with analysis of the situation in the steel sector in Poland. Acta Montan. Slovaca 2023, 28, 621–636. [Google Scholar]
- Ptichnikov, A.V.; Shvarts, E.A. Decarbonization via Nature-Based Solutions: National Policy and International Practice. Reg. Res. Russ. 2023, 13, 631–645. [Google Scholar] [CrossRef]
- Sovacool, B.K.; Del Rio, D.F.; Zhang, W. The political economy of net-zero transitions: Policy drivers, barriers, and justice benefits to decarbonization in eight carbon-neutral countries. J. Environ. Manag. 2023, 347, 119154. [Google Scholar] [CrossRef]
- Plazas-Niño, F.A.; Yeganyan, R.; Cannone, C.; Howells, M.; Quirós-Tortós, J. Informing sustainable energy policy in developing countries: An assessment of decarbonization pathways in Colombia using open energy system optimization modelling. Energy Strategy Rev. 2023, 50, 101226. [Google Scholar] [CrossRef]
- Yeung, G.; Liu, Y. Local government policies and public transport decarbonization through the production and adoption of fuel cell electric vehicles (FCEVs) in China. J. Clean. Prod. 2023, 422, 138552. [Google Scholar] [CrossRef]
- Huang, L.; Long, Y.; Chen, J.; Yoshida, Y. Sustainable lifestyle: Urban household carbon footprint accounting and policy implications for lifestyle-based decarbonization. Energy Policy 2023, 181, 113696. [Google Scholar] [CrossRef]
- Kafetzis, A.; Bampaou, M.; Kardaras, G.; Panopoulos, K. Decarbonization of Former Lignite Regions with Renewable Hydrogen: The Western Macedonia Case. Energies 2023, 16, 7029. [Google Scholar] [CrossRef]
- Issa, M.; Ilinca, A.; Rousse, D.R.; Boulon, L.; Groleau, P. Renewable Energy and Decarbonization in the Canadian Mining Industry: Opportunities and Challenges. Energies 2023, 16, 6967. [Google Scholar] [CrossRef]
- Hoseinzadeh, S.; Astiaso Garcia, D.; Huang, L. Grid-connected renewable energy systems flexibility in Norway islands’ Decarbonization. Renew. Sustain. Energy Rev. 2023, 185, 113658. [Google Scholar] [CrossRef]
- Carmona-Martínez, A.A.; Bartolomé, C.; Jarauta-Córdoba, C.A. The Role of Biogas and Biomethane as Renewable Gases in the Decarbonization Pathway to Zero Emissions. Energies 2023, 16, 6164. [Google Scholar] [CrossRef]
- Paraschiv, L.S.; Paraschiv, S. Contribution of renewable energy (hydro, wind, solar and biomass) to decarbonization and transformation of the electricity generation sector for sustainable development. Energy Rep. 2023, 9, 535–544. [Google Scholar] [CrossRef]
- Meraj, S.T.; Yu, S.S.; Rahman, M.S.; Hossain Lipu, M.S.; Trinh, H. Energy management schemes, challenges and impacts of emerging inverter technology for renewable energy integration towards grid decarbonization. J. Clean. Prod. 2023, 405, 137002. [Google Scholar] [CrossRef]
- Yan, C.; Murshed, M.; Ozturk, I.; Ghardallou, W.; Khudoykulov, K. Decarbonization blueprints for developing countries: The role of energy productivity, renewable energy, and financial development in environmental improvement. Resour. Policy 2023, 83, 103674. [Google Scholar] [CrossRef]
- Zhao, C.; Wang, J.; Dong, K.; Wang, K. How does renewable energy encourage carbon unlocking? A global case for decarbonization. Resour. Policy 2023, 83, 103622. [Google Scholar] [CrossRef]
- Romasheva, N.; Cherepovitsyna, A. Renewable Energy Sources in Decarbonization: The Case of Foreign and Russian Oil and Gas Companies. Sustainability 2023, 15, 7416. [Google Scholar] [CrossRef]
- Yu, B.; Fang, D.; Xiao, K.; Pan, Y. Drivers of renewable energy penetration and its role in power sector’s deep decarbonization towards carbon peak. Renew. Sustain. Energy Rev. 2023, 178, 113247. [Google Scholar] [CrossRef]
- Hossain, M.R.; Singh, S.; Sharma, G.D.; Apostu, S.-A.; Bansal, P. Overcoming the shock of energy depletion for energy policy? Tracing the missing link between energy depletion, renewable energy development and decarbonization in the USA. Energy Policy 2023, 174, 113469. [Google Scholar] [CrossRef]
- Adun, H.; Ishaku, H.P.; Jazayeri, M.; Okoye, T.; Dike, G.C. Decarbonization of EU energy sector: Techno-feasibility analysis of 100% renewables by 2050 in Cyprus. Clean Technol. Environ. Policy 2022, 24, 2801–2824. [Google Scholar] [CrossRef]
- Zeng, B.; Wang, W.; Zhang, W.; Tang, C.; Wang, J. Optimal configuration planning of vehicle sharing station-based electro-hydrogen micro-energy systems for transportation decarbonization. J. Clean. Prod. 2023, 387, 135906. [Google Scholar] [CrossRef]
- Aktas, T.U.; Shi, J.; Lim, G.J.; D’Agostino, F.; Liang, C. Decarbonization of the Maritime Transportation Systems: Recent Progress, Challenges, and Prospects. In Proceedings of the 2023 IEEE Electric Ship Technologies Symposium, ESTS, Alexandria, VA, USA, 1–4 August 2023; pp. 224–230. [Google Scholar]
- Ali, Q.; Di Silvestre, M.L.; Lombardi, P.; Sanseverino, E.R.; Zizzo, G. The Role of Renewable Energy Generation in Electric Vehicles Transition and Decarbonization of Transportation Sector. In Proceedings of the 2023 IEEE International Conference on Environment and Electrical Engineering and 2023 IEEE Industrial and Commercial Power Systems Europe, EEEIC/I and CPS Europe 2023, Madrid, Spain, 6–9 June 2023. [Google Scholar]
- Price, C.R.; Nimbalkar, S.U.; Thirumaran, K.; Cresko, J. Smart Manufacturing Pathways for Industrial Decarbonization and Thermal Process Intensification. Smart Sustain. Manuf. Syst. 2023, 7, 41–53. [Google Scholar] [CrossRef]
- Schneider, C.; Büttner, S.; Sauer, A. Optimal Selection of Decarbonization Measures in Manufacturing Using Mixed-Integer Programming. In Lecture Notes in Production Engineering; Springer: Berlin/Heidelberg, Germany, 2023; Part F1163; pp. 749–760. [Google Scholar]
- Powell, B.; Milton, N. Decarbonization of a Large Brownfield (Electrical Products) Manufacturing Plant. In Proceedings of the AEE World Energy Conference and Expo, Atlanta, GA, USA, 21–23 September 2022. [Google Scholar]
- Arogundade, S.; Dulaimi, M.; Ajayi, S.; Saka, A.; Ilori, O. Decarbonization of construction projects: A review and interpretive structural modelling of carbon reduction drivers. J. Eng. Des. Technol. 2023, 83. [Google Scholar] [CrossRef]
- Hooper, B. All-Electric New Construction and Building Decarbonization. In Proceedings of the Air and Waste Management Association’s Annual Conference and Exhibition, AWMA, San Francisco, CA, USA, 27–30 June 2022. [Google Scholar]
- González Ríos, I. Towards a progressive decarbonization of construction through energy rehabilitation. Cuad. Derecho Local 2021, 57, 82–121. [Google Scholar]
- Anyanwu, C.N.; Ojike, O.; Emodi, N.V.; Elochukwu, A.E.; Nnamani, U.A. Deep decarbonization options for the agriculture, forestry, and other land use (AFOLU) sector in Africa: A systematic literature review. Environ. Monit. Assess. 2023, 195, 565. [Google Scholar] [CrossRef] [PubMed]
- Pombo-Romero, J.; Rúas-Barrosa, O. A Blockchain-Based Financial Instrument for the Decarbonization of Irrigated Agriculture. Sustainability 2022, 14, 8848. [Google Scholar] [CrossRef]
- Feng, R.; Xu, X.; Yu, Z.-T.; Lin, Q. A machine-learning assisted multi-cluster assessment for decarbonization in the chemical fiber industry toward net-zero: A case study in a Chinese province. J. Clean. Prod. 2023, 425, 138965. [Google Scholar] [CrossRef]
- Barecka, M.H.; Ager, J.W. Towards an accelerated decarbonization of the chemical industry by electrolysis. Energy Adv. 2023, 2, 268–279. [Google Scholar] [CrossRef]
- Mallapragada, D.S.; Dvorkin, Y.; Modestino, M.A.; Aydil, E.S.; Taylor, A.D. Decarbonization of the chemical industry through electrification: Barriers and opportunities. Joule 2023, 7, 23–41. [Google Scholar] [CrossRef]
- Bogodukhova, E.S.; Britvina, V.V.; Gavrilyuk, A.V.; Sorokin, A.Y.; Bobrov, K.R. Trends in the development of decarbonization in energy systems using information technology. IOP Conf. Ser. Earth Environ. Sci. 2022, 990, 012007. [Google Scholar] [CrossRef]
- Yan, X.; Yang, C.; Zhang, R. How does green finance derive the resource efficiency and decarbonization of the economy? Resour. Policy 2023, 85, 103934. [Google Scholar] [CrossRef]
- Han, J.; Zhang, W.; Işık, C.; Muhammad, A.; Yan, J. General equilibrium model-based green finance, decarbonization and high-quality economic development: A new perspective from knowledge networks. Environ. Dev. Sustain. 2023. [Google Scholar] [CrossRef]
- Al Mamun, M.; Boubaker, S.; Nguyen, D.K. Green finance and decarbonization: Evidence from around the world. Financ. Res. Lett. 2022, 46, 102807. [Google Scholar] [CrossRef]
- Gajdzik, B.; Wolniak, R.; Nagaj, R.; Žuromskaitė, B.; Grebski, W. The Influence of the Global Energy Crisis on Energy Efficiency: A Comprehensive Analysis. Energies 2024, 17, 947. [Google Scholar] [CrossRef]
- Rej, S.; Bandyopadhyay, A.; Murshed, M.; Mahmood, H.; Razzaq, A. Pathways to decarbonization in India: The role of environmentally friendly tourism development. Environ. Sci. Pollut. Res. 2022, 29, 50281–50302. [Google Scholar] [CrossRef] [PubMed]
- Scott, D.; Hall, C.M.; Gössling, S. A review of the IPCC Fifth Assessment and implications for tourism sector climate resilience and decarbonization. J. Sustain. Tour. 2016, 24, 8–30. [Google Scholar] [CrossRef]
- Armocida, B.; Formenti, B.; Ussai, S.; Martuzzi, M.; Barone-Adesi, F. Decarbonization of the Italian healthcare system and European funds. A lost opportunity? Front. Public Health 2022, 10, 1037122. [Google Scholar] [CrossRef]
- Wannags, L.L.; Gold, S. The Quest for Low-Carbon Mobility: Sustainability Tensions and Responses When Retail Translates a Manufacturer’s Decarbonization Strategy. Organ. Environ. 2022, 35, 202–232. [Google Scholar] [CrossRef]
- Torben, F.-K. Decarbonization of the retail sector in the cold chain as a mean for sustainable cooling. Refrig. Sci. Technol. 2020, 450–456. [Google Scholar]
- Schittekatte, T.; Mallapragada, D.; Joskow, P.L.; Schmalensee, R. Reforming retail electricity rates to facilitate economy-wide decarbonization. Joule 2023, 7, 831–836. [Google Scholar] [CrossRef]
- Gajdzik, B.; Grabowska, S.; Saniuk, S.; Wieczorek, T. Sustainable Development and Industry 4.0: A Bibliometric Analysis Identifying Key Scientific Problems of the Sustainable Industry 4.0. Energies 2020, 13, 4254. [Google Scholar] [CrossRef]
- Buettner, S.M.; König, W.; Vierhub-Lorenz, F.; Gilles, M. What motivates companies to take the decision to decarbonise? Preprints 2022, 2022100395. [Google Scholar] [CrossRef]
- Finke, T.; Gilchrist, A.; Mouzas, S. Why companies fail to respond to climate change: Collective inaction as an outcome of barriers to interaction. In Industrial Marketing Management; Elsevier Inc.: Amsterdam, The Netherlands, 2016; Volume 58, pp. 94–101. [Google Scholar] [CrossRef]
- Sullivan, R.; Gouldson, A. The governance of corporate responses to climate change: An international comparison. Bus. Strategy Environ. 2017, 26, 413–425. [Google Scholar] [CrossRef]
- Aragon-Correa, J.A.; Marcus, A.A.; Vogel, D. The effects of mandatory and voluntary regulatory pressures on firms’ environmental strategies: A review and recommendations for future research. Acad. Manag. Ann. 2020, 14, 339–365. [Google Scholar] [CrossRef]
- Desender, K.; Epure, M. The pressure behind corporate social performance: Ownership and institutional configurations. Glob. Strategy J. 2021, 11, 210–244. [Google Scholar] [CrossRef]
- Duanmu, J.; Bu, M.; Pittman, R. Does market competition dampen environmental performance? Evidence from China. Strateg. Manag. J. 2018, 39, 3006–3030. [Google Scholar] [CrossRef]
- França, A.; Lopez-Manuel, L.; Sartal, A.; Vázquez, X.H. Adapting corporations to climate change: How decarbonization impacts the business strategy–performance nexus. Bus. Strategy Environ. 2023, 32, 5615–5632. [Google Scholar] [CrossRef]
- Wesseling, J.H.; Lechtenböhmer, S.; Åhman, M.; Nilsson, L.J.; Worrell, E.; Coenen, L. The transition of energy intensive processing industries towards deep decarbonization: Characteristics and implications for future research. Renew. Sustain. Energy Rev. 2017, 79, 1303–1313. [Google Scholar] [CrossRef]
- Crompton, P.; Lesourd, J.B. Economies of scale in global iron-making. Resour. Policy 2008, 33, 74–82. [Google Scholar] [CrossRef]
- SPIRE. SPIRE Roadmap; SPIRE: Brussels, Belgium, 2013. [Google Scholar]
- Worrell, E.; Biermans, G. Move over! Stock turnover, retrofit and industrial energy efficiency. Energy Policy 2005, 33, 949–962. [Google Scholar] [CrossRef]
- Black, M.; Canova, M.; Rydin, S.; Scalet, B.M.; Roudier, S.; Sancho, L.D. Best Available Techniques (BAT) Reference Document for the Tanning of Hides and Skins; Joint Research Center: Brussels, Belgium, 2013. [Google Scholar]
- Fischedick, M.; Marzinkowski, J.; Winzer, P.; Weigel, M. Techno-economic evaluation of innovative steel production technologies. J. Clean. Prod. 2014, 84, 563–580. [Google Scholar] [CrossRef]
- Gajdzik, B.; Sroka, W. Resource Intensity vs. Investment in Production Installations—The Case of the Steel Industry in Poland. Energies 2021, 14, 443. [Google Scholar] [CrossRef]
- Gajdzik, B.; Sroka, W.; Vveinhardt, J. Energy Intensity of Steel Manufactured Utilising EAF Technology as a Function of Investments Made: The Case of the Steel Industry in Poland. Energies 2021, 14, 5152. [Google Scholar] [CrossRef]
- Weber, K.M.; Rohracher, H. Legitimizing research, technology and innovation policies for transformative change: Combining insights from innovation systems and multilevel perspective in a comprehensive “failures” framework. Res. Policy 2012, 41, 1037–1047. [Google Scholar] [CrossRef]
- Den Elzen, M.G.J.; van Vuuren, D.P.; van Vilet, J. Postponing emission reductions from 2020 to 2030 increases climate risks and long-term costs. Clim. Change 2010, 99, 313–320. [Google Scholar] [CrossRef]
- Knopf, B.; Chen, Y.-H.H.; De Cian, E.; Forster, H.; Kanudia, A.; Karkatsouli, I.; Keppo, I.; Koljonen, T.; Schumacher, K.; Van Vuuren, D. Beyond 2020—Strategies and Costs for Transforming the European Energy System. Clim. Change Econ. 2013, 4, 4–42. [Google Scholar] [CrossRef]
- Endrikat, J.; Guenther, E.; Hoppe, H. Making sense of conflicting empirical findings: A meta-analytic review of the relationship between corporate environmental and financial performance. Eur. Manag. J. 2014, 32, 735–751. [Google Scholar] [CrossRef]
- Sroka, W.; Cygler, J.; Gajdzik, B. The Transfer of Knowledge in Intra-Organizational Networks: A Case Study Analysis. Organizacija 2014, 47, 24–34. [Google Scholar] [CrossRef]
- Moberg, K.R.; Sovacool, B.K.; Goritz, A.; Hinojosa, G.M.; Aall, C.; Nilsson, M. Barriers, emotions, and motivational levers for life style transformation in Norwegian household decarbonization pathways. Clim. Change 2021, 165, 3. [Google Scholar] [CrossRef]
- Mathy, S.; Criqui, P.; Knoop, K.; Fischedick, M.; Samadi, S. Uncertainty management and the dynamic adjustment of deep decarbonization pathways. Clim. Policy 2016, 16, S47–S62. [Google Scholar] [CrossRef]
- Cygler, J.; Gajdzik, B.; Sroka, W. Coopetition as a development stimulator of enterprises in the networked steel sector. Metalurgija 2014, 53, 383–386. [Google Scholar]
- Geoffrey, J. Profits and Sustainablity. A History of Green Entrepreneruship; Oxford University Press: Oxford, UK, 2017. [Google Scholar]
- Gajdzik, B.; Jaciow, M.; Wolniak, R.; Wolny, R.; Grebski, W.W. Assessment of Energy and Heat Consumption Trends and Forecasting in the Small Consumer Sector in Poland Based on Historical Data. Resources 2023, 12, 111. [Google Scholar] [CrossRef]
- Gajdzik, B.; Jaciow, M.; Wolniak, R.; Wolny, R.; Grebski, W.W. Energy Behaviors of Prosumers in Example of Polish Households. Energies 2023, 16, 3186. [Google Scholar] [CrossRef]
- Partanen-Hertell, M.; Harju-Autti, P.; Kreft-Burman, K.; Pemberton, D. Raising Environmental Awareness in Beltic Sea Area; The Finnish Environmental Institute: Helsinki, Finland, 1999. [Google Scholar]
- Gajdzik, B.; Jaciow, M.; Wolniak, R.; Wolny, R.; Grebski, W.W. Diagnosis of the Development of Energy Cooperatives in Poland—A Case Study of a Renewable Energy Cooperative in the Upper Silesian Region. Energies 2024, 17, 647. [Google Scholar] [CrossRef]
- Eurostat. Available online: https://ec.europa.eu/eurostat/databrowser/view/nrg_ind_eff__custom_9531378/default/table?lang=en (accessed on 26 January 2024).
- Our World in Data. Available online: https://ourworldindata.org/renewable-energy (accessed on 26 January 2024).
- Energy Institute. Statistical Review of World Energy. 2023. Available online: https://www.energyinst.org/statistical-review/ (accessed on 26 January 2024).
- Miklautsch, P.; Woschank, M. The adoption of industrial logistics decarbonization practices: Evidence from Austria. Transp. Res. Interdiscip. Perspect. 2023, 21, 100857. [Google Scholar] [CrossRef]
- Zwickl-Bernhard, S.; Golab, A.; Perger, T.; Auer, H. Designing a model for the cost-optimal decommissioning and refurbishment investment decision for gas networks: Application on a real test bed in Austria until 2050. Energy Strategy Rev. 2023, 49, 101138. [Google Scholar] [CrossRef]
- Rodin, V.; Moser, S. From theory to practice: Supporting industrial decarbonization and energy cooperation in Austria. Energy Res. Soc. Sci. 2022, 94, 102863. [Google Scholar] [CrossRef]
- Nagovnak, P.; Kienberger, T.; Geyer, R.; Hainoun, A. Decarbonization scenarios for the industrial energy system in Austria. Elektrotechnik Informationstechnik 2021, 138, 258–263. [Google Scholar] [CrossRef]
- Van Opstal, W.; Smeets, A. When do circular business models resolve barriers to residential solar PV adoption? Evidence from survey data in flanders. Energy Policy 2023, 182, 113761. [Google Scholar] [CrossRef]
- Gouveia, M.C.; Henriques, C.O.; Dias, L.C. Eco-efficiency changes of the electricity and gas sectors across 28 European countries: A value-based data envelopment analysis productivity approach. Socio-Econ. Plan. Sci. 2023, 87, 101609. [Google Scholar] [CrossRef]
- Djambazov, S.; Yoleva, A. Investigation of decarbonization of granulated limestone from the eastern Rhodopes deposit, Bulgaria. J. Chem. Technol. Metall. 2021, 56, 960–964. [Google Scholar]
- Jonek-Kowalska, I. Towards the reduction of CO2 emissions. Paths of pro-ecological transformation of energy mixes in European countries with an above-average share of coal in energy consumption. Resour. Policy 2022, 77, 102701. [Google Scholar] [CrossRef]
- Tavares, V.; Gregory, J.; Kirchain, R.; Freire, F. What is the potential for prefabricated buildings to decrease costs and contribute to meeting EU environmental targets? Build. Environ. 2021, 206, 108382. [Google Scholar] [CrossRef]
- Gaillot, T.; Beauchet, S.; Lorne, D.; Krim, L. The impact of fossil jet fuel emissions at altitude on climate change: A life cycle assessment study of a long-haul flight at different time horizons. Atmos. Environ. 2023, 311, 119983. [Google Scholar] [CrossRef]
- Webb, D.; Hanssen, O.N.; Marten, R. The health sector and fiscal policies of fossil fuels: An essential alignment for the health and climate change agenda. BMJ Glob. Health 2023, 8, e012938. [Google Scholar] [CrossRef]
- Shanmugam, G. 200 Years of Fossil Fuels and Climate Change (1900–2100). J. Geol. Soc. India 2023, 99, 1043–1062. [Google Scholar] [CrossRef]
- Su, C.-W.; Pang, L.-D.; Qin, M.; Lobonţ, O.-R.; Umar, M. The spillover effects among fossil fuel, renewables and carbon markets: Evidence under the dual dilemma of climate change and energy crises. Energy 2023, 274, 127304. [Google Scholar] [CrossRef]
- Sain, K. Climate Change and Fossil Fuels: Impacts, Challenges and Plausible Mitigation. J. Geol. Soc. India 2023, 99, 454–458. [Google Scholar] [CrossRef]
- Norvaiša, E.; Galinis, A.; Neniškis, E. Assessment of decarbonization possibilities in Lithuania’s chemical industry. Energy Sources Part B Econ. Plan. Policy 2023, 18, 2214912. [Google Scholar] [CrossRef]
Industry | Literature Positions | Description |
---|---|---|
Energy | [62] | Shift from fossil fuels to renewable sources, such as solar, wind and hydropower. Implement energy storage solutions, smart grids, and enhance energy efficiency in production and distribution. Upgrade and modernize power infrastructure to accommodate decentralized and clean energy systems. |
Transportation | [63,64,65] | Transition to electric vehicles (EVs), invest in sustainable public transportation and develop infrastructure for EV charging. Improve fuel efficiency in traditional vehicles and explore alternative fuels, such as hydrogen and biofuels. Adopt intelligent transportation systems to optimize traffic flow and reduce emissions. |
Manufacturing | [66,67,68] | Adopt sustainable and circular economy practices. Optimize manufacturing processes for energy efficiency and reduce resource consumption. Incorporate green materials, design for recyclability and implement closed-loop production systems. Embrace digital technologies, such as IoT and AI, for predictive maintenance and resource optimization. |
Construction | [69,70,71] | Embrace green building standards, prioritize energy-efficient designs and use sustainable materials. Incorporate renewable energy solutions, such as solar panels and geothermal systems, in construction projects. Implement smart building technologies for energy management and monitoring. Adopt circular economy principles in construction waste management. |
Agriculture | [72,73] | Implement precision farming techniques, reduce reliance on synthetic fertilizers and promote sustainable land management practices. Invest in agroecology and regenerative agriculture to enhance soil health and carbon sequestration. Utilize technology for data-driven decision making in crop management and irrigation. Adopt sustainable supply chain practices in agriculture. |
Chemical | [74,75,76] | Transition to green chemistry practices, reduce emissions in chemical production processes and develop sustainable alternatives for chemical manufacturing. Invest in research and innovation for greener chemical technologies. Adopt circular economy principles in chemical waste management. Collaborate with stakeholders to establish industry-wide sustainability standards. Promote transparency in the supply chain to ensure responsible sourcing of raw materials. |
Technology | [77] | Improve energy efficiency in data centers and IT infrastructure. Develop and promote energy-efficient electronic devices. Implement sustainable design practices for hardware and software. Incorporate eco-friendly materials in manufacturing electronic components. Promote responsible e-waste management and recycling. Support and invest in research and development of green technologies. |
Finance and Insurance | [78,79] | Integrate environmental, social and governance (ESG) criteria into investment decisions. Provide financial incentives for sustainable and low-carbon projects. Develop and offer green financial products and services. Encourage transparency in reporting and disclosure of climate-related risks. Support initiatives and innovations, which contribute to a sustainable and low-carbon economy. |
Tourism and Hospitality | [18,80,81,82,83] | Promote eco-friendly tourism practices, develop sustainable accommodations and minimize the environmental impact of travel-related activities. Implement energy-efficient technologies in hospitality facilities. Encourage sustainable tourism through education and awareness campaigns. Support local communities and biodiversity conservation in tourist destinations. Invest in low-carbon transportation options for travelers. |
Healthcare | [84] | Enhance energy efficiency in healthcare facilities, promote sustainable practices in waste management and adopt green building standards. Integrate environmentally friendly technologies and materials in medical equipment. Implement telemedicine solutions to reduce the need for physical travel. Foster sustainability in the healthcare supply chain, from pharmaceuticals to medical devices. |
Retail | [85,86,87] | Implement sustainable sourcing practices, reduce packaging waste and promote eco-friendly products. Adopt circular economy principles in supply chain management. Invest in technology to optimize inventory management and reduce overstock. Educate and engage consumers in sustainable consumption practices. Support and collaborate with suppliers committed to environmental and social responsibility. |
Country | Independent Variables | ||||
---|---|---|---|---|---|
Efficiency of Final Energy | Efficiency of Primary Energy | RES | Fossil Fuels | RES vs. Fossil Fuels | |
Austria | 0.66 | 0.67 | 0.14 * | −0.14 * | −1.00 |
Belgium | 0.20 * | 0.61 | −0.96 | 0.75 | −0.77 |
Bulgaria | 0.87 | 0.87 | −0.43 | 0.79 | −0.81 |
Croatia | 0.84 | 0.92 | −0.37 | 0.37 | −1.00 |
Cyprus | 0.98 | 0.98 | −0.61 | n.a. ** | n.a. ** |
Czech Republic | 0.93 | 0.73 | −0.79 | 0.83 | −0.93 |
Denmark | 0.56 | 0.90 | −0.97 | 0.97 | −1.00 |
Estonia | 0.91 | 0.93 | −0.09 | 0.09 * | −1.00 |
Finland | 0.56 | 0.56 | −0.09 | 0.13 * | −0.99 |
France | 0.40 | 0.14 * | −0.89 | 0.88 | −0.72 |
Germany | 0.84 | 0.89 | −0.94 | 0.97 | −0.98 |
Greece | 0.83 | 0.91 | −0.80 | 0.80 | −1.00 |
Hungary | −0.07 * | 0.67 | −0.87 | 0.93 | −0.94 |
Ireland | 0.71 | 0.77 | −0.12 * | 0.12 * | −1.00 |
Italy | 0.65 | 0.69 | −0.95 | 0.95 | −1.00 |
Latvia | 0.45 | 0.34 * | 0.17 * | −0.17 * | −1.00 |
Lithuania | 0.85 | 0.96 | −0.43 | −0.27 * | 0.81 |
Luxembourg | 0.60 | 0.67 | −0.25 * | 0.25 * | −1.00 |
Malta | −0.57 | 0.72 | −0.88 | n.a. ** | n.a. ** |
The Netherlands | 0.61 | 0.55 | −0.95 | 0.95 | −1.00 |
Poland | −0.02 * | 0.48 | −0.48 | 0.48 | −1.00 |
Portugal | 0.66 | 0.78 | −0.66 | 0.66 | −1.00 |
Romania | 0.80 | 0.96 | −0.91 | 0.95 | −0.97 |
Slovakia | 0.80 | 0.88 | −0.89 | 0.85 | −0.88 |
Slovenia | 0.21 * | 0.10 * | 0.31 * | −0.35 | −0.95 |
Spain | 0.75 | 0.75 | −0.41 | 0.67 | −0.95 |
Sweden | 0.72 | 0.60 | −0.86 | 0.81 | −0.94 |
Coefficients | Standard Error | t-Statistic | p-Value | |
---|---|---|---|---|
Austria | Regression statistics: R = 0.6694; R2 = 0.4481; Adjusted R2 = 0.4303; F(1;31) = 25.1679; p < 0.0000 | |||
Constant | 28.4022 | 15.3664 | 1.8483 | 0.0741 |
Variable X1 | 2.5877 | 0.5158 | 5.0168 | 0.0000 |
Belgium | Regression statistics: R = 0.9621; R2 = 0.9256; Adjusted R2 = 0.9232; F(1;31) = 385.7955; p < 0.0000 | |||
Constant | 103.1022 | 0.6693 | 154.0465 | 0.0000 |
Variable X2 | −2.8137 | 0.1433 | −19.6417 | 0.0000 |
Bulgaria | Regression statistics: R = 0.9396; R2 = 0.8829; Adjusted R2 = 0.8707; F(1;31) = 72.8606; p < 0.0000 | |||
Constant | −113.9376 | 18.3515 | −6.2086 | 0.0000 |
Variable X1 | 2.7450 | 0.4831 | 5.6819 | 0.0000 |
Variable X2 | 1.2444 | 0.2867 | 4.3401 | 0.0002 |
Variable X3 | 1.5462 | 0.2841 | 5.4428 | 0.0000 |
Croatia | Regression statistics: R = 0.9377; R2 = 0.8793; Adjusted R2 = 0.8712; F(2;30) = 109.2555; p < 0.0000 | |||
Constant | −30.5880 | 9.7897 | −3.1245 | 0.0039 |
Variable X1 | 14.0833 | 1.0354 | 13.6012 | 0.0000 |
Variable X2 | −0.3945 | 0.1608 | −2.4525 | 0.0202 |
Cyprus | Regression statistics: R = 0.9776; R2 = 0.9556; Adjusted R2 = 0.9542; F(1;31) = 667.9116; p < 0.0000 | |||
Constant | 15.9418 | 5.0103 | 3.1818 | 0.0033 |
Variable X1 | 55.3942 | 2.1434 | 25.8440 | 0.0000 |
Czech Republic | Regression statistics: R = 0.9620; R2 = 0.9255; Adjusted R2 = 0.9178; F(3;29) = 120.0628; p < 0.0000 | |||
Constant | −161.0103 | 23.8936 | −6.7386 | 0.0000 |
Variable X1 | 2.2585 | 0.2331 | 9.6884 | 0.0000 |
Variable X2 | 1.9782 | 0.5215 | 3.7937 | 0.0007 |
Variable X3 | 1.6004 | 0.2040 | 7.8445 | 0.0000 |
Denmark | Regression statistics: R = 0.9836; R2 = 0.9674; Adjusted R2 = 0.9652; F(2;30) = 444.8693; p < 0.0000 | |||
Constant | 35.5933 | 14.1092 | 2.5227 | 0.0172 |
Variable X1 | 3.7832 | 0.6897 | 5.4851 | 0.0000 |
Variable X2 | −1.0436 | 0.0856 | −12.1852 | 0.0000 |
Estonia | Regression statistics: R = 0.9500; R2 = 0.9026; Adjusted R2 = 0.8961; F(2;30) = 138.9719; p < 0.0000 | |||
Constant | −15.7708 | 4.0735 | −3.8715 | 0.0005 |
Variable X1 | 11.2258 | 0.6763 | 16.5993 | 0.0000 |
Variable X2 | 0.6373 | 0.1822 | 3.4984 | 0.0015 |
Finland | Regression statistics: R = 0.6940; R2 = 0.4817; Adjusted R2 = 0.4281; F(3;29) = 8.9840; p < 0.0002 | |||
Constant | −803.0099 | 268.7749 | −2.9877 | 0.0057 |
Variable X1 | 2.6313 | 0.7062 | 3.7262 | 0.0008 |
Variable X2 | 10.5636 | 3.5540 | 2.9723 | 0.0059 |
Variable X3 | 9.6741 | 3.1780 | 3.0441 | 0.0049 |
France | Regression statistics: R = 0.8883; R2 = 0.7890; Adjusted R2 = 0.7822; F(1;31) = 115.9213; p < 0.0000 | |||
Constant | 118.3223 | 2.5590 | 46.2380 | 0.0000 |
Variable X2 | −3.1154 | 0.2894 | −10.7667 | 0.0000 |
Germany | Regression statistics: R = 0.9783; R2 = 0.9570; Adjusted R2 = 0.9526; F(3;29) = 215.1559; p < 0.0000 | |||
Constant | −250.1857 | 46.8220 | −5.3433 | 0.0000 |
Variable X1 | 0.1690 | 0.0488 | 3.4634 | 0.0017 |
Variable X2 | 0.9676 | 0.3311 | 2.9228 | 0.0067 |
Variable X3 | 3.2243 | 0.4684 | 6.8835 | 0.0000 |
Greece | Regression statistics: R = 0.9889; R2 = 0.9778; Adjusted R2 = 0.9764; F(2;30) = 661.5533; p < 0.0000 | |||
Constant | 26.2233 | 4.6856 | 5.5966 | 0.0000 |
Variable X1 | 3.5994 | 0.1683 | 21.3821 | 0.0000 |
Variable X2 | −1.4455 | 0.1022 | −14.1451 | 0.0000 |
Hungary | Regression statistics: R = 0.9442; R2 = 0.8915; Adjusted R2 = 0.8843; F(2;30) = 123.2797; p < 0.0000 | |||
Constant | −167.7838 | 16.0597 | −10.4475 | 0.0000 |
Variable X1 | 2.1518 | 0.6997 | 3.0754 | 0.0045 |
Variable X3 | 2.2757 | 0.2070 | 10.9921 | 0.0000 |
Ireland | Regression statistics: R = 0.8825; R2 = 0.7788; Adjusted R2 = 0.7640; F(2;30) = 52.8103; p < 0.0000 | |||
Constant | 56.6228 | 6.0282 | 9.3930 | 0.0000 |
Variable X1 | 4.7804 | 0.4697 | 10.1764 | 0.0000 |
Variable X2 | −0.7056 | 0.1398 | −5.0481 | 0.0000 |
Italy | Regression statistics: R = 0.9901; R2 = 0.9804; Adjusted R2 = 0.9791; F(2;30) = 749.0428; p < 0.0000 | |||
Constant | 72.7187 | 4.4166 | 16.4647 | 0.0000 |
Variable X1 | 0.2713 | 0.0256 | 10.6149 | 0.0000 |
Variable X2 | −1.9610 | 0.0709 | −27.6430 | 0.0000 |
Latvia | Regression statistics: R = 0.5409; R2 = 0.2925; Adjusted R2 = 0.2454; F(2;30) = 6.2023; p < 0.0056 | |||
Constant | −173.9936 | 62.4125 | −2.7878 | 0.0091 |
Variable X1 | 26.3625 | 7.9082 | 3.3335 | 0.0023 |
Variable X2 | 4.5193 | 1.6381 | 2.7589 | 0.0098 |
Lithuania | Regression statistics: R = 0.9682; R2 = 0.9373; Adjusted R2 = 0.9331; F(2;30) = 224.3011; p < 0.0000 | |||
Constant | −28.7126 | 4.2163 | −6.8099 | 0.0000 |
Variable X1 | 8.2778 | 0.4358 | 18.9939 | 0.0000 |
Variable X2 | 0.8183 | 0.2406 | 3.4006 | 0.0019 |
Luxembourg | Regression statistics: R = 0.7972; R2 = 0.6355; Adjusted R2 = 0.6112; F(2;30) = 26.1545; p < 0.0000 | |||
Constant | 22.1418 | 10.3433 | 2.1407 | 0.0405 |
Variable X1 | 17.8544 | 2.5942 | 6.8824 | 0.0000 |
Variable X2 | −1.5068 | 0.3881 | −3.8826 | 0.0005 |
Malta | Regression statistics: R = 0.8781; R2 = 0.7711; Adjusted R2 = 0.7568; F(1;16) = 53.9107; p < 0.0000 | |||
Constant | 119.0317 | 2.6468 | 44.9720 | 0.0000 |
Variable X2 | −3.4869 | 0.4749 | −7.3424 | 0.0000 |
The Netherlands | Regression statistics: R = 0.9489; R2 = 0.9005; Adjusted R2 = 0.8973; F(1;31) = 280.5192; p < 0.0000 | |||
Constant | 103.9937 | 0.7138 | 145.6969 | 0.0000 |
Variable X2 | −2.5832 | 0.1542 | −16.7487 | 0.0000 |
Poland | Regression statistics: R = 0.4762; R2 = 0.2268; Adjusted R2 = 0.2019; F(1;31) = 9.0933; p < 0.0051 | |||
Constant | 89.3463 | 1.6736 | 53.3868 | 0.0000 |
Variable X2 | −1.2297 | 0.4078 | −3.0155 | 0.0051 |
Portugal | Regression statistics: R = 0.7001; R2 = 0.4902; Adjusted R2 = 0.4737; F(1;31) = 29.8048; p < 0.0000 | |||
Constant | 11.6390 | 16.5961 | 0.7013 | 0.4883 |
Variable X1 | 4.2517 | 0.7788 | 5.4594 | 0.0000 |
Romania | Regression statistics: R = 0.9906; R2 = 0.9814; Adjusted R2 = 0.9801; F(2;30) = 789.6766; p < 0.0000 | |||
Constant | −103.3504 | 6.4195 | −16.0995 | 0.0000 |
Variable X1 | 1.3875 | 0.1211 | 11.4558 | 0.0000 |
Variable X3 | 1.2170 | 0.1179 | 10.3193 | 0.0000 |
Slovakia | Regression statistics: R = 0.9622; R2 = 0.9258; Adjusted R2 = 0.9182; F(3;29) = 120.6569; p < 0.0000 | |||
Constant | −78.1099 | 26.0551 | −2.9979 | 0.0055 |
Variable X1 | 5.9136 | 0.9041 | 6.5410 | 0.0000 |
Variable X2 | −0.9983 | 0.4805 | −2.0775 | 0.0467 |
Variable X3 | 0.6860 | 0.2288 | 2.9979 | 0.0055 |
Slovenia | Regression statistics: R = 0.3521; R2 = 0.1240; Adjusted R2 = 0.0957; F(1;31) = 4.3867; p < 0.0000 | |||
Constant | 194.8440 | 46.7552 | 4.1673 | 0.0002 |
Variable X3 | −1.4662 | 0.7000 | −2.0944 | 0.0445 |
Spain | Regression statistics: R = 0.9830; R2 = 0.9664; Adjusted R2 = 0.9641; F(2;30) = 431.1652; p < 0.0000 | |||
Constant | 30.2035 | 4.3188 | 6.9934 | 0.0000 |
Variable X1 | 1.0391 | 0.0390 | 26.6214 | 0.0000 |
Variable X2 | −2.1294 | 0.1122 | −18.9860 | 0.0000 |
Sweden | Regression statistics: R = 0.8570; R2 = 0.7344; Adjusted R2 = 0.7258; F(1, 31) = 85.7162; p < 0.0000 | |||
Constant | 223.9805 | 16.4779 | 13.5928 | 0.0000 |
Variable X2 | −4.0123 | 0.4334 | −9.2583 | 0.0000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nagaj, R.; Gajdzik, B.; Wolniak, R.; Grebski, W.W. The Impact of Deep Decarbonization Policy on the Level of Greenhouse Gas Emissions in the European Union. Energies 2024, 17, 1245. https://doi.org/10.3390/en17051245
Nagaj R, Gajdzik B, Wolniak R, Grebski WW. The Impact of Deep Decarbonization Policy on the Level of Greenhouse Gas Emissions in the European Union. Energies. 2024; 17(5):1245. https://doi.org/10.3390/en17051245
Chicago/Turabian StyleNagaj, Rafał, Bożena Gajdzik, Radosław Wolniak, and Wieslaw Wes Grebski. 2024. "The Impact of Deep Decarbonization Policy on the Level of Greenhouse Gas Emissions in the European Union" Energies 17, no. 5: 1245. https://doi.org/10.3390/en17051245
APA StyleNagaj, R., Gajdzik, B., Wolniak, R., & Grebski, W. W. (2024). The Impact of Deep Decarbonization Policy on the Level of Greenhouse Gas Emissions in the European Union. Energies, 17(5), 1245. https://doi.org/10.3390/en17051245