Microclimate Investigation in a Conference Room with Thermal Stratification: An Investigation of Different Air Conditioning Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Building Case Study and the Monitoring Campaign
2.2. CFD Modeling and Simulation Scenarios
- Walls and windows as fixed surface temperatures of 23 °C and 12 °C, respectively. These values were set according to the results of preliminary dynamic thermal simulations in DesignBuilder run for the investigated days.
- People are objects releasing a sensible heat flux of 100 W each.
- Supply and extract air diffusers via their flow rates, air temperatures, and azimuthal/zenithal discharge angles. The specification of such values is presented in the description of the simulation cases afterward.
3. Results and Discussion
3.1. Validation of the CFD Model
3.2. Air Velocity Distribution
3.3. Air Temperature Distribution
3.4. PMV Distribution
3.5. Estimation of the Energy Performances of the Different HVAC Systems
4. Conclusions
- Although both configurations guarantee effective air renewal in the summer, the same thing is not true in the winter. Indeed, the configuration with the radiant floor system and floor-level air inlet provides better air distribution during the winter months compared to the fully convective system, where a primary air inlet is placed in the top of the occupied space. In fact, in the convective system, the air inlet at 20 °C at a height of 6.55 m does not allow a descending flow toward the occupants, because of the lower density of hot air. This issue does not occur in the radiant floor system, as the same air flow rate is blown near the floor;
- The radiant floor system is typically more energy-efficient. As an example, in winter, the radiant floor can be fed with water at a lower temperature (around 35 °C for supply flow and 30 °C for return flow) compared to the fan coils in “Case 1”, which require water at approximately 45 °C. This means that the heat losses in the water distribution pipes are lower in the radiant floor system, and it is also possible to produce hot water with a heat pump that would work with a higher COP (Coefficient of Performance). Additionally, auxiliary electricity-driven fans are not required for the radiant floor system, unlike the fan coils in “Case 1”;
- The radiant floor system is also more efficient in terms of energy use in the summer months, as it only cools the air at lower altitudes rather than the entire volume of the building. In contrast, “Case 1” cools the entire volume of the building, resulting in energy waste.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- European Commission. EU Building Stock Observatory. Available online: https://energy.ec.europa.eu/topics/energy-efficiency/energy-efficient-buildings/eu-building-stock-observatory_en (accessed on 28 October 2022).
- European Commission. Quadro 2030 per il Clima e L’energia. Available online: https://climate.ec.europa.eu/eu-action/climate-strategies-targets/2030-climate-energy-framework_it (accessed on 28 October 2022).
- Normativa Energetica del Settore Edilizio. Available online: https://www.infobuildenergia.it/approfondimenti/storia-normativa-energetica-settore-edilizio/ (accessed on 28 October 2022).
- Fibbi, R.; De Camillis, C. Progettazione impiantistica e restauro architettonico. Mater. Strutt. 2017, 12, 25–40. [Google Scholar]
- Camuffo, D. Microclimate for Cultural Heritage; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar] [CrossRef]
- Camuffo, D.; della Valle, A. Church Heating: A Balance between Conservation and Thermal Comfort. In Proceedings of the Experts’ Roundtable on Sustainable Climate Management Strategies, Tenerife, Spain, 22 April 2007. [Google Scholar]
- D’Agostino, D. Moisture dynamics in an historical masonry structure: The Cathedral of Lecce (South Italy). Build. Environ. 2013, 63, 122–133. [Google Scholar] [CrossRef]
- Huijbregts, Z.; Kramer, R.P.; Martens, M.H.J.; van Schijndel, A.W.M.; Schellen, H.L. A proposed method to assess the damage risk of future climate change to museum objects in historic buildings. Build. Environ. 2012, 55, 43–56. [Google Scholar] [CrossRef]
- Ricciardi, P.; Ziletti, A.; Buratti, C. Evaluation of thermal comfort in an historical Italian opera theatre by the calculation of the neutral comfort temperature. Build. Environ. 2016, 102, 116–127. [Google Scholar] [CrossRef]
- Dai, B.; Tong, Y.; Hu, Q.; Chen, Z. Characteristics of thermal stratification and its effects on HVAC energy consumption for an atrium building in south China. Energy 2022, 249, 123425. [Google Scholar] [CrossRef]
- Nocera, F.; Caponetto, R.; Giuffrida, G.; Detommaso, M. Energetic Retrofit Strategies for Traditional Sicilian Wine Cellars: A Case Study. Energies 2020, 13, 3237. [Google Scholar] [CrossRef]
- Saïd, M.N.A.; MacDonald, R.A.; Durrant, G.C. Measurement of thermal stratification in large single-cell buildings. Energy Build. 1996, 24, 105–115. [Google Scholar] [CrossRef]
- Napp, M.; Kalamees, T. Energy use and indoor climate of conservation heating, dehumidification and adaptive ventilation for the climate control of a mediaeval church in a cold climate. Energy Build. 2015, 108, 61–71. [Google Scholar] [CrossRef]
- Muñoz-González, C.M.; León-Rodríguez, A.L.; Navarro-Casas, J. Air conditioning and passive environmental techniques in historic churches in Mediterranean climate. A proposed method to assess damage risk and thermal comfort pre-intervention, simulation-based. Energy Build. 2016, 130, 567–577. [Google Scholar] [CrossRef]
- Maroy, K.; Steeman, M.; Janssens, A.; De Backer, L.; De Paepe, M. Conservation Climate Analysis of a Church Containing Valuable Artworks. Energy Procedia 2015, 78, 1269–1274. [Google Scholar] [CrossRef]
- Bencs, L.; Spolnik, Z.; Limpens-Neilen, D.; Schellen, H.L.; Jütte, B.A.H.G.; Van Grieken, R. Comparison of hot-air and low-radiant pew heating systems on the distribution and transport of gaseous air pollutants in the mountain church of Rocca Pietore from artwork conservation points of view. J. Cult. Herit. 2007, 8, 264–271. [Google Scholar] [CrossRef]
- Camuffo, D. Il riscaldamento degli edifici di culto. U&C Unificazione Certificazione 2014, 7, 11–12. [Google Scholar]
- Khalid, Y.; Ngwaka, U.; Papworth, J.; Ling-Chin, J.; Smallbone, A. Evaluation of decarbonisation options for heritage church buildings. J. Build. Eng. 2023, 77, 107462. [Google Scholar] [CrossRef]
- González, C.M.M.; Rodríguez, A.L.L.; Medina, R.S.; Jaramillo, J.R. Effects of future climate change on the preservation of artworks, thermal comfort and energy consumption in historic buildings. Appl. Energy 2020, 276, 115483. [Google Scholar] [CrossRef]
- Semprini, G.; Galli, C.; Farina, S. Reuse of an ancient church: Thermal aspect for integrated solutions. Energy Procedia 2017, 133, 327–335. [Google Scholar] [CrossRef]
- Akkurt, G.G.; Aste, N.; Borderon, J.; Buda, A.; Calzolari, M.; Chung, D.; Costanzo, V.; Del Pero, C.; Evola, G.; Huerto-Cardenas, H.E.; et al. Dynamic thermal and hygrometric simulation of historical buildings: Critical factors and possible solutions. Renew. Sustain. Energy Rev. 2020, 118, 109509. [Google Scholar] [CrossRef]
- Huerto-Cardenas, H.E.; Leonforte, F.; Aste, N.; Del Pero, C.; Evola, G.; Costanzo, V.; Lucchi, E. Validation of dynamic hygrothermal simulation models for historical buildings: State of the art, research challenges and recommendations. Build. Environ. 2020, 180, 107081. [Google Scholar] [CrossRef]
- Aste, N.; Adhikari, R.S.; Buzzetti, M.; Della Torre, S.; Del Pero, C.; Leonforte, F. Microclimatic monitoring of the Duomo (Milan Cathedral): Risks-based analysis for the conservation of its cultural heritage. Build. Environ. 2019, 148, 240–257. [Google Scholar] [CrossRef]
- Baggio, P.; Pernetti, R.; Prada, A. Simulazione Energetica Degli Edifici Esistenti: Guida Alla Definizione di Modelli Calibrati; EPC Editore: Rome, Italy, 2013. [Google Scholar]
- Costanzo, V.; Evola, G.; Infantone, M.; Marletta, L. Updated Typical Weather Years for the Energy Simulation of Buildings in Mediterranean Climate. A Case Study for Sicily. Energies 2020, 13, 4115. [Google Scholar] [CrossRef]
- Lo Giudice, G. L’Istituto Agrario Siciliano Valdisavoja di Catania—Dalle Origini agli Anni Trenta; Dipartimento di Studi Politici: Catania, Italy, 1989. [Google Scholar]
- Scuola Superiore di Catania. Available online: https://ssc.unict.it/it/cos%C3%A8 (accessed on 28 October 2022).
- Leonardi, A. Parole del Rettore: Fonti per Una Storia delle Fabbriche Universitarie Catanesi (1861–2003)’. Università degli Studi di Catania: Catania, Italy, 2004; pp. 357–365. [Google Scholar]
- Costanzo, V.; Fabbri, K.; Schito, E.; Pretelli, M.; Marletta, L. Microclimate monitoring and conservation issues of a Baroque church in Italy: A risk assessment analysis. Build. Res. Inf. 2021, 49, 729–747. [Google Scholar] [CrossRef]
- DesignBuilder. 2022. Available online: https://designbuilder.co.uk/helpv7.0/index.htm (accessed on 31 January 2023).
- Aste, N.; Della Torre, S.; Adhikari, R.S.; Buzzetti, M.; Del Pero, C.; Leonforte, F.; Huerto Cardenas, H.E. CFD Comfort Analysis of a Sustainable Solution for Church Heating. Energy Procedia 2017, 105, 2797–2802. [Google Scholar] [CrossRef]
- Bay, E.; Martinez-Molina, A.; Dupont, W.A. Assessment of natural ventilation strategies in historical buildings in a hot and humid climate using energy and CFD simulations. J. Build. Eng. 2022, 51, 104287. [Google Scholar] [CrossRef]
- Cirami, S.; Evola, G.; Gagliano, A.; Margani, G. Thermal and Economic Analysis of Renovation Strategies for a Historic Building in Mediterranean Area. Buildings 2017, 7, 60. [Google Scholar] [CrossRef]
- Cascone, S.; Sciuto, G. Recovery and reuse of abandoned buildings for student housing: A case study in Catania, Italy. Front. Archit. Res. 2018, 7, 510–520. [Google Scholar] [CrossRef]
- UNI 10351:2021; Materiali da Costruzione—Proprietà Termoigrometriche—Procedura per la Scelta dei Valori di Progetto. Available online: https://store.uni.com/uni-10351-2021 (accessed on 2 February 2014).
- UNI 1010339:1995; Impianti Aeraulici al Fini di Benessere. Generalità, Classificazione e Requisiti. Regole per la Richiesta D’offerta, L’offerta, L’ordine e la Fornitura. Available online: https://store.uni.com/uni-10339-1995 (accessed on 2 February 2014).
- Fanger, P.O. Thermal comfort: Analysis and applications in environmental engineering. In Thermal Comfort: Analysis and Applications in Environmental Engineering; Danish Technical Press: Copenhagen, Denmark, 1970. [Google Scholar]
- SIAS. Sistema Informativo Agrometeorologico Siciliano. Available online: http://www.sias.regione.sicilia.it/ (accessed on 28 November 2023).
MAE | RMSE | r | R2 | |
---|---|---|---|---|
LV 1 | ≤1 [°C] | >0.5 | >0.75 | |
LV 2 | ≤2 [°C] |
Temperature | Relative Humidity | |
---|---|---|
Measuring Range | from −10 °C to 60 °C | 5% to 95% |
Resolution | 0.1 °C | 0.1% |
Accuracy | ±0.6 °C | ±3% for 10% and 90%, |
±5% otherwise |
Temperature | |
---|---|
Measuring Range | from −50 °C to 100 °C |
Resolution | 0.1 °C |
Accuracy | ±0.2 °C when −25 °C < T < 74.9 °C |
±0.4 °C when −50 °C < T < −25.1 °C | |
±0.4 °C when 75 °C < T < 99.9 °C | |
±0.5% for all other values |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Longhitano, A.; Costanzo, V.; Evola, G.; Nocera, F. Microclimate Investigation in a Conference Room with Thermal Stratification: An Investigation of Different Air Conditioning Systems. Energies 2024, 17, 1188. https://doi.org/10.3390/en17051188
Longhitano A, Costanzo V, Evola G, Nocera F. Microclimate Investigation in a Conference Room with Thermal Stratification: An Investigation of Different Air Conditioning Systems. Energies. 2024; 17(5):1188. https://doi.org/10.3390/en17051188
Chicago/Turabian StyleLonghitano, Andrea, Vincenzo Costanzo, Gianpiero Evola, and Francesco Nocera. 2024. "Microclimate Investigation in a Conference Room with Thermal Stratification: An Investigation of Different Air Conditioning Systems" Energies 17, no. 5: 1188. https://doi.org/10.3390/en17051188
APA StyleLonghitano, A., Costanzo, V., Evola, G., & Nocera, F. (2024). Microclimate Investigation in a Conference Room with Thermal Stratification: An Investigation of Different Air Conditioning Systems. Energies, 17(5), 1188. https://doi.org/10.3390/en17051188