China and Italy’s Energy Development Trajectories: Current Landscapes and Future Cooperation Potential
Abstract
:1. Introduction
2. Development of Traditional Fossil Energy
2.1. Overview of Coal Power Development in China
2.2. Overview of Coal Power Development in Italy
3. Development of Renewable Energy
3.1. Overview of Renewable Energy Development in China
3.2. Overview of Renewable Energy Development in Italy
4. Development of Hydrogen Energy
4.1. Overview of Hydrogen Energy Development in China
4.2. Overview of Hydrogen Energy Development in Italy
5. Challenges and Future Perspectives
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Abbas, J.; Wang, L.; Ben Belgacem, S.; Pawar, P.S.; Najam, H.; Abbas, J. Investment in renewable energy and electricity output: Role of green finance, environmental tax, and geopolitical risk: Empirical evidence from China. Energy 2023, 269, 126683. [Google Scholar] [CrossRef]
- Lin, B.; Li, M. Understanding the investment of renewable energy firms in the face of economic policy uncertainty—Micro-evidence from listed companies in China. China Econ. Rev. 2022, 75, 101845. [Google Scholar] [CrossRef]
- Liu, S.; Wei, N.; Jiang, D.; Nie, L.; Cai, B.; Tao, Y.; Li, X. Emission reduction path for coal-based enterprises via carbon capture, geological utilization, and storage: China energy group. Energy 2023, 273, 127222. [Google Scholar] [CrossRef]
- Meng, Y.; Cao, Y.; Li, J.; Liu, C.; Li, J.; Wang, Q.; Cai, G.; Zhao, Q.; Liu, Y.; Meng, X.; et al. The real cost of deep peak shaving for renewable energy accommodation in coal-fired power plants: Calculation framework and case study in China. J. Clean. Prod. 2022, 367, 132913. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, S.; Huo, J.; Zhou, Y.; Li, L.; Han, T. Dispatch optimization of thermal power unit flexibility transformation under the deep peak shaving demand based on invasive weed optimization. J. Clean. Prod. 2021, 315, 128047. [Google Scholar] [CrossRef]
- Boqiang, L. China’s Coal Power Transformation: Challenges and Breakthroughs. Coal Econ. Res. 2021, 41, 1. [Google Scholar]
- Li, J.; Sun, Q.; Wang, W.; Yang, F. Research on the Emission Reduction Effect of Air Pollutants in China’s Coal-fired Power Supply Chain by “Upward Pressure and Smaller Pressure”. Chin. Environ. Sci. 2023, 43. [Google Scholar]
- Long, R.; Ren, Y.; Wu, M. Differential decomposition of total-factor energy efficiency in Chinese coal mining cities considering environmental constraints: A dynamic and static perspective. Resour. Policy 2022, 79, 102993. [Google Scholar] [CrossRef]
- Kong, B.; Gallagher, K.P. The new coal champion of the world: The political economy of Chinese overseas development finance for coal-fired power plants. Energy Policy 2021, 155, 112334. [Google Scholar] [CrossRef]
- Fan, S.; Zha, S.; Zhao, C.; Sizheng, F.; Li, M. Using energy vulnerability to measure distributive injustice in rural heating energy reform: A case study of natural gas replacing bulk coal for heating in Gaocheng District, Hebei Province, China. Ecol. Econ. 2022, 197, 107456. [Google Scholar] [CrossRef]
- Wang, B.; Ji, F.; Zheng, J.; Xie, K.; Feng, Z. Carbon emission reduction of coal-fired power supply chain enterprises under the revenue sharing contract: Perspective of coordination game. Energy Econ. 2021, 102, 105467. [Google Scholar] [CrossRef]
- Abbasi, K.R.; Shahbaz, M.; Zhang, J.; Irfan, M.; Alvarado, R. Analyze the environmental sustainability factors of China: The role of fossil fuel energy and renewable energy. Renew. Energy 2022, 187, 390–402. [Google Scholar] [CrossRef]
- Lin, Y.; Anser, M.K.; Peng, M.Y.P.; Irfan, M. Assessment of renewable energy, financial growth and in accomplishing targets of China’s cities carbon neutrality. Renew. Energy 2023, 205, 1082–1091. [Google Scholar] [CrossRef]
- Zhang, W.; Chiu, Y.-B. Country risks, government subsidies, and Chinese renewable energy firm performance: New evidence from a quantile regression. Energy Econ. 2023, 119, 106540. [Google Scholar] [CrossRef]
- Ren, B.; Lucey, B. Herding in the Chinese renewable energy market: Evidence from a bootstrapping time-varying coefficient autoregressive model. Energy Econ. 2023, 119, 106526. [Google Scholar] [CrossRef]
- Yang, G.; Zhang, G.; Cao, D.; Zha, D.; Su, B. China’s ambitious low-carbon goals require fostering city-level renewable energy transitions. iScience 2023, 26, 106263. [Google Scholar] [CrossRef] [PubMed]
- Yongjiang, Y.; Chendi, Z. A summary of hot topics in the development of hydropower in China. Hydropower New Energy 2021, 35, 1–7. [Google Scholar]
- Shuhe, W. The current situation and prospects of China’s hydropower development. Henan Water Conserv. South North Water Divers. Proj. 2021, 50, 26–27. [Google Scholar]
- Wu, J.; Zha, J.; Zhao, D.; Yang, Q. Changes in terrestrial near-surface wind speed and their possible causes: An overview. Clim. Dyn. 2018, 51, 2039–2078. [Google Scholar] [CrossRef]
- Liu, F.; Wang, X.; Sun, F.; Kleidon, A. Potential impact of global stilling on wind energy production in China. Energy 2023, 263, 125727. [Google Scholar] [CrossRef]
- Chen, Y.; Yue, X.; Tian, C.; Letu, H.; Wang, L.; Zhou, H.; Zhao, Y.; Fu, W.; Zhao, X.; Peng, D.; et al. Assessment of solar energy potential in China using an ensemble of photovoltaic power models. Sci. Total Environ. 2023, 877, 162979. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Yi, X.; Zhao, M.; Gu, Z. Reduction in solar photovoltaic generation due to aerosol pollution in megacities in western China during 2014 to 2018. Indoor Built Environ. 2020, 30, 1286–1294. [Google Scholar] [CrossRef]
- An, Y.; Chen, T.; Shi, L.; Heng, C.K.; Fan, J. Solar energy potential using GIS-based urban residential environmental data: A case study of Shenzhen, China. Sustain. Cities Soc. 2023, 93, 104547. [Google Scholar] [CrossRef]
- Jing, J.; Zhou, Y.; Wang, L.; Liu, Y.; Wang, D. The spatial distribution of China’s solar energy resources and the optimum tilt angle and power generation potential of PV systems. Energy Convers. Manag. 2023, 283, 116912. [Google Scholar] [CrossRef]
- Huang, W.; Dai, J.; Xiong, L. Towards a sustainable energy future: Factors affecting solar-hydrogen energy production in China. Sustain. Energy Technol. Assess. 2022, 52, 102059. [Google Scholar] [CrossRef]
- Lu, Q.; Zhang, B.; Yang, S.; Peng, Z. Life cycle assessment on energy efficiency of hydrogen fuel cell vehicle in China. Energy 2022, 257, 124731. [Google Scholar] [CrossRef]
- Xiang, P.-P.; He, C.-M.; Chen, S.; Jiang, W.-Y.; Liu, J.; Jiang, K.-J. Role of hydrogen in China’s energy transition towards carbon neutrality target: IPAC analysis. Adv. Clim. Chang. Res. 2023, 14, 43–48. [Google Scholar] [CrossRef]
- Gao, X.; An, R. Research on the coordinated development capacity of China’s hydrogen energy industry chain. J. Clean. Prod. 2022, 377, 134177. [Google Scholar] [CrossRef]
- Zhang, Q.; Chen, W.; Ling, W. Policy optimization of hydrogen energy industry considering government policy preference in China. Sustain. Prod. Consum. 2022, 33, 890–902. [Google Scholar] [CrossRef]
- Pastore, L.M.; Basso, G.L.; Cristiani, L.; de Santoli, L. Rising targets to 55% GHG emissions reduction—The smart energy systems approach for improving the Italian energy strategy. Energy 2022, 259, 125049. [Google Scholar] [CrossRef]
- Ferrari, L.; Pasini, G.; Desideri, U. Towards a Power Production from 100% Renewables: The Italian Case Study. Energies 2023, 16, 2295. [Google Scholar] [CrossRef]
- Desideri, U.; Krayem, A.; Thorin, E. The Unprecedented Natural Gas Crisis in Europe: Investigating the Causes and Consequences with a Focus on Italy. Energies 2023, 16, 5954. [Google Scholar] [CrossRef]
- Zastempowski, M. Analysis and modeling of innovation factors to replace fossil fuels with renewable energy sources—Evidence from European Union enterprises. Renew. Sustain. Energy Rev. 2023, 178, 113262. [Google Scholar] [CrossRef]
- Antimiani, A.; Costantini, V.; Paglialunga, E. Fossil fuels subsidy removal and the EU carbon neutrality policy. Energy Econ. 2023, 119, 106524. [Google Scholar] [CrossRef]
- Bersano, A.; Segantin, S.; Falcone, N.; Panella, B.; Testoni, R. Evaluation of a potential reintroduction of nuclear energy in Italy to accelerate the energy transition. Electr. J. 2020, 33, 106813. [Google Scholar] [CrossRef]
- Gul, E.; Baldinelli, G.; Bartocci, P.; Shamim, T.; Domenighini, P.; Cotana, F.; Wang, J.; Fantozzi, F.; Bianchi, F. Transition toward net zero emissions—Integration and optimization of renewable energy sources: Solar, hydro, and biomass with the local grid station in central Italy. Renew. Energy 2023, 259, 125049. [Google Scholar] [CrossRef]
- Mohsin, M.; Orynbassarov, D.; Anser, M.K.; Oskenbayev, Y. Does hydropower energy help to reduce CO2 emissions in European Union countries? evidence from quantile estimation. Environ. Dev. 2023, 45, 100794. [Google Scholar] [CrossRef]
- Quaranta, E.; Muntean, S. Wasted and excess energy in the hydropower sector: A European assessment of tailrace hydrokinetic potential, degassing-methane capture and waste-heat recovery. Appl. Energy 2023, 329, 120213. [Google Scholar] [CrossRef]
- D’Agata, C.; Bocchiola, D.; Soncini, A.; Maragno, D.; Smiraglia, C.; Diolaiuti, G.A. Recent area and volume loss of Alpine glaciers in the Adda River of Italy and their contribution to hydropower production. Cold Reg. Sci. Technol. 2018, 148, 172–184. [Google Scholar] [CrossRef]
- Rossi, F.; Heleno, M.; Basosi, R.; Sinicropi, A. LCA driven solar compensation mechanism for Renewable Energy Communities: The Italian case. Energy 2021, 235, 121374. [Google Scholar] [CrossRef]
- Bianco, V.; Cascetta, F.; Nardini, S. Analysis of technology diffusion policies for renewable energy. The case of the Italian solar photovoltaic sector. Sustain. Energy Technol. Assess. 2021, 46, 101250. [Google Scholar] [CrossRef]
- Ascione, F.; Bianco, N.; Mauro, G.M.; Napolitano, D.F.; Vanoli, G.P. Comprehensive analysis to drive the energy retrofit of a neighborhood by optimizing the solar energy exploitation—An Italian case study. J. Clean. Prod. 2021, 314, 127998. [Google Scholar] [CrossRef]
- Rosato, A.; Ciervo, A.; Ciampi, G.; Scorpio, M.; Guarino, F.; Sibilio, S. Energy, environmental and economic dynamic assessment of a solar hybrid heating network operating with a seasonal thermal energy storage serving an Italian small-scale residential district: Influence of solar and back-up technologies. Therm. Sci. Eng. Prog. 2020, 19, 100591. [Google Scholar] [CrossRef]
- Serri, L.; Lembo, E.; Airoldi, D.; Gelli, C.; Beccarello, M. Wind energy plants repowering potential in Italy: Technical-economic assessment. Renew. Energy 2018, 115, 382–390. [Google Scholar] [CrossRef]
- Contestabile, P.; Russo, S.; Azzellino, A.; Cascetta, F.; Vicinanza, D. Combination of local sea winds/land breezes and nearshore wave energy resource: Case study at MaRELab (Naples, Italy). Energy Convers. Manag. 2022, 257, 115356. [Google Scholar] [CrossRef]
- Pastore, L.M.; Basso, G.L.; Sforzini, M.; de Santoli, L. Technical, economic and environmental issues related to electrolysers capacity targets according to the Italian Hydrogen Strategy: A critical analysis. Renew. Sustain. Energy Rev. 2022, 166, 112685. [Google Scholar] [CrossRef]
- Spazzafumo, G.; Raimondi, G. Economic assessment of hydrogen production in a Renewable Energy Community in Italy. E-Prime—Adv. Electr. Eng. Electron. Energy 2023, 4, 100131. [Google Scholar] [CrossRef]
- Mattera, S.; Donda, F.; Tinivella, U.; Barison, E.; Le Gallo, Y.; Vincent, C. First assessment of an area potentially suitable for underground hydrogen storage in Italy. Int. J. Hydrogen Energy 2023, 48, 17940–17956. [Google Scholar] [CrossRef]
- Liponi, A.; Pasini, G.; Baccioli, A.; Ferrari, L. Hydrogen from renewables: Is it always green? The Italian scenario. Energy Convers. Manag. 2023, 276, 116525. [Google Scholar] [CrossRef]
- Li, M.; Liu, W.; Liu, W.; Bi, M.; Cui, Z. Dynamic substance flow analysis of lead in the fossil fuel system of China from 1980 to 2018. J. Clean. Prod. 2021, 313, 127918. [Google Scholar] [CrossRef]
- Liu, Y.; Tang, Y.; Gao, X.; Wan, J.; Wu, J.; Zhang, Y. Designing and analysis of index-based long-term electricity market contract considering recent surge of coal price in China. Energy Rep. 2022, 8, 29–39. [Google Scholar] [CrossRef]
- Zhang, C.; Xie, L.; Qiu, Y.; Wang, S. Learning-by-Manufacturing and Learning-by-Operating mechanisms drive energy conservation and emission reduction in China’s coal power industry. Resour. Conserv. Recycl. 2022, 186, 106532. [Google Scholar] [CrossRef]
- Zhao, H.; Guo, S.; Zhao, H. Provincial energy efficiency of China quantified by three-stage data envelopment analysis. Energy 2019, 166, 96–107. [Google Scholar] [CrossRef]
- Wu, H.; Wang, Q.; Xu, Y.; Ye, Y.; Zeng, X. Coal life-cycle analysis embedded with land–energy nexus of a coal-based city in China. Resour. Environ. Sustain. 2023, 12, 100109. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, W.; Ye, J. Why sulfur dioxide emissions decline significantly from coal-fired power plants in China? Evidence from the desulfurated electricity pricing premium program. Energy Policy 2021, 148, 111996. [Google Scholar] [CrossRef]
- Li, B.; Haneklaus, N. The role of clean energy, fossil fuel consumption and trade openness for carbon neutrality in China. Energy Rep. 2022, 8, 1090–1098. [Google Scholar] [CrossRef]
- Zhao, Z.; Ding, X.; Behrens, P.; Li, J.; He, M.; Gao, Y.; Xua, G.L.B.; Chen, D. The importance of flexible hydropower in providing electricity stability during China’s coal phase-out. Appl. Energy 2023, 336, 120684. [Google Scholar] [CrossRef]
- Sammarchi, S.; Li, J.; Izikowitz, D.; Yang, Q.; Xu, D. China’s coal power decarbonization capture and storage and biomass co-firing: A LCA case study in Inner Mongolia. Energy 2022, 261, 125158. [Google Scholar] [CrossRef]
- Yue, H.; Worrell, E.; Crijns-Graus, W. Impacts of regional industrial electricity savings on the development of future coal capacity per electricity grid and related air pollution emissions—A case study for China. Appl. Energy 2021, 282, 116241. [Google Scholar] [CrossRef]
- Yue, H.; Worrell, E.; Crijns-Graus, W.; Zhang, S. The potential of industrial electricity savings to reduce air pollution from coal-fired power generation in China. J. Clean. Prod. 2021, 301, 126978. [Google Scholar] [CrossRef]
- Li, K.; Shen, S.; Fan, J.-L.; Xu, M.; Zhang, X. The role of carbon capture, utilization and storage in realizing China’s carbon neutrality: A source-sink matching analysis for existing coal-fired power plants. Resour. Conserv. Recycl. 2022, 178, 106070. [Google Scholar] [CrossRef]
- Cesari, D.; Merico, E.; Grasso, F.M.; Dinoi, A.; Conte, M.; Genga, A.; Siciliano, M.; Petralia, E.; Stracquadanio, M.; Contini, D. Analysis of the contribution to PM10 concentrations of the largest coal-fired power plant of Italy in four different sites. Atmos. Pollut. Res. 2021, 12, 101135. [Google Scholar] [CrossRef]
- Fais, S.; Ligas, P.; Cuccuru, F.; Maggio, E.; Plaisant, A.; Pettinau, A.; Casula, G.; Bianchi, M.G. Detailed Petrophysical and Geophysical Characterization of Core Samples from the Potential Caprock-reservoir System in the Sulcis Coal Basin (Southwestern Sardinia—Italy). Energy Procedia 2015, 76, 503–511. [Google Scholar] [CrossRef]
- Ping, Z.; Benelli, G.; Jiutian, Z.; Lin, G.; Shujuan, W.; Jinyi, W.; Xian, Z.; Lu, Z. The Application of CCS Technology in China: Lesson from the Sino-Italy Collaboration on Coal Fired Power Plants. Energy Procedia 2014, 63, 8116–8133. [Google Scholar] [CrossRef]
- Baz, K.; Xu, D.; Ali, H.; Khan, U.; Cheng, J.; Abbas, K.; Ali, I. Nexus of minerals-technology complexity and fossil fuels with carbon dioxide emission: Emerging Asian economies based on product complexity index. J. Clean. Prod. 2022, 373, 133703. [Google Scholar] [CrossRef]
- Lee, C.-C.; Wang, F.; Chang, Y.-F. Does green finance promote renewable energy? Evidence from China. Resour. Policy 2023, 82, 103439. [Google Scholar] [CrossRef]
- Islam, M.M.; Sohag, K.; Mariev, O. Geopolitical risks and mineral-driven renewable energy generation in China: A decomposed analysis. Resour. Policy 2023, 80, 103229. [Google Scholar] [CrossRef]
- Xie, B.-C.; Zhang, R.-Y.; Chen, X.-P. China’s optimal development pathway of intermittent renewable power towards carbon neutrality. J. Clean. Prod. 2023, 406, 136903. [Google Scholar] [CrossRef]
- Li, Z.; Wang, Y.; Guo, A.; Chang, J.; He, B.; Hu, R. Impact of intra-annual runoff nonuniformity on the energy generation of cascaded hydropower plants in Datong River Basin, China. J. Clean. Prod. 2021, 323, 129122. [Google Scholar] [CrossRef]
- Harlan, T. Rural utility to low-carbon industry: Small hydropower and the industrialization of renewable energy in China. Geoforum 2018, 95, 59–69. [Google Scholar] [CrossRef]
- Zhao, X.; Wu, L.; Qi, Y. The energy injustice of hydropower: Development, resettlement, and social exclusion at the Hongjiang and Wanmipo hydropower stations in China. Energy Res. Soc. Sci. 2020, 62, 101366. [Google Scholar] [CrossRef]
- Zhang, J.; Cheng, C.; Yu, S.; Shen, J.; Wu, X.; Su, H. Preliminary feasibility analysis for remaking the function of cascade hydropower stations to enhance hydropower flexibility: A case study in China. Energy 2022, 260, 125163. [Google Scholar] [CrossRef]
- Penghao, C.; Pingkuo, L.; Hua, P. Prospects of hydropower industry in the Yangtze River Basin: China’s green energy choice. Renew. Energy 2019, 131, 1168–1185. [Google Scholar] [CrossRef]
- Hennig, T.; Harlan, T. Shades of green energy: Geographies of small hydropower in Yunnan, China and the challenges of over-development. Glob. Environ. Chang. 2018, 49, 116–128. [Google Scholar] [CrossRef]
- Zhou, X.; Lin, J.; Wang, L.; Huang, H.; Zhao, X. Wind power resources and China’s sustainable development roadmap: Evidence from China. Resour. Policy 2022, 79, 103015. [Google Scholar] [CrossRef]
- Li, J.; Pan, S.; Chen, Y.; Yao, Y.; Xu, C. Assessment of combined wind and wave energy in the tropical cyclone affected region:An application in China seas. Energy 2022, 260, 125020. [Google Scholar] [CrossRef]
- Li, W.; Cao, N.; Xiang, Z. Drivers of renewable energy transition: The role of ICT, human development, financialization, and R&D investment in China. Renew. Energy 2023, 206, 441–450. [Google Scholar] [CrossRef]
- Yang, J.; Yang, Z.; Duan, Y. Capacity optimization and feasibility assessment of solar-wind hybrid renewable energy systems in China. J. Clean. Prod. 2022, 368, 133139. [Google Scholar] [CrossRef]
- Sun, L.; Yin, J.; Bilal, A.R. Green financing and wind power energy generation: Empirical insights from China. Renew. Energy 2023, 206, 820–827. [Google Scholar] [CrossRef]
- Hu, Z. Towards solar extractivism? A political ecology understanding of the solar energy and agriculture boom in rural China. Energy Res. Soc. Sci. 2023, 98, 102988. [Google Scholar] [CrossRef]
- Wang, W.; Jin, S.; Zhang, C.; Qin, X.; Lu, N.; Zhu, G. Social capital and rural residential rooftop solar energy diffusion—Evidence from Jiangsu Province, China. Energy Res. Soc. Sci. 2023, 98, 103011. [Google Scholar] [CrossRef]
- Wang, C.; Raza, S.A.; Adebayo, T.S.; Yi, S.; Shah, M.I. The roles of hydro, nuclear and biomass energy towards carbon neutrality target in China: A policy-based analysis. Energy 2023, 262, 125303. [Google Scholar] [CrossRef]
- Du, J.; Shen, Z.; Song, M.; Vardanyan, M. The role of green financing in facilitating renewable energy transition in China: Perspectives from energy governance, environmental regulation, and market reforms. Energy Econ. 2023, 120, 106595. [Google Scholar] [CrossRef]
- Cielo, A.; Margiaria, P.; Lazzeroni, P.; Mariuzzo, I.; Repetto, M. Renewable Energy Communities business models under the 2020 Italian regulation. J. Clean. Prod. 2021, 316, 128217. [Google Scholar] [CrossRef]
- Cieplinski, A.; D’Alessandro, S.; Marghella, F. Assessing the renewable energy policy paradox: A scenario analysis for the Italian electricity market. Renew. Sustain. Energy Rev. 2021, 142, 110838. [Google Scholar] [CrossRef]
- Poponi, D.; Basosi, R.; Kurdgelashvili, L. Subsidisation cost analysis of renewable energy deployment: A case study on the Italian feed-in tariff programme for photovoltaics. Energy Policy 2021, 154, 112297. [Google Scholar] [CrossRef]
- Alla, S.A.; Bianco, V.; Tagliafico, L.A.; Scarpa, F. An innovative approach to local solar energy planning in Riva Trigoso, Italy. J. Build. Eng. 2020, 27, 100968. [Google Scholar] [CrossRef]
- D’Adamo, I.; Gastaldi, M.; Morone, P.; Ozturk, I. Economics and policy implications of residential photovoltaic systems in Italy’s developed market. Util. Policy 2022, 79, 101437. [Google Scholar] [CrossRef]
- Clò, S.; Cataldi, A.; Zoppoli, P. The merit-order effect in the Italian power market: The impact of solar and wind generation on national wholesale electricity prices. Energy Policy 2015, 77, 79–88. [Google Scholar] [CrossRef]
- Polinori, P. Wind energy deployment in wind farm aging context. Appraising an onshore wind farm enlargement project: A contingent valuation study in the Center of Italy. Energy Econ. 2019, 79, 206–220. [Google Scholar] [CrossRef]
- Quaranta, E.; Bejarano, M.D.; Comoglio, C.; Fuentes-Pérez, J.F.; Pérez-Díaz, J.I.; Sanz-Ronda, F.J.; Schletterer, M.; Szabo-Meszaros, M.; Tuhtan, J.A. Digitalization and real-time control to mitigate environmental impacts along rivers: Focus on artificial barriers, hydropower systems and European priorities. Sci. Total Environ. 2023, 875, 162489. [Google Scholar] [CrossRef]
- Gaudard, L.; Romerio, F.; Valle, F.D.; Gorret, R.; Maran, S.; Ravazzani, G.; Stoffel, M.; Volonterio, M. Climate change impacts on hydropower in the Swiss and Italian Alps. Sci. Total Environ. 2014, 493, 1211–1221. [Google Scholar] [CrossRef]
- Galletti, A.; Avesani, D.; Bellin, A.; Majone, B. Detailed simulation of storage hydropower systems in large Alpine watersheds. J. Hydrol. 2021, 603, 127125. [Google Scholar] [CrossRef]
- Şahin, U. Future of renewable energy consumption in France, Germany, Italy, Spain, Turkey and UK by 2030 using optimized fractional nonlinear grey Bernoulli model. Sustain. Prod. Consum. 2021, 25, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Chen, M.; Gu, A.; Wu, X.; Liu, B.; Zhou, J.; Mao, Z. China’s hydrogen development strategy in the context of double carbon targets. Nat. Gas Ind. B 2022, 9, 521–547. [Google Scholar] [CrossRef]
- Zhang, C.; Song, P.; Xiao, L.; Zhang, Y.; Wang, X.; Hou, J.; Wang, X.; Lu, L. Research and development of on-site small skid-mounted natural gas to hydrogen generator in China. Int. J. Hydrogen Energy 2023, 48, 18601–18611. [Google Scholar] [CrossRef]
- Kendall, M. Fuel cell development for New Energy Vehicles (NEVs) and clean air in China. Prog. Nat. Sci. Mater. Int. 2018, 28, 113–120. [Google Scholar] [CrossRef]
- Lan, H.; Hao, D.; Hao, W.; He, Y. Development and comparison of the test methods proposed in the Chinese test specifications for fuel cell electric vehicles. Energy Rep. 2022, 8, 565–579. [Google Scholar] [CrossRef]
- Lu, Y.; Cai, Y.; Souamy, L.; Song, X.; Zhang, L.; Wang, J. Solid oxide fuel cell technology for sustainable development in China: An over-view. Int. J. Hydrogen Energy 2018, 43, 12870–12891. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhang, R. Characteristics of urban agricultural heritage sites: Policies and management methods for their conservation in China, Germany, and Italy. Habitat Int. 2023, 131, 102710. [Google Scholar] [CrossRef]
- Berardi, L.; Liu, S.; Laucelli, D.; Xu, S.; Xu, P.; Zeng, W.; Giustolisi, O. Energy Saving and Leakage Control in Water Distribution Networks: A Joint Research Project between Italy and China. Procedia Eng. 2014, 70, 152–161. [Google Scholar] [CrossRef]
- Liu, P.; Hei, Z. Strategic analysis and framework design on international cooperation for energy transition: A perspective from China. Energy Rep. 2022, 8, 2601–2616. [Google Scholar] [CrossRef]
- Faro, M.L.; Cantane, D.A.; Naro, F. In the path for creating Research-to-business new opportunities on green hydrogen between Italy and Brazil. Int. J. Hydrogen Energy 2023, 48, 11876–11884. [Google Scholar] [CrossRef]
- Magnolia, G.; Gambini, M.; Mazzoni, S.; Vellini, M. Renewable energy, carbon capture & sequestration and hydrogen solutions as enabling technologies for reduced CO2 energy transition at a national level: An application to the 2030 Italian national energy scenarios. Clean. Energy Syst. 2023, 4, 100049. [Google Scholar] [CrossRef]
- Gurrì, S.; Santacaterina, E.; Guarrera, M.; Chiara, B.D. Driving modal shift on low-traffic railway lines through technological innovation: A case study in Piedmont (Italy) including hydrogen fuel-cells as an alternative. Transp. Res. Procedia 2023, 69, 99–106. [Google Scholar] [CrossRef]
- Baccioli, A.; Liponi, A.; Milewski, J.; Szczę´sniak, A.; Desideri, U. Hybridization of an internal combustion engine with a molten carbonate fuel cell for marine applications. Appl. Energy 2021, 298, 117192. [Google Scholar] [CrossRef]
- Cavo, M.; Rivarolo, M.; Gini, L.; Magistri, L. An advanced control method for fuel cells—Metal hydrides thermal management on the first Italian hydrogen propulsion ship. Int. J. Hydrogen Energy 2022, 48, 20923–20934. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.; Jiang, S.; Zhang, H.; Lu, Z.; Desideri, U. China and Italy’s Energy Development Trajectories: Current Landscapes and Future Cooperation Potential. Energies 2024, 17, 897. https://doi.org/10.3390/en17040897
Liu C, Jiang S, Zhang H, Lu Z, Desideri U. China and Italy’s Energy Development Trajectories: Current Landscapes and Future Cooperation Potential. Energies. 2024; 17(4):897. https://doi.org/10.3390/en17040897
Chicago/Turabian StyleLiu, Chunhong, Shisong Jiang, Hanfei Zhang, Ziyi Lu, and Umberto Desideri. 2024. "China and Italy’s Energy Development Trajectories: Current Landscapes and Future Cooperation Potential" Energies 17, no. 4: 897. https://doi.org/10.3390/en17040897
APA StyleLiu, C., Jiang, S., Zhang, H., Lu, Z., & Desideri, U. (2024). China and Italy’s Energy Development Trajectories: Current Landscapes and Future Cooperation Potential. Energies, 17(4), 897. https://doi.org/10.3390/en17040897