The Development of a Transient Analysis Platform of Near-Critical CO2 Thermodynamic Systems via an Enthalpy-Based Implicit Continuous Eulerian Approach
Abstract
:1. Introduction
2. Governing Equation of a Near-Critical CO2 System
2.1. Partial Differential Equation Form
- -
- Gravitational effects are ignored.
- -
- Stress is represented by the friction at the wall only.
- -
- Acceleration pressure drop is ignored.
- -
- Energy loss via friction and form loss are ignored.
- -
- The kinetic energy of the fluid is neglected; this means that the total energy of the compressible fluid is represented via enthalpy. As a result, all pressures are considered total pressure.
- -
- Upwind scheme is applied: Major transport properties (density and enthalpy) are transferred along the flow direction. Note: “NOT” transport properties (such as area and discretized length) are used as the mean values.
2.2. Spatial Discretization
3. Numerical Method
3.1. Implicit Continuous Eulerian Method
- (1)
- Represent the momentum equation with pressure differences.
- (2)
- Represent the energy equation with momentum information of the next timestep and existing energy information. In this process, explicit terms were adopted. When put up with this numerical instability, it is possible to represent the energy equation via the pressure of the next timestep.
- (3)
- Solve the pressure matrix, and iteratively calculate it before convergence.
3.2. General Node
3.3. Boundary Node
3.4. Timestep Control and Algorithm Flowchart
4. Validation with Explicit Calculation
5. Discussions and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
Abbreviations | |
HEM | Homogeneous Equilibrium Model |
ICE | Implicit Continuous Eulerian |
NICES | Near-critical Implicit Continuous Eulerian Solver |
S-CO2 | Supercritical Carbon Dioxide |
Latin letters | |
Cross-sectional area (m2) | |
Hydraulic diameter (m) | |
Friction factor (Pa kg/s2) | |
Enthalpy (J/kg) | |
Mass flow rate (kg/s) | |
Fluid mass in node i | |
Pressure (Pa) | |
Heat rate (W/m) | |
Time (s) | |
Temperature (K) | |
Greek letters | |
Unit length for discretization (m) | |
Small amount of change | |
Density (kg/m3) | |
Superscriptions | |
Average or donor property | |
Timestep iteration | |
i | Present timestep |
Next timestep | |
Subscriptions | |
Inlet | |
Outlet | |
Present special coordinate | |
Next special coordinate |
References
- White, M.T.; Bianchi, G.; Chai, L.; Tassou, S.A.; Sayma, A.I. Review of supercritical CO2 technologies and systems for power generation. Appl. Therm. Eng. 2021, 185, 116447. [Google Scholar] [CrossRef]
- Ahn, Y.; Bae, S.J.; Kim, M.; Cho, S.K.; Baik, S.; Lee, J.I.; Cha, J.E. Review of supercritical CO2 power cycle technology and current status of research and development. Nucl. Eng. Technol. 2015, 47, 647–661. [Google Scholar] [CrossRef]
- Lee, J.J.; Baek, J.Y.; Lee, J.I. Study on supercritical CO2 critical flow through orifices under power cycle operating conditions. J. Supercrit. Fluids 2022, 190, 105756. [Google Scholar] [CrossRef]
- Sathish, S.; Kumar, P. Equation of state based analytical formulation for optimization of sCO2 Brayton cycle. J. Supercrit. Fluids 2021, 177, 105351. [Google Scholar] [CrossRef]
- Garg, P.; Kumar, P.; Srinivasan, K. Supercritical carbon dioxide Brayton cycle for concentrated solar power. J. Supercrit. Fluids 2013, 76, 54–60. [Google Scholar] [CrossRef]
- Sun, E.; Ji, H.; Wang, X.; Ma, W.; Zhang, L.; Xu, J. Proposal of multistage mass storage process to approach isothermal heat rejection of semi-closed S–CO2 cycle. Energy 2023, 270, 126879. [Google Scholar] [CrossRef]
- Tafur-Escanta, P.; Valencia-Chapi, R.; López-Guillem, M.; Fierros-Peraza, O.; Muñoz-Antón, J. Electrical energy storage using a supercritical CO2 heat pump. Energy Rep. 2022, 8, 502–507. [Google Scholar] [CrossRef]
- Huang, Q.; Yao, J.; Hu, Y.; Liu, S.; Li, H.; Sun, Q. Integrating compressed CO2 energy storage in an oxy-coal combustion power plant with CO2 capture. Energy 2022, 254, 124493. [Google Scholar] [CrossRef]
- Qi, M.; Park, J.; Landon, R.S.; Kim, J.; Liu, Y.; Moon, I. Continuous and flexible Renewable-Power-to-Methane via liquid CO2 energy storage: Revisiting the techno-economic potential. Renew. Sustain. Energy Rev. 2022, 153, 111732. [Google Scholar] [CrossRef]
- Xu, M.; Zhao, P.; Huo, Y.; Han, J.; Wang, J.; Dai, Y. Thermodynamic analysis of a novel liquid carbon dioxide energy storage system and comparison to a liquid air energy storage system. J. Clean. Prod. 2020, 242, 118437. [Google Scholar] [CrossRef]
- Li, Y.; Yu, H.; Tang, D.; Zhang, G.; Liu, Y. A comparison of compressed carbon dioxide energy storage and compressed air energy storage in aquifers using numerical methods. Renew. Energy 2022, 187, 1130–1153. [Google Scholar] [CrossRef]
- Moisseytsev, A.; Sienicki, J.J. PDC: Plant Dynamics Code for Design and Transient Analysis of Supercritical Brayton Cycles (No. ANL-ART-154); Argonne National Lab. (ANL): Argonne, IL, USA, 2018. [Google Scholar] [CrossRef]
- Greenspan, D.; Casulli, V. Numerical Analysis for Applied Mathematics, Science, and Engineering; Addison-Wesley Publishing Company: Redwood City, CA, USA, 1998; pp. 123–126. [Google Scholar] [CrossRef]
- Oh, B.S.; Ahn, Y.H.; Yu, H.; Moon, J.; Kim, S.G.; Cho, S.K.; Kim, Y.; Jeong, Y.H.; Lee, J.I. Safety evaluation of supercritical CO2 cooled micro modular reactor. Ann. Nucl. Energy 2017, 110, 1202–1216. [Google Scholar] [CrossRef]
- Kao, S.P.; Gibbs, J.; Hejzlar, P. Dynamic simulation and control of a supercritical CO2 power conversion system for small light water reactor applications. In Proceedings of the Supercritical CO2 Power Cycle Symposium, Troy, NY, USA, 29–30 April 2009. [Google Scholar]
- Oh, B.S.; Kim, S.J.; Kim, Y.; Lee, J.I. SMART with trans-critical CO2 power conversion system for maritime propulsion in Northern Sea Route, part 2: Transient analysis. Ann. Nucl. Energy 2021, 150, 107875. [Google Scholar] [CrossRef]
- Oh, C.; Shin, S.G.; Son, S.; Kim, D.H.; Lee, J.I. Preliminary Study of the Artificial Neural Networks to replace the constitutive equations in the Reactor Safety Analysis Code. In Proceedings of the Transactions of the Korean Nuclear Society Spring Meeting, Jeju, Republic of Korea, 23–24 May 2019. [Google Scholar]
- Oh, B.S.; Lee, J.I.; Kim, S.G.; Cho, S.K.; Yu, H. Transient analyses of S-CO2 cooled KAIST Micro Modular reactor with GAMMA+ code. In Proceedings of the NUTHOS-11: The 11th International Topical Meeting on Nuclear Reactor Thermal Hydraulics, Operation and Safety, Gyeongju, Republic of Korea, 9–13 October 2016; American Nuclear Society: Downers Grove, IL, USA, 2016. [Google Scholar]
- Bae, S.J.; Ahn, Y.; Lim, H.S.; Cha, J.E.; Lee, J.I. Comparison of gas system analysis code GAMMA+ to S-CO2 compressor test data. In Turbo Expo: Power for Land, Sea, and Air; American Society of Mechanical Engineers: New York, NY, USA, 2015; Volume 56802, p. V009T36A012. [Google Scholar]
- Son, S.; Baek, J.Y.; Jeong, Y.; Lee, J.I. Impact of turbomachinery degradation on performance and dynamic behavior of supercritical CO2 cycle. J. Eng. Gas Turbines Power 2020, 142, 091007. [Google Scholar] [CrossRef]
- Hughes, T.J.; Pister, K.S.; Taylor, R.L. Implicit-explicit finite elements in nonlinear transient analysis. Comput. Methods Appl. Mech. Eng. 1979, 17–18, 159–182. [Google Scholar] [CrossRef]
- Wu, S.T.; Wang, J.F. Numerical tests of a modified full implicit continuous Eulerian (FICE) scheme with projected normal characteristic boundary conditions for MHD flows. Comput. Methods Appl. Mech. Eng. 1987, 64, 267–282. [Google Scholar] [CrossRef]
- Rodríguez-Rojo, S.; Cocero, M. Supercritical fluidized bed modeling. J. Supercrit. Fluids 2009, 50, 54–60. [Google Scholar] [CrossRef]
- Bae, S.J.; Ahn, Y.; Lee, J.; Kim, S.G.; Baik, S.; Lee, J.I. Experimental and numerical investigation of supercritical CO2 test loop transient behavior near the critical point operation. Appl. Therm. Eng. 2016, 99, 572–582. [Google Scholar] [CrossRef]
- Brockkötter, J.; Jupke, A. Modeling the fluid dynamics of a high-pressure extraction column. J. Supercrit. Fluids 2019, 154, 104636. [Google Scholar] [CrossRef]
- Yoon, H.; Park, I.; Lee, Y.; Jeong, J. An unstructured SMAC algorithm for thermal non-equilibrium two-phase flows. Int. Commun. Heat Mass Transf. 2009, 36, 16–24. [Google Scholar] [CrossRef]
- Ishii, M. Two-fluid model for two-phase flow. Multiph. Sci. Technol. 1990, 5, 1–63. [Google Scholar] [CrossRef]
- Ishii, M. One-Dimensional Drift-Flux Model and Constitutive Equations for Relative Motion between Phases in Various Two-Phase Flow Regimes (No. ANL-77-47); Argonne National Lab.: Argonne, IL, USA, 1977. [Google Scholar] [CrossRef]
- Bae, S.J.; Kwon, J.; Kim, S.G.; Son, I.-W.; Lee, J.I. Condensation heat transfer and multi-phase pressure drop of CO2 near the critical point in a printed circuit heat exchanger. Int. J. Heat Mass Transf. 2019, 129, 1206–1221. [Google Scholar] [CrossRef]
- Tegeler, C.; Span, R.; Wagner, W. A new equation of state for argon covering the fluid region for temperatures from the melting line to 700 K at pressures up to 1000 MPa. J. Phys. Chem. Ref. Data 1999, 28, 779–850. [Google Scholar] [CrossRef]
- Bell, I.H.; Wronski, J.; Quoilin, S.; Lemort, V. Pure and pseudo-pure fluid thermophysical property evaluation and the open-source thermophysical property library CoolProp. Ind. Eng. Chem. Res. 2014, 536, 2498–2508. [Google Scholar] [CrossRef]
- Hewitt, G.F.; Shires, G.L.; Polezhaev, Y.V. International Encyclopedia of Heat and Mass Transfer; CRC Press LLC: Boca Raton, FL, USA, 1997. [Google Scholar]
- Yan, X. Dynamic Analysis and Control System Design for an Advanced Nuclear Gas Turbine Power Plant. Ph.D. Dissertation, Massachusetts Institute of Technology, Cambridge, MA, USA, 1990. [Google Scholar]
- KAERI. GAMMA+1.0 VolumeII: Theory Manual, KAERI/TR-5728/2014; KAERI: Daejeon, Republic of Korea, 2014. [Google Scholar]
- Atkinson, K.; Han, W. Theoretical Numerical Analysis; Springer: Berlin/Heidelberg, Germany, 2005; Volume 39, p. xviii+–576. [Google Scholar]
- Van Rossum, G.; Drake, F.L. Python 3 Reference Manual; CreateSpace: Scotts Valley, CA, USA, 2009. [Google Scholar]
- Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; et al. Author Correction: SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nat. Methods 2020, 17, 352. [Google Scholar] [CrossRef]
Solution Time | Explicit | ICE |
---|---|---|
1 s | 85.40 | 0.576 |
5 s | 449.6 | 2.985 |
10 s | 829.5 | 6.886 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Son, S.; Bae, S.J. The Development of a Transient Analysis Platform of Near-Critical CO2 Thermodynamic Systems via an Enthalpy-Based Implicit Continuous Eulerian Approach. Energies 2024, 17, 1126. https://doi.org/10.3390/en17051126
Son S, Bae SJ. The Development of a Transient Analysis Platform of Near-Critical CO2 Thermodynamic Systems via an Enthalpy-Based Implicit Continuous Eulerian Approach. Energies. 2024; 17(5):1126. https://doi.org/10.3390/en17051126
Chicago/Turabian StyleSon, Seongmin, and Seong Jun Bae. 2024. "The Development of a Transient Analysis Platform of Near-Critical CO2 Thermodynamic Systems via an Enthalpy-Based Implicit Continuous Eulerian Approach" Energies 17, no. 5: 1126. https://doi.org/10.3390/en17051126
APA StyleSon, S., & Bae, S. J. (2024). The Development of a Transient Analysis Platform of Near-Critical CO2 Thermodynamic Systems via an Enthalpy-Based Implicit Continuous Eulerian Approach. Energies, 17(5), 1126. https://doi.org/10.3390/en17051126