Selected Legal and Safety Aspects of the “Coal-To-Nuclear” Strategy in Poland
Abstract
:1. Introduction
2. Energy Market from the Perspective of Reducing CO2 Emissions—Polish Case
Coal-Fired Units in Poland
3. Energy Sector Decarbonization Pathways
- The life cycle of greenhouse gas emissions should be below 50 g of CO2eq/kWh. This represents the average emission level for electricity production systems that must be accomplished by 2050 in compliance with the terms of the Paris Agreement.
- Annual energy production (electricity and/or heat) should be maintained at a level of at least 50% of the reference value of a coal-fired unit. This corresponds to an aerial energy generation capacity of ~1 MWh/m2/y [4].
- Formal requirements and recommendations imposed by international and national organizations on the process of designing and operating nuclear power systems;
- Potential nuclear hazards posed to the personnel of a nuclear reactor unit and the local population;
- The applied solutions of the security systems of a reactor, the heat cycle of a steam turbine, and the auxiliary infrastructure;
- The management of spent nuclear fuel and radioactive waste.
4. Legal Aspects of the “Coal-to-Nuclear” Implementation Process
- The characteristics of a site and its environment could affect installation and further contribute to the spread of radioactive material in a situation wherein its release takes place;
- The effects of external hazards that may occur at the selected site, including both natural risks and those induced by human activity;
- The density and distribution of a population, together with other features of the external zone, may affect the enactment of emergency management planning and further lead to risks for individuals and the whole population.
4.1. Seismic and Tectonic Data
4.2. Geological-Engineering Data
4.3. Data on Hydrogeological Conditions
4.4. Data on Hydrology and Meteorology
4.5. Data on External Natural Hazards
4.6. Data on Hazards Induced by Human Activity
4.7. Analysis of the Migration of Radioactive Release and the Possibility of the Implementation of Emergency Measures
4.8. Distribution of the Radioactive Isotope Concentrations in Air, Soil, and Surface and Underground Waters and Analysis of the Ionizing Radiation Dose Rate
4.9. Diagnosis of Bedrock Geology
5. Approaches in Site Selection: Large-Scale NPP Units vs. SMRs
6. Safety of Nuclear Reactors
Philosophy of the Defense-In-Depth Strategy
- Superior design and construction, ensuring excellent quality;
- The use of equipment that effectively stops operational disturbances, human failures, and errors from escalating into problems;
- Using comprehensive monitoring and testing to detect equipment or operator failures;
- Implementing redundant and diverse systems to control damage to the fuel and prevent significant radioactive release;
- The implementation of measures to contain the consequences of significant fuel damage (or any other issues) within the boundaries of the power plant.
7. Proposed Methodology for Assessing Nuclear Safety of “Coal-To-Nuclear” Process in Poland
- Potential nuclear hazards regarding the personnel of a nuclear reactor unit and the local population;
- The applied solutions of the security systems of the reactor itself; the heat cycle of the steam turbine and the auxiliary infrastructure;
- The management of spent nuclear fuel and radioactive waste,
Results
- Formal requirements and recommendations imposed by international and national organizations on the process of designing and operating nuclear power systems;
- Potential nuclear hazards posed to the personnel of the nuclear reactor unit and the local population;
- The applied solutions of the security systems of the reactor itself, the heat cycle of the steam turbine, and the auxiliary infrastructure;
- Management of spent nuclear fuel and radioactive waste.
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- IEA. Greenhouse Gas Emissions from Energy Data Explorer; IEA: Paris, France, 2023. [Google Scholar]
- World Nuclear Association. Nuclear Power in the World Today; World Nuclear Association: London, UK, May 2023. [Google Scholar]
- Devanand, A.; Kraft, M.; Karimi, I.A. Optimal site selection for modular nuclear power plants. Comput. Chem. Eng. 2019, 125, 339–350. [Google Scholar] [CrossRef]
- Qvist, S.; Gładysz, P.; Bartela, Ł.; Sowiżdżał, A. Retrofit Decarbonization of Coal Power Plants—A Case Study for Poland. Energies 2021, 14, 120. [Google Scholar] [CrossRef]
- Al-tabatabaie, K.F.; Hossain, M.B.; Islam, M.K.; Awual, M.R.; TowfiqulIslam, A.R.M.; Hossain, M.A.; Esraz-Ul-Zannat, M.; Islam, A. Taking strides towards decarbonization: The viewpoint of Bangladesh. Energy Strategy Rev. 2022, 44, 100948. [Google Scholar] [CrossRef]
- International Atomic Energy Agency. Considerations for Environmental Impact Assessment for Small Modular Reactors; International Atomic Energy Agency: Vienna, Austria, 2020. [Google Scholar]
- Pospolita, W.; Cholewiński, M. Selected Issues of Coal-fired Power Generation in Terms of Maintaining Its High Share in the Future Structure of Electricity Generation in Poland. Energy Policy Stud. 2018, 2, 62–80. [Google Scholar]
- Wójcik, K.; Zacharski, J.; Łojek, M.; Wróblewska, S.; Kiersnowski, H.; Waśkiewicz, K.; Wójcicki, A.; Laskowicz, R.; Sobień, K.; Peryt, T.; et al. New Opportunities for Oil and Gas Exploration in Poland—A Review. Energies 2022, 15, 1739. [Google Scholar] [CrossRef]
- Polish Power System Operation—Basic Data. Operator; P. T. S.; PSE (Eds.) June 2023. Available online: https://www.pse.pl/web/pse-eng/data/polish-power-system-operation/basic-data (accessed on 10 November 2023).
- International Energy Agency. Poland 2022; International Energy Agency: Paris, France, 2022. [Google Scholar]
- Forum Energii. Energy Transition in Poland, 2023rd ed.; Forum Energii: Warsaw, Poland, 2022. [Google Scholar]
- United Nations (Ed.) Paris Agreement; United Nations: Paris, France, 12 December 2015. [Google Scholar]
- United Nations (Ed.) Kyoto Protocol to the United Nations Framework Convention on Climate Change; United Nations: Paris, France, 1998. [Google Scholar]
- Trading Economics. EU Carbon Permits. Available online: https://tradingeconomics.com/commodity/carbon (accessed on 10 November 2023).
- Akcyjna, A.R.E.S. Informacja Statystyczna o Energii Elektrycznej. June 2023; 254. Available online: https://www.are.waw.pl/badania-statystyczne/wynikowe-informacje-statystyczne/publikacje-miesieczne#informacja-statystyczna-o-energii-elektrycznej (accessed on 10 November 2023).
- Stevens, L. The Footprint of Energy: Land Use of U.S. Electricity Production; Strata Policy: Logan, UT, USA, June 2017. [Google Scholar]
- The Atomic Law Act Official Journal of Laws of the Republic of Poland. 29 November 2000; Vol. Dz. U. z 2012, r. poz. 264 i 908 oraz z 2014 r. poz. 587. Available online: https://isap.sejm.gov.pl/isap.nsf/download.xsp/WDU20010030018/U/D20010018Lj.pdf (accessed on 10 November 2023).
- Act Amending the Act on the Preparation and Implementation of Investments in Nuclear Power Facilities and Associated Investments. Official Journal of Laws of the Republic of Poland: 9 March 2023 Vol. Dz. U. z 2023 r. poz. 595. Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20230000595 (accessed on 10 November 2023).
- Rozporządzenie Rady Ministrów z dnia 10 sierpnia 2012 r. w sprawie szczegółowego zakresu przeprowadzania oceny terenu przeznaczonego pod lokalizację obiektu jądrowego, przypadków wykluczających możliwość uznania terenu za spełniający wymogi lokalizacji obiektu jądrowego oraz w sprawie wymagań dotyczących raportu lokalizacyjnego dla obiektu jądrowego. Dziennik Ustaw Rzeczypospolitej Polskiej: 10 August 2012. Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20120001025 (accessed on 10 November 2023).
- Rozporządzenie Rady Ministrów z dnia 31 sierpnia 2012 r. w Sprawie Wymagań Bezpieczeństwa Jądrowego i Ochrony Radiologicznej, Jakie Ma Uwzględniać Projekt Obiektu Jądrowego. Dziennik Ustaw Rzeczypospolitej Polskiej: 31 August 2012. Available online: https://isap.sejm.gov.pl/isap.Nsf/DocDetails.xsp?id=WDU20120001048 (accessed on 10 November 2023).
- Rozporządzenie Rady Ministrów z dnia 31 sierpnia 2012 r. w Sprawie Zakresu i Sposobu Przeprowadzania Analiz Bezpieczeństwa Przeprowadzanych Przed Wystąpieniem z Wnioskiem o Wydanie Zezwolenia na Budowę Obiektu Jądrowego, Oraz Zakresu Wstępnego Raportu Bezpieczeństwa Dla Obiektu Jądrowego. Dziennik Ustaw Rzeczypospolitej Polskiej: 31 August 2012. Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=wdu20120001043 (accessed on 10 November 2023).
- International Atomic Energy Agency. Site Survey and Site Selection for Nuclear Installations; International Atomic Energy Agency: Vienna, Austria, 2015. [Google Scholar]
- International Atomic Energy Agency. Site Evaluation for Nuclear Installations; International Atomic Energy Agency: Vienna, Austria, 2019. [Google Scholar]
- Basu, P.C. Site evaluation for nuclear power plants—The practices. Nucl. Eng. Des. 2019, 352, 110140. [Google Scholar] [CrossRef]
- Wu, Q.; Wu, J.; Gao, M. Correlation analysis of earthquake impacts on a nuclear power plant cluster in Fujian province, China. Environ. Res. 2020, 187, 109689. [Google Scholar] [CrossRef] [PubMed]
- International Atomic Energy Agency. Seismic Design for Nuclear Installations; International Atomic Energy Agency: Vienna, Austria, 2021. [Google Scholar]
- International Atomic Energy Agency. Geotechnical Aspects of Site Evaluation and Foundations for Nuclear Power Plants; International Atomic Energy Agency: Vienna, Austria, 2005. [Google Scholar]
- International Atomic Energy Agency. Meteorological Events in Site Evaluation for Nuclear Power Plants; International Atomic Energy Agency: Vienna, Austria, 2003. [Google Scholar]
- Jakimavičiūtė-Maselienė, V.; Cidzikienė, V. Variability of hydrogeological parameters in the environment of new nuclear power plant in Lithuania. Appl. Radiat. Isot. 2019, 147, 35–39. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.-N.; Su, C.-C.; Nguyen, V.T. Nuclear Power Plant Location Selection in Vietnam under Fuzzy Environment Conditions. Symmetry 2018, 10, 548. [Google Scholar] [CrossRef]
- Eluyemi, A.A.; Sharma, S.; Olotu, S.J.; Falebita, D.E.; Adepelumi, A.A.; Tubosun, I.A.; Ibitoye, F.I.; Baruah, S. A GIS-based site investigation for nuclear power plants (NPPs) in Nigeria. Sci. Afr. 2020, 7, e00240. [Google Scholar] [CrossRef]
- Wollberg, D.; Morast, E. Investigation of the Siting Process of Swedish Nuclear Power Plants Using GIS. Bachelor’s thesis, KTH, Stockholm, Sweden, 2020. [Google Scholar]
- Susiati, H.; Dede, M.; Widiawaty, M.A.; Ismail, A.; Udiyani, P.M. Site suitability-based spatial-weighted multicriteria analysis for nuclear power plants in Indonesia. Heliyon 2022, 8, e09088. [Google Scholar] [CrossRef]
- Tanter, R.; Imhoff, A.; Von Hippel, D. Nuclear power, risk management and democratic accountability in Indonesia: Volcanic, regulatory and financial risk in the Muria peninsula nuclear power proposal. Asia-Pac. J. Jpn. Focus 2009, 50, 1–15. [Google Scholar]
- Yuliastuti, Y.; Setiadipura, T.; Wicaksono, A.B.; Alhakim, E.E.; Suntoko, H.; Sunarko, S. High-resolution probabilistic seismic hazard analysis of West Nusa Tenggara, Indonesia. J. Seismol. 2021, 25, 937–948. [Google Scholar] [CrossRef]
- Idris, R.; Latif, Z.A. GIS multi-criteria for power plant site selection. In Proceedings of the 2012 IEEE Control and System Graduate Research Colloquium, Shah Alam, Malaysia, 16–17 July 2012; pp. 203–206. [Google Scholar]
- Jafari, H.; Karimi, S.; Nahavandchi, M.; Balist, J. Nuclear power plant locating by WLC & GIS (case study: Iran, hormozgan province). Int. J. Basic Appl. Sci. 2015, 4, 132–139. [Google Scholar]
- Baskurt, Z.M.; Aydin, C.C. Nuclear power plant site selection by Weighted Linear Combination in GIS environment, Edirne, Turkey. Prog. Nucl. Energy 2018, 104, 85–101. [Google Scholar] [CrossRef]
- Lee, Y.; Son, S.; Park, H. Analysis of Korea’s nuclear R&D priorities based on private Sector’s domestic demand using AHP. Nucl. Eng. Technol. 2020, 52, 2660–2666. [Google Scholar]
- Shiraki, H.; Ashina, S.; Kameyama, Y.; Hashimoto, S.; Fujita, T. Analysis of optimal locations for power stations and their impact on industrial symbiosis planning under transition toward low-carbon power sector in Japan. J. Clean. Prod. 2016, 114, 81–94. [Google Scholar] [CrossRef]
- Shahi, E.; Alavipoor, F.S.; Karimi, S. The development of nuclear power plants by means of modified model of Fuzzy DEMATEL and GIS in Bushehr, Iran. Renew. Sustain. Energy Rev. 2018, 83, 33–49. [Google Scholar] [CrossRef]
- Abudeif, A.M.; Abdel Moneim, A.A.; Farrag, A.F. Multicriteria decision analysis based on analytic hierarchy process in GIS environment for siting nuclear power plant in Egypt. Ann. Nucl. Energy 2015, 75, 682–692. [Google Scholar] [CrossRef]
- Erdoğan, M.; Kaya, İ. A combined fuzzy approach to determine the best region for a nuclear power plant in Turkey. Appl. Soft Comput. 2016, 39, 84–93. [Google Scholar] [CrossRef]
- Akar, A.U.; Uyan, M.; Yalpir, S. Spatial evaluation of the nuclear power plant installation based on energy demand for sustainable energy policy. Environ. Dev. Sustain. 2023. [Google Scholar] [CrossRef]
- Agyekum, E.B.; Amjad, F.; Aslam, F.; Ali, A. Application of Weighted Linear Combination approach in a Geographical Information System environment for nuclear power plant site selection: The case of Ghana. Ann. Nucl. Energy 2021, 162, 108491. [Google Scholar] [CrossRef]
- Liu, G.; Yu, J. Gray correlation analysis and prediction models of living refuse generation in Shanghai city. Waste Manag. 2007, 27, 345–351. [Google Scholar] [CrossRef]
- Wu, Y.N.; Tan, L.; Xu, R.H.; Yang, Y.S. In Study on grey comprehensive evaluation based on the APH of the site selection of China inland nuclear power station. Appl. Mech. Mater. 2013, 357–360, 2810–2817. [Google Scholar] [CrossRef]
- Megahed, M.M. Feasibility of nuclear power and desalination on El-Dabaa site. Desalination 2009, 246, 238–256. [Google Scholar] [CrossRef]
- Ghazaie, S.H.; Sadeghi, K.; Fedorovich, E.; Sokolova, E.; Makhuhin, S. Assessment of the integrated nuclear plant for electricity production and seawater desalination in Iran. Desalination Water Treat. 2020, 188, 20–30. [Google Scholar] [CrossRef]
- Khan, S.U.D.; Khan, S.U.D.; Haider, S.; El-Leathy, A.; Rana, U.A.; Danish, S.N.; Ullah, R. Development and techno-economic analysis of small modular nuclear reactor and desalination system across Middle East and North Africa region. Desalination 2017, 406, 51–59. [Google Scholar] [CrossRef]
- Ingersoll, D.T.; Houghton, Z.J.; Bromm, R.; Desportes, C. Integration of NuScale SMR With Desalination Technologies. In Proceedings of the ASME 2014 Small Modular Reactors Symposium, Washington, DC, USA, 15–17 April 2014. [Google Scholar]
- Monged, M.H.E.; Abu Khatita, A.M.; El-Hemamy, S.T.; Sabet, H.S.; Al-Azhary, M.A.E. Environmental assessment of radioactivity levels and radiation hazards in soil at North Western-Mediterranean Sea coast, Egypt. Environ. Earth Sci. 2020, 79, 386. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Huang, G.H.; Liu, L.R.; Chen, J.P.; Luo, B.; Fu, Y.P.; Zheng, X.G.; Han, D.C.; Liu, Y.Y. Perspective on Site Selection of Small Modular Reactors. 2020. Available online: http://www.jeiletters.org/index.php?journal=mys&page=article&op=view&path%5B%5D=202000026 (accessed on 15 November 2023).
- Locatelli, G.; Mancini, M. A framework for the selection of the right nuclear power plant. Int. J. Prod. Res. 2012, 50, 4753–4766. [Google Scholar] [CrossRef]
- Luo, B.; Huang, G.; Chen, J.; Zhang, X.; Zhao, K. A chance-constrained small modular reactor siting model—A case study for the Province of Saskatchewan, Canada. Renew. Sustain. Energy Rev. 2021, 148, 111320. [Google Scholar] [CrossRef]
- Omitaomu, O.A.; Belles, R.; Roberts, N.; Worrall, A. Methods and system for siting advanced nuclear reactors and evaluating energy policy concerns. Prog. Nucl. Energy 2022, 148, 104197. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, G.; Liu, L.; Song, T.; Zhai, M. Development of an SMR-induced environmental input-output analysis model—Application to Saskatchewan, Canada. Sci. Total Environ. 2022, 806, 150297. [Google Scholar] [CrossRef]
- Kamarudin, S.; Mohd Muzamil Mohd, H.; Mohamad Syahiran, M.; Nazran, H.; Abdul Rahman, N.; Hasnulhadi, K. Assessment of Siting Study for Small Modular Reactor (SMR). In Proceedings of the Research and Development Seminar Nuklear Malaysia 2018 Nuclear Technology Towards Sustainable Development, Bangi, Malaysia, 30 October–1 November 2018; Malaysian Nuclear Agency: Bangi, Malaysia, 2019; p. 275. [Google Scholar]
- Shrestha, R.; Wagner, D.; Al-Anbagi, I. Fuzzy AHP-based Siting of Small Modular Reactors for Power Generation in the Smart Grid. In Proceedings of the 2018 IEEE Electrical Power and Energy Conference (EPEC), Toronto, ON, Canada, 10–11 October 2018; pp. 1–6. [Google Scholar]
- Moe, W.L. Opportunities in SMR Emergency Planning; Idaho National Lab.: Idaho Falls, ID, USA, 2014.
- Belles, R.J.; Flanagan, G.F.; Hale, R.E.; Holcomb, D.E.; Huning, A.J.; Poore Iii, W.P. Advanced Reactor Siting Policy Considerations; Oak Ridge National Lab.: Oak Ridge, TN, USA, 2019. [Google Scholar]
- Haneklaus, N.; Qvist, S.; Gładysz, P.; Bartela, Ł. Why coal-fired power plants should get nuclear-ready. Energy 2023, 280, 128169. [Google Scholar] [CrossRef]
- International Atomic Energy Agency. Advances in Small Modular Reactor Technology Developments A Supplement to: IAEA Advanced Reactors Information System (ARIS) 2020 Edition; International Atomic Energy Agency (IAEA): Vienna, Austria, 2022; p. 414. [Google Scholar]
- Bartela, Ł.; Gładysz, P.; Andreades, C.; Qvist, S.; Zdeb, J. Techno-Economic Assessment of Coal-Fired Power Unit Decarbonization Retrofit with KP-FHR Small Modular Reactors. Energies 2021, 14, 2557. [Google Scholar] [CrossRef]
- Vanatta, M.; Patel, D.; Allen, T.; Cooper, D.; Craig, M.T. Technoeconomic analysis of small modular reactors decarbonizing industrial process heat. Joule 2023, 7, 713–737. [Google Scholar] [CrossRef]
- Eom, S.; Riznic, J.; Nitheanandan, T.; Kirkhope, K. Chapter 22—Regulatory and licensing challenges with Generation-IV nuclear energy systems. In Handbook of Generation IV Nuclear Reactors, 2nd ed.; Pioro, I.L., Ed.; Woodhead Publishing: Sawston, UK, 2023; pp. 837–864. [Google Scholar]
- Hansen, J.K.; Jenson, W.D.; Wrobel, A.M.; Stauff, N.; Biegel, K.; Kim, T.K.; Belles, R.; Omitaomu, F. Investigating Benefits and Challenges of Converting Retiring Coal Plants into Nuclear Plants; Idaho National Lab.: Idaho Falls, ID, USA, 2022.
- Bartela, Ł.; Gładysz, P.; Ochmann, J.; Qvist, S.; Sancho, L.M. Repowering a Coal Power Unit with Small Modular Reactors and Thermal Energy Storage. Energies 2022, 15, 5830. [Google Scholar] [CrossRef]
- Łukowicz, H.; Bartela, Ł.; Gładysz, P.; Qvist, S. Repowering a Coal Power Plant Steam Cycle Using Modular Light-Water Reactor Technology. Energies 2023, 16, 3083. [Google Scholar] [CrossRef]
- Zarębski, P.; Katarzyński, D. Small Modular Reactors (SMRs) as a Solution for Renewable Energy Gaps: Spatial Analysis for Polish Strategy. Energies 2023, 16, 6491. [Google Scholar] [CrossRef]
- European Atomic Energy Community; Food and Agriculture Organization of the United Nations; International Atomic Energy Agency; International Labour Organization; International Maritime Organization; OECD Nuclear Energy Agency; Pan American Health Organization; United Nations Environment Programme; World Health Organization. Fundamental Safety Principles; IAEA Safety Standards Series No. SF-1; IAEA: Vienna, Austria, 2006. [Google Scholar] [CrossRef]
- Nuclear Regulatory Commission, Principles for a Strong Nuclear Safety Culture. 2004. Available online: https://www.nrc.gov/docs/ML0534/ML053410342.pdf (accessed on 15 November 2023).
- PRINCIPLES|PL 2013-1 Traits of a Healthy Nuclear Safety Culture. Available online: www.wano.info (accessed on 10 November 2023).
- OECD. Comparing Nuclear Accident Risks with Those from Other Energy Sources; OECD Publishing: Paris, France, 2010. [Google Scholar]
- U.S. Safety Goals for Nuclear Power Plant Operation. Nuclear Regulatory Commission, NUREG-0880 Revision 1; U.S. Nuclear Regulatory Commission: Washington, DC, USA, 1983.
- Bengtsson, L.; Holmberg, J.-E.; Rossi, J.; Knochenhauer, M. Research 2010:35, Probabilistic Safety Goals for Nuclear Power Plants Phases 2–4/Report Number: 2010:35. ISSN: 2000-0456. Available online: www.stralsakerhetsmyndigheten.se (accessed on 15 November 2023).
- Regulatory Review of Probabilistic Safety Assessment (PSA) Level 1, IAEA-TECDOC-1135, Vienna. 2000. Available online: https://www-pub.iaea.org/MTCD/Publications/PDF/te_1135_prn.pdf (accessed on 15 November 2023).
- Tregoning, R.; Abramson, L.; Scott, P. Estimating Loss-of-Coolant Accident (LOCA) Frequencies through the Elicitation Process; U.S.NRC: Rockville, MD, USA, 2000.
- OECD. Nuclear Fuel Behaviour in Loss-of-Coolant Accident (LOCA) Conditions State-of-the-Art Report; OECD NEA No. 6846; OECD Publishing: Paris, France, 2009; ISBN 978-92-64-99091-3. [Google Scholar]
- International Atomic Energy Agency. Licensing Process For Nuclear Installations Specific Safety Guide; IAEA Safety Standards Series No. SSG-12; International Atomic Energy Agency: Vienna, Austria, 2010. [Google Scholar]
- International Atomic Energy Agency. Defence In Depth In Nuclear Safety INSAG-10; A Report by the International Nuclear Safety Advisory Group; International Atomic Energy Agency: Vienna, Austria, 1996. [Google Scholar]
- Nuclear Reactor Safety. Nuclear Energy; Springer: New York, NY, USA, 2004. [Google Scholar] [CrossRef]
- International Atomic Energy Agency. Objective and Essential Elements of a State’s Nuclear Security Regime; Nuclear Security Series No. 20; International Atomic Energy Agency: Vienna, Austria, 2013. [Google Scholar]
- International Atomic Energy Agency. Assessment of Defence in Depth for Nuclear Power Plants; Safety Reports Series 46; International Atomic Energy Agency: Vienna, Austria, 2005; ISBN 92-0-114004-5. Available online: https://www.iaea.org/publications/7099/assessment-of-defence-in-depth-for-nuclear-power-plants (accessed on 10 November 2023).
- International Nuclear Safety Group. Defence in Depth in Nuclear Safety—INSAG 10; IAEA: Vienna, Austria; INSAG: Vienna, Austria, 1996; ISBN 9201025963. Available online: http://www-pub.iaea.org/MTCD/publications/PDF/Pub1013e_web.pdf (accessed on 10 November 2023).
- OECD Nuclear Energy Agency. Implementation of Defence in Depth at Nuclear Power Plants: Lessons Learnt from the Fukushima Daiichi Accident; Regulatory Guidance Report 7248; OECD Nuclear Energy Agency: Paris, France, 2016. [Google Scholar] [CrossRef]
- Singh, O.P.; Singh, R.S. Inherent safety concepts in nuclear power reactors. Sadhana 1989, 14, 1–20. [Google Scholar] [CrossRef]
- Mårtensson, A. Inherently safe reactors. Energy Policy 1992, 20, 660–671. [Google Scholar] [CrossRef]
- Westinghouse Technology Systems Manual Emergency Core Cooling Systems. Nuclear Regulatory Commission. Available online: https://www.nrc.gov/docs/ML2005/ML20057E160.pdf (accessed on 10 November 2023).
- U.S. Standard Review Plan. Nuclear Regulatory Commission, NUREG-0800. 2007. Available online: https://www.nrc.gov/reading-rm/doc-collections/nuregs/staff/sr0800/index.html (accessed on 16 November 2023).
- Fujiwara, Y.; Goto, M.; Iigaki, K.; Iyoku, T.; Ho, H.Q.; Kawamoto, T.; Kondo, M.; Kunitomi, K.; Morita, K.; Nagasumi, S.; et al. Design of high temperature engineering test reactor (HTTR) High Temp. Gas-cooled React. High Temperature Gas-Cooled Reactors 2021, 5, 17–177. [Google Scholar] [CrossRef]
- Adamov, E.O.; Orlov, V.V.; Rachkov, V.I.; Slessarev, I.S.; Khomyakov, Y.S. Nuclear energy with inherent safety: Change of outdated paradigm, criteria. Therm. Eng. 2015, 62, 917–927. [Google Scholar] [CrossRef]
- OECD. Passive Safety Systems; OECD Publishing: Paris, France; NEA: Washington, DC, USA, 2020. [Google Scholar]
- Passive Safety Systems and Natural Circulation in Water Cooled Nuclear Power Plants IAEA-TECDOC-1624 Vienna. 2009. Available online: https://www-pub.iaea.org/MTCD/Publications/PDF/te_1624_web.pdf (accessed on 17 November 2023).
- Wade, D. LMR core design for inherent safety. In Proceedings of the NEACRP Meeting, Paris, France, 17–19 September 1986. [Google Scholar]
- International Atomic Energy Agency. National Nuclear Security Threat Assessment, Design Basis Threats and Representative Threat Statements Implementing Guide International; Nuclear Security Series No. 10-G (Rev. 1); International Atomic Energy Agency: Vienna, Austria, 2021. [Google Scholar]
- Chapin, D.M.; Cohen, K.P.; Davis, W.K.; Kintner, E.E.; Koch, L.J.; Landis, J.W.; Levenson, M.; Mandil, I.H.; Pate, Z.T.; Rockwell, T.; et al. Nuclear Power Plants and Their Fuel as Terrorist Targets. Science 2002, 297, 1997–1999. [Google Scholar] [CrossRef]
- Backgrounder on Seismic Reviews at U.S. Nuclear Power Plants, Seismic Reviews at U.S. Nuclear Power Plants. U.S. NRC 2018. Available online: https://www.nrc.gov/reading-rm/doc-collections/fact-sheets/fs-seismic-issues.html (accessed on 10 November 2023).
- International Atomic Energy Agency. Earthquake Preparedness and Response for Nuclear Power Plants; Safety Reports Series No. 66; International Atomic Energy Agency: Vienna, Austria, 2011. [Google Scholar]
- Kessides, I.N.; Kuznetsov, V. Small Modular Reactors for Enhancing Energy Security in Developing Countries. Sustainability 2012, 4, 1806–1832. [Google Scholar] [CrossRef]
- Lloyd, C.A.; Roulstone, T.; Lyons, R.E. Transport, constructability, and economic advantages of SMR modularization. Prog. Nucl. Energy 2021, 134, 103672. [Google Scholar] [CrossRef]
- Cognet, G.; Bartak, J.; Bruna, G. SMR Safety—Advantages and Challenges. In Proceedings of the International Conference Nuclear Energy for New Europe, Bled, Slovenia, 6–9 September 2021. [Google Scholar]
- Sam, R.; Sainati, T.; Hanson, B.; Kay, R. Licensing small modular reactors: A state-of-the-art review of the challenges and barriers. Prog. Nucl. Energy 2023, 164, 104859. [Google Scholar] [CrossRef]
- Available online: https://ife.no/en/project/small-modular-reactors-smr/ (accessed on 10 November 2023).
- Available online: https://nuclear.gepower.com/bwrx-300 (accessed on 10 November 2023).
- Available online: https://www.nuscalepower.com/en (accessed on 15 November 2023).
- Tuček, K. Overview of Gen-IV developments and Generation IV International Forum (GIF). In Proceedings of the SNETP Forum, Virtual Event, 2–4 February 2021. [Google Scholar]
- Slessarev, I.S. Intrinsically secure fast reactors for long-lived waste and proliferation resistant nuclear power. Ann. Nucl. Energy 2008, 35, 636–646. [Google Scholar] [CrossRef]
- Available online: https://www.orlen.pl/en/sustainability/transition-projects/smr (accessed on 15 November 2023).
- Carless, T.S.; Talabi, S.M.; Fischbeck, P.S. Risk and regulatory considerations for small modular reactor emergency planning zones based on passive decontamination potential. Energy 2019, 167, 740–756. [Google Scholar] [CrossRef]
No | Hazards Excluding an Area from being Considered a Potential Nuclear Plant Site |
---|---|
1. | Geological conditions that could affect the safety of a nuclear power plant and that cannot be corrected through a geotechnical treatment or compensated for by constructive measures. |
2. | The presence of an active fault line within 20 km below the site. |
3. | An earthquake of an intensity level of VIII or higher according to the European macro-seismic scale (EMS-98) observed in the last 10,000 years or a probability that such an earthquake may happen more than once in 10,000 years in the area 30 km below the site. |
4. | The possibility of an earthquake below the intensity level of VIII according to EMS-98 happening with a probability lower than once in 10,000 years but which may influence the safe operation of the NPP. |
5. | A risk of a geological phenomenon, such as soil piping, landslides, or karst, occurring within 30 km below a site that cannot be compensated for in the installation design |
6. | A risk of flood or flooding occurrence that cannot be compensated in the installation design in the area within 5 km from the site. |
7. | Excavation of ores or minerals within 30 km from the site in the last 60 years. |
8. | The implementation of effective intervention measures in the case of a radiological emergency will not be possible. |
9. | The presence of military facilities or military zones; industrial plants that may affect the NPP by mechanical, chemical, and/or biological means; and water facilities that can negatively affect nuclear infrastructure if this negative impact cannot be compensated for in the installation design. |
10. | The presence of a civilian airport within 10 km from the site, unless the probability of an airliner crashing into the nuclear facility is lower than once in 10,000,000 years. |
No | Area of Analyses | Criteria and Their Weight for Third- and Fourth-Gen Reactors |
---|---|---|
1. | Formal requirements and recommendations imposed by international and national organizations on the process of designing and operating nuclear power systems |
|
2. | The applied solutions of the security systems of the reactor itself, the heat cycle of the steam turbine, and the auxiliary infrastructure. |
|
3. | Potential nuclear threats to the personnel of the nuclear reactor unit and local population. |
|
4. | Management of spent nuclear fuel and radioactive waste. |
|
(a) | ||||||||
Number of points in each area: | ST1 | ST2 | ST3 | ST4 | ||||
Area No 1 | 186 | 147 | 177 | 147 | ||||
Area No 2 | 87 | 83 | 87 | 87 | ||||
Area No 3 | 41 | 64 | 29 | 56 | ||||
Area No 4 | 60 | 60 | 60 | 60 | ||||
Total | 374 | 354 | 353 | 350 | ||||
(b) | ||||||||
Type of reactor | HTR-PM | IMSR400 | KP-FHR | Xe-100 | ||||
Number of points in each area: | ST5 | ST6 | ST5 | ST6 | ST5 | ST6 | ST5 | ST6 |
Area No 1 | 152 | 122 | 152 | 122 | 152 | 122 | 152 | 122 |
Area No 2 | 64 | 64 | 62 | 62 | 61 | 61 | 60 | 60 |
Area No 3 | 30 | 33 | 30 | 33 | 30 | 33 | 30 | 33 |
Area No 4 | 25 | 25 | 21 | 21 | 21 | 21 | 25 | 25 |
Total | 271 | 244 | 265 | 238 | 264 | 237 | 267 | 240 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chmielewska-Śmietanko, D.K.; Miśkiewicz, A.; Smoliński, T.; Zakrzewska-Kołtuniewicz, G.; Chmielewski, A.G. Selected Legal and Safety Aspects of the “Coal-To-Nuclear” Strategy in Poland. Energies 2024, 17, 1128. https://doi.org/10.3390/en17051128
Chmielewska-Śmietanko DK, Miśkiewicz A, Smoliński T, Zakrzewska-Kołtuniewicz G, Chmielewski AG. Selected Legal and Safety Aspects of the “Coal-To-Nuclear” Strategy in Poland. Energies. 2024; 17(5):1128. https://doi.org/10.3390/en17051128
Chicago/Turabian StyleChmielewska-Śmietanko, Dagmara K., Agnieszka Miśkiewicz, Tomasz Smoliński, Grażyna Zakrzewska-Kołtuniewicz, and Andrzej G. Chmielewski. 2024. "Selected Legal and Safety Aspects of the “Coal-To-Nuclear” Strategy in Poland" Energies 17, no. 5: 1128. https://doi.org/10.3390/en17051128
APA StyleChmielewska-Śmietanko, D. K., Miśkiewicz, A., Smoliński, T., Zakrzewska-Kołtuniewicz, G., & Chmielewski, A. G. (2024). Selected Legal and Safety Aspects of the “Coal-To-Nuclear” Strategy in Poland. Energies, 17(5), 1128. https://doi.org/10.3390/en17051128