Overview of Health and Safety Risks in the Process of Production and Storage of Forest Biomass for Energy Purposes—A Review
Abstract
:1. Production of Forest Biomass as a Renewable Energy Source
2. Risks in the Process of Production and Storage of Forest Biomass for Energy Purposes
2.1. Risks in the Establishment, Cultivation, and Protection of Fast-Growing Tree Stands
2.2. Risks in the Production of Biomass for Energy Purposes and Wood Chips
- Dermatoses—caused by mechanical irritation, chemical irritation, and allergic effects of some wood components;
- Respiratory problems—affected by particle size and type of wood (inflammation of mucous membranes and airways);
- Allergic respiratory problems—allergies to components of wood dust (asthma, bronchitis), allergies to molds and fungi in wood;
- Carcinogenic action of some types of wood.
2.3. Risks in the Process of Storing Biomass for Energy Purposes
3. Discussion
- Update legislative regulations for the building and operation of facilities that use wood chips as the main raw material, taking into account health and safety risks;
- Develop and apply a system of positive and negative motivation through internal guidelines, with the aim of improving the quality of work performed in forestry;
- Legislatively resolve self-employed persons in the field of safety and health protection regulations at work;
- Renewal of the system of preventive medical examinations in specialized departments of occupational medicine;
- Intensify controls by the competent authorities, but also by the employer, for compliance with the rules of safety and health protection at work and the correct use of protective equipment;
- Develop safety limits for concentrations of spores of phytopathogens and safe distances at workplaces with biodegradable material and include them in the relevant legislation;
- Explicitly establish the need for personal protective work equipment in risky operations;
- Improve risk awareness among workers and people who come into direct contact with stored, biodegradable material;
- Legislatively establish the need for necessary spatial and fire-fighting equipment in the operations of urban-type heating plants when storing forest chips in large-capacity piles.
4. Conclusions and Future Directions
Author Contributions
Funding
Conflicts of Interest
References
- Skog, K.E.; Stanturf, J.A. Forest Biomass Sustainability and Availability. Sustain. Prod. Fuels Chem. Fibers For. Biomass 2011, 1067, 3–25. [Google Scholar]
- White, E.H. Sustainable Biofuels from Forests: Woody Biomass. Forests 2011, 2, 983. [Google Scholar] [CrossRef]
- Pan, Y.D.; Birdsey, R.A.; Phillips, O.L.; Jackson, R.B. The Structure, Distribution, and Biomass of the World’s Forests. Annu. Rev. Ecol. Evol. Syst. 2013, 44, 593. [Google Scholar] [CrossRef]
- Teixeira, T.R.; Ribeiro, C.A.A.S.; dos Santos, A.R.; Marcatti, G.E.; Lorenzon, A.S.; de Castro, N.L.M.; Domingues, G.F.; Leite, H.G.; de Menezes, S.M.D.; Mota, P.H.S.; et al. Forest biomass power plant installation scenarios. Biomass Bioenerg. 2018, 108, 35–47. [Google Scholar] [CrossRef]
- European Court of Auditors. Renewable Energy for Sustainable Rural Development: Significant Potential Synergies, but Mostly Unrealized; European Union: Luxembourg, 2018; p. 93. Available online: https://www.eca.europa.eu/Lists/ECADocuments/SR18_05/SR_Renewable_Energy_EN.pdf (accessed on 6 January 2024).
- Maity, S.K. Opportunities, recent trends and challenges of integrated biorefinery: Part I. Renew. Sustain. Energy Rev. 2015, 43, 1427–1445. [Google Scholar] [CrossRef]
- Šafařík, D.; Hlaváčková, P.; Michal, J. Potential of Forest Biomass Resources for Renewable Energy Production in the Czech Republic. Energies 2022, 15, 47. [Google Scholar] [CrossRef]
- Yu, Q.; Wang, Y.C.; Van Le, Q.; Yang, H.; Hosseinzadeh-Bandbafha, H.; Yang, Y.F.; Sonne, C.; Tabatabaei, M.; Lam, S.S.; Peng, W.X. An Overview on the Conversion of Forest Biomass into Bioenergy. Front. Energy Res. 2021, 9, 684234. [Google Scholar] [CrossRef]
- Favero, A.; Daigneault, A.; Sohngen, B.; Baker, J. A system-wide assessment of forest biomass production, markets, and carbon. GCB Bioenergy 2023, 15, 154–165. [Google Scholar] [CrossRef]
- Mohrmann, S.; Schukat, S.; Schaper, C. The Market for Bioenergy 2021/2022. Ger. J. Agric. Econ. 2022, 71, 101–125. [Google Scholar]
- Rentizelas, A.A.; Tolis, A.J.; Tatsiopoulos, I.P. Logistics issues of biomass: The storage problem and the multi-biomass supply chain. Renew. Sustain. Energy Rev. 2009, 13, 887–894. [Google Scholar] [CrossRef]
- Yodefr, A.M.; Schwab, C.; Gunderson, P.; Murphy, D. Safety and Health in Biomass Production, Transportation, and Storage: A Commentary Based on the Biomass and Biofuels Session at the 2013 North American Agricultural Safety Summit. J. Agromed. 2014, 19, 83–86. [Google Scholar] [CrossRef] [PubMed]
- Schaufler, D.H.; Yoder, A.M.; Murphy, D.J.; Schwab, C.V.; Dehart, A.F. Safety and Health in On-Farm Biomass Production and Processing. J. Agric. Saf. Health 2014, 20, 283–299. [Google Scholar] [CrossRef]
- Moreno, V.C.; Cozzani, V. Major accident hazard in bioenergy production. J. Loss. Prevent. Proc. 2015, 35, 135–144. [Google Scholar] [CrossRef]
- Krigstin, S.; Wetzel, S.; Jayabala, N.; Helmeste, C.; Madrali, S.; Agnew, J.; Volpe, S. Recent Health and Safety Incident Trends Related to the Storage of Woody Biomass: A Need for Improved Monitoring Strategies. Forests 2018, 9, 538. [Google Scholar] [CrossRef]
- Potocnik, I.; Poje, A. Forestry Ergonomics and Occupational Safety in High Ranking Scientific Journals from 2005–2016. Croat. J. For. Eng. 2017, 38, 291–310. [Google Scholar]
- Hedlund, F.H. Biomass accident investigations missed opportunities for learning and accident prevention. In Proceedings of the 25th European Biomass Conference, Stockholm, Sweden, 12–15 June 2017. [Google Scholar]
- Kadam, K.L.; Wooley, R.J.; Aden, A.; Nguyen, Q.A.; Yancey, M.A.; Ferraro, F.M. Softwood forest thinnings as a biomass source for ethanol production: A feasibility study for California. Biotechnol. Prog. 2000, 16, 947–957. [Google Scholar] [CrossRef] [PubMed]
- Paschalis-Jakubowicz, P. Forest biomass as a renewable energy source—Consequences for forestry. Sylwan 2018, 162, 688–695. [Google Scholar]
- Eggink, A.J.; Palmer, K.D.; Severy, M.A.; Carter, D.J.; Jacobson, A.E. Utilization of wet forest biomass as both the feedstock and electricity source for an integrated biochar production system. Appl. Eng. Agric. 2018, 34, 125–134. [Google Scholar] [CrossRef]
- Kozuch, A.; Cywicka, D.; Adamowicz, K.; Wieruszewski, M.; Wysocka-Fijorek, E.; Kielbasa, P. The Use of Forest Biomass for Energy Purposes in Selected European Countries. Energies 2023, 16, 5776. [Google Scholar] [CrossRef]
- Suchomel, J.; Belanová, K. Analýza Vybraných Rizík pri Spracovaní Lesnej Biomasy na Energetické Účely [Analysis of Selected Risks in the Processing of Forest Biomass for Energy Purposes], 1st ed.; Technical University in Zvolen: Zvolen, Slovakia, 2012; p. 107. [Google Scholar]
- Laitinen, S.; Laitinen, J.; Fagernäs, L.; Korpijärvi, K.; Korpinen, L.; Ojanen, K.; Aatamila, M.; Jumpponen, M.; Koponen, H.; Kokiniemi, J. Exposure to biological and chemical agents at biomass power plants. Biomass Bioenerg. 2016, 93, 78–86. [Google Scholar] [CrossRef]
- MacFarlane, D.W. Potential availability of urban wood biomass in Michigan: Implications for energy production, carbon sequestration and sustainable forest management in the USA. Biomass Bioenerg. 2009, 33, 628–634. [Google Scholar] [CrossRef]
- Baker, J.S.; Wade, C.M.; Sohngen, B.L.; Ohrel, S.; Fawcett, A.A. Potential complementarity between forest carbon sequestration incentives and biomass energy expansion. Energy Policy 2019, 126, 391–401. [Google Scholar] [CrossRef]
- Favero, A.; Daigneault, A.; Sohngen, B. Forests: Carbon sequestration, biomass energy, or both? Sci. Adv. 2020, 6, 6792. [Google Scholar] [CrossRef] [PubMed]
- Gejdoš, M.; Lieskovský, M. Vybrané Riziká pri Produkcii Biomasy na Energetické Účely [Selected Risks in Biomass Production for Energy Purposes], 1st ed.; Technical University in Zvolen: Zvolen, Slovakia, 2020; p. 88. [Google Scholar]
- Lasák, J. Pracovní úrazy v lesním hospodářství [Work accidents in forestry]. Lesn. Práce 1997, 76, 27–28. [Google Scholar]
- Salminen, S. Have young workers more injuries than older ones? An international literature review. J. Saf. Res. 2004, 35, 513–521. [Google Scholar] [CrossRef] [PubMed]
- Benavides, F.G.; Banach, J.; Martínez, J.M.; González, S. Description of fatal occupational injury rates in five selected European Union countries: Austria, Finland, France, Spain and Sweden. Saf. Sci. 2005, 43, 497–502. [Google Scholar] [CrossRef]
- Suchomel, J.; Belanová, K.; Štollmann, V. Analysis of Occupational Diseases Occurring in Forestry and Wood Processing Industry in Slovakia. Drv. Ind. 2011, 62, 219–228. [Google Scholar] [CrossRef]
- Springer, Y.P.; Lucas, D.L.; Castrodale, L.J.; Mclaughlin, J.B. Work-related injuries in the Alaska logging industry, 1991–2014. Am. J. Ind. Med. 2018, 61, 32–41. [Google Scholar] [CrossRef]
- Gejdoš, M.; Vlčková, M.; Allmanová, Z.; Balážová, Ž. Trends in Workplace Injuries in Slovak Forest Enterprises. Int. J. Environ. Res. Public Health 2019, 16, 141. [Google Scholar] [CrossRef]
- Jankovský, M.; Allman, M.; Allmanová, Z.; Ferenčík, M.; Merganič, J.; Messingerová, V. Is timber haulage safe? A ten year study of occupational accidents. Saf. Sci. 2019, 113, 154–160. [Google Scholar] [CrossRef]
- Thelin, A. Fatal accidents in Swedish farming and forestry, 1988–1997. Saf. Sci. 2002, 40, 501–517. [Google Scholar] [CrossRef]
- Narayana, M.R. Awareness of Policies and Programmes among Small-scale Industries in India: Evidence and Implications of a Case Study. J. Asian Afr. Stud. 2006, 41, 319–339. [Google Scholar] [CrossRef]
- Grzywinski, W.; Sawa, L.; Nowik, A.; Nowicki, G. Structure of work accidents in the Regional Directorate of the State Forests in Szczecinek in the years 1990–2009. Sylwan 2013, 157, 403–411. [Google Scholar]
- Danilovic, M.; Antonic, S.; Dordevic, Z.; Vojvodic, P. Forestry Work-Related Injuries in Forest Estate ‘‘Sremska Mitrovica” in Serbia. Sumar. List 2016, 140, 589–598. [Google Scholar] [CrossRef]
- Landekic, M.; Martinic, I.; Mijoc, D.; Bakaric, M.; Sporcic, M. Injury Patterns among Forestry Workers in Croatia. Forests 2021, 12, 1356. [Google Scholar] [CrossRef]
- de Castro, A.B.; Wilmsen, C.; Post, S.; Harrington, M.J.; Bush, D. Worker versus Employer Perspectives on Safety in the Forestry Services Industry. J. Agromed. 2023, 28, 224–229. [Google Scholar] [CrossRef] [PubMed]
- Robb, W.; Zemánek, T.; Kaakkurivaara, N. An Analysis of Chainsaw Operator Safety Between Asian and European Countries. Croat. J. For. Eng. 2022, 43, 373–389. [Google Scholar] [CrossRef]
- Stokely, T.D.; Verschuyl, J.; Hagar, J.C.; Betts, M.G. Herbicides and herbivory interact to drive plant community and crop-tree establishment. Ecol. Appl. 2018, 28, 2011–2023. [Google Scholar] [CrossRef]
- Fleming, R.L.; Leblanc, J.D.; Weldon, T.; Hazlett, P.W.; Mossa, D.S.; Irwin, R.; Primavera, M.J.; Wilson, S.A. Effect of vegetation control, harvest intensity, and soil disturbance on 20-year jack pine stand development. Can. J. For. Res. 2018, 48, 371–387. [Google Scholar] [CrossRef]
- Yarpuz-Bozdogan, N. Assessing the environment and human health risk of herbicide application in wheat cultivation. J. Food Agric. Environ. 2009, 7, 775–781. [Google Scholar]
- Davoren, M.J.; Schiestl, R.H. Glyphosate-based herbicides and cancer risk: A post-IARC decision review of potential mechanisms, policy and avenues of research. Carcinogenesis 2018, 39, 1207–1215. [Google Scholar] [CrossRef] [PubMed]
- Peillex, C.; Pelletier, M. The impact and toxicity of glyphosate and glyphosate-based herbicides on health and immunity. J. Immunotoxicol. 2020, 17, 163–174. [Google Scholar] [CrossRef] [PubMed]
- Dorlach, T.; Gunasekara, S. The politics of glyphosate regulation: Lessons from Sri Lanka’s short-lived ban. Glob. Health 2023, 19, 84. [Google Scholar] [CrossRef] [PubMed]
- Munoz, J.P.; Silva-Pavez, E.; Carrillo-Beltrán, D.; Calaf, G.M. Occurrence and exposure assessment of glyphosate in the environment and its impact on human beings. Environ. Res. 2023, 231, 116201. [Google Scholar] [CrossRef] [PubMed]
- Agostini, L.P.; Dettogni, R.S.; Dos Reis, R.S.; Stur, E.; Dos Santos, E.V.W.; Ventorim, D.P.; Garcia, F.M.; Cardoso, R.C.; Gracelli, J.B.; Louro, I.D. Effects of glyphosate exposure on human health: Insights from epidemiological and in vitro studies. Sci. Total Environ. 2020, 705, 135808. [Google Scholar] [CrossRef] [PubMed]
- Acquavella, J.F.; Weber, J.A.; Cullen, M.R.; Cruz, O.A.; Martens, M.A.; Holden, L.R.; Riordan, S.; Thompson, M.; Farmer, D. Human ocular effects from self-reported exposures to Roundup (R) herbicides. Hum. Exp. Toxicol. 1999, 18, 479–486. [Google Scholar] [CrossRef] [PubMed]
- Alavanja, M.C.R.; Samanic, C.; Dosemeci, M.; Lubin, J.; Tarone, R.; Lynch, C.F.; Knott, C.; Thomas, K.; Hoppin, J.A.; Barker, J.; et al. Use of agricultural pesticides and prostate cancer risk in the agricultural health study cohort. Am. J. Epidemiol. 2003, 157, 800–814. [Google Scholar] [CrossRef] [PubMed]
- Andreotti, G.; Koutros, S.; Hofmann, J.N.; Sandler, D.P.; Lubin, J.H.; Lynch, C.F.; Lerro, C.C.; De Roos, A.J.; Parks, C.G.; Alavanja, M.C.R.; et al. Glyphosate Use and Cancer Incidence in the Agricultural Health Study. JNCI J. Natl. Cancer Inst. 2018, 110, 509–516. [Google Scholar] [CrossRef]
- Caballero, M.; Amiri, S.; Denney, J.T.; Monsivais, P.; Hystad, P.; Amram, O. Estimated Residential Exposure to Agricultural Chemicals and Premature Mortality by Parkinson’s Disease in Washington State. Int. J. Environ. Res. Public Health 2018, 15, 2885. [Google Scholar] [CrossRef]
- Dayton, S.B.; Sandler, D.P.; Blair, A.; Alavnja, M.; Freeman, L.E.B.; Hoppin, J.A. Pesticide Use and Myocardial Infarction Incidence Among Farm Women in the Agricultural Health Study. J. Occup. Environ. Med. 2010, 52, 693–697. [Google Scholar] [CrossRef]
- Faria, N.M.X.; Facchini, L.A.; Fassa, A.G.; Tomasi, E. Pesticides and respiratory symptoms among farmers. Rev. Saude Publ. 2005, 39, 973–981. [Google Scholar] [CrossRef] [PubMed]
- Henneberger, P.K.; Liang, X.M.; London, S.J.; Umbach, D.M.; Sandler, D.P.; Hoppin, J.A. Exacerbation of symptoms in agricultural pesticide applicators with asthma. Int. Arch. Occup. Environ. Health 2014, 87, 423–432. [Google Scholar] [CrossRef] [PubMed]
- Hoppin, J.A.; Umbach, D.M.; Long, S.; London, S.J.; Henneberger, P.K.; Blair, A.; Alavanja, M.; Freeman, L.E.B.; Sandler, D.P. Pesticides are Associated with Allergic and Non-Allergic Wheeze among Male Farmers. Environ. Health Persp. 2017, 125, 535–543. [Google Scholar] [CrossRef]
- Lee, W.J.; Sandler, D.P.; Blair, A.; Samanic, C.; Cross, A.J.; Alavanja, M.C.R. Pesticide use and colorectal cancer risk in the Agricultural Health Study. Int. J. Cancer 2007, 121, 339–346. [Google Scholar] [CrossRef] [PubMed]
- Grung, M.; Lin, Y.; Zhang, H.; Steen, A.O.; Huang, J.; Zhang, G.; Larssen, T. Pesticide levels and environmental risk in aquatic environments in China—A review. Environ. Int. 2015, 81, 87–97. [Google Scholar] [CrossRef] [PubMed]
- Meftaul, I.M.; Venkateswarlu, K.; Dharmarajan, R.; Annamalai, P.; Megharaj, M. Pesticides in the urban environment: A potential threat that knocks at the door. Sci. Total Environ. 2020, 711, 134612. [Google Scholar] [CrossRef] [PubMed]
- Sprong, H.; Azagi, T.; Hoornstra, D.; Nijhof, A.M.; Knorr, S.; Baarsma, M.E.; Hovius, J.W. Control of Lyme borreliosis and other Ixodes ricinus-borne diseases. Parasites Vectors 2018, 11, 145. [Google Scholar] [CrossRef]
- Rigaud, E.; Jaulhac, B.; Garcia-Bonnet, N.; Hunfeld, K.P.; Féménia, F.; Huet, D.; Goulvestre, C.; Vailant, V.; Deffontaines, G.; Abadia-Benoist, G. Seroprevalence of seven pathogens transmitted by the Ixodes ricinus tick in forestry workers in France. Clin. Microbiol. Infect. 2016, 22, 735.e1. [Google Scholar] [CrossRef]
- Acharya, D.; Park, J.H. Seroepidemiologic Survey of Lyme Disease among Forestry Workers in National Park Offices in South Korea. Int. J. Environ. Res. Public Health 2021, 18, 2933. [Google Scholar] [CrossRef]
- Süss, J. Tick-borne encephalitis in Europe and beyond—The epidemiological situation as of 2007. Eurosurveillance 2008, 13, 18916. [Google Scholar] [CrossRef]
- Dautel, H.; Dippel, C.; Kämmer, D.; Werkhausen, A.; Kahl, O. Winter Activity of Ixodes ricinus in a Berlin forest area. Parasitol. Res. 2008, 103, 152–153. [Google Scholar]
- Randolph, S.E. Evidence that climate change has caused ‘emergence’ of tick-borne diseases in Europe? Int. J. Med. Microbiol. 2004, 293, 5–15. [Google Scholar] [CrossRef] [PubMed]
- Gray, J.S. Ixodes ricinus seasonal activity: Implications of global warming indicated by revisiting tick and weather data. Int. J. Med. Microbiol. 2008, 298, 19–24. [Google Scholar] [CrossRef]
- Materna, J.; Daniel, M.; Metelka, L.; Harcarika, J. The vertical distribution, density and the development of the tick Ixodes ricinus in mountain areas influenced by climate changes (The Krkonose Mts., Czech Republic). Int. J. Med. Microbiol. 2008, 298, 25–37. [Google Scholar] [CrossRef]
- Danielová, V.; Schwarzová, L.; Materna, J.; Daniel, M.; Metelka, L.; Holubová, J.; Kříž, B. Tick-borne encephalitis virus expansion to higher altitudes correlated with climate warming. Int. J. Med. Microbiol. 2008, 298, 68–72. [Google Scholar] [CrossRef]
- Lindgren, E.; Tälleklint, L.; Polfeldt, T. Impact of climate change on northern latitude limit and population density of the disease-transmitting European tick Ixodes ricinus. Environ. Health Persp. 2000, 108, 119–123. [Google Scholar] [CrossRef] [PubMed]
- Gallo, R.; Mazzetto, F. Ergonomic analysis for the assessment of the risk of work-related musculoskeletal disorder in forestry operations. J. Agric. Eng. 2013, 44, 730–735. [Google Scholar] [CrossRef]
- Celsa, C.C.; Ximena, L.C.L. Psychosocial risk prevention and evaluation in occupational health workers. Salud Arte Y Cuid. 2016, 9, 23–38. [Google Scholar]
- Aarhus, L.; Stranden, E.; Nordby, K.C.; Einarsdottir, E.; Olsen, R.; Ruud, B.; Bast-Pettersen, R. Vascular component of hand-arm vibration syndrome: A 22-year follow-up study. Occup. Med.-Oxf. 2018, 68, 384–390. [Google Scholar] [CrossRef]
- Poje, A.; Spinelli, R.; Magagnotti, N.; Mihelic, M. The effect of feedstock, knife wear and work station on the exposure to noise and vibrations in wood chipping operations. Silva Fenn. 2018, 52, 7003. [Google Scholar] [CrossRef]
- Poje, A.; Grigolato, S.; Potocnik, I. Operator Exposure to Noise and Whole-Body Vibration in a Fully Mechanised CTL Forest Harvesting System in Karst Terrain. Croat. J. For. Eng. 2019, 40, 139–150. [Google Scholar]
- Schwarz, M.; Salva, J.; Dado, M.; Vanek, M.; Borosova, D. Combined Exposure to Noise and Exhaust Fumes During Chainsaw Operation. Akustika 2018, 31, 64–72. [Google Scholar]
- Vlčková, M.; Gejdoš, M.; Němec, M. Occupational diseases from noise and vibration in Slovakian forestry. Akustika 2018, 30, 89–93. [Google Scholar]
- Voelter-Mahlknecht, S.; Pritsch, M.; Gigic, B.; Langer, P.; Loeffler, K.I.; Dupuis, H.; Letzel, S. Socio-medicinal aspects of vibration-induced white finger disease. Disabil. Rehabil. 2008, 30, 999–1013. [Google Scholar] [CrossRef]
- Sherwin, L.M.; Owende, P.M.O.; Kanali, C.L.; Lyons, J.; Ward, S.M. Influence of forest machine function on operator exposure to whole-body vibration in a cut-to-length timber harvester. Ergonomics 2004, 47, 1145–1159. [Google Scholar] [CrossRef] [PubMed]
- Vlčková, M.; Gejdoš, M.; Němec, M. Analysis of vibration in wood chipping process. Akustika 2017, 28, 106–110. [Google Scholar]
- Rottensteiner, C.; Tsioras, P.; Neumayer, H.; Stampfer, K. Vibration and noise assessment of tractor-trailer and truck-mounted chippers. Silva Fenn. 2013, 47, 984. [Google Scholar] [CrossRef]
- Fornaciari, L.; Fanigliulo, R.; Sperandio, G.; Biocca, M.; Grilli, R.; Gallo, P.; Pochi, D. Noise, vibration and dust emissions of a forestry chipper. In Proceedings of the International Conference Rural Health and RAGUSA SHWA, Lodi, Italy, 8–11 September 2015. [Google Scholar]
- Bohadana, A.B.; Massin, N.; Wild, P.; Toamain, J.P.; Engel, S.; Goutet, P. Symptoms, airway responsiveness, and exposure to dust in beech and oak wood workers. Occup. Environ. Med. 2000, 57, 268–273. [Google Scholar] [CrossRef]
- Douwes, J.; Mclean, D.; Slater, T.; Pearce, N. Asthma and other respiratory symptoms in New Zealand pine processing sawmill workers. Am. J. Ind. Med. 2001, 39, 608–615. [Google Scholar] [CrossRef]
- Baatjies, R.; Chamba, P.; Jeebhay, M.F. Wood dust and asthma. Curr. Opin. Allergy Clin. Immunol. 2023, 23, 76–84. [Google Scholar] [CrossRef]
- Nylander, L.A.; Dement, J.M. Carcinogenic effects of wood dust: Review and discussion. Am. J. Ind. Med. 1993, 24, 619–647. [Google Scholar] [CrossRef] [PubMed]
- Očkajová, A.; Kučerka, M.; Kminiak, R.; Krišťák, Ľ.; Igaz, R.; Réh, R. Occupational Exposure to Dust Produced when Miling Thermally Modified Wood. Int. J. Environ. Res. Public Health 2020, 17, 1478. [Google Scholar] [CrossRef] [PubMed]
- Magagnotti, N.; Nannicini, C.; Sciarra, G.; Spinelli, R.; Volpi, D. Determining the Exposure of Chipper Operators to Inhalable Wood Dust. Ann. Occup. Hyg. 2013, 57, 784–792. [Google Scholar] [CrossRef] [PubMed]
- Gulci, S.; Akay, A.E.; Spinelli, R.; Magagnotti, N. Assessing the exposure of chipper operators to wood dust in a roadside landing area. Fresen. Environ. Bull. 2018, 27, 4132–4138. [Google Scholar]
- Przybysz, J.; Celinski, M.; Kozikowski, P.; Mizera, K.; Borucka, M.; Gajek, A. Flammability and explosion characteristics of hardwood dust. J. Fire Sci. 2023, 41, 89–101. [Google Scholar] [CrossRef]
- Bajcar, M.; Saletnik, B.; Zagula, G.; Puchalski, C. Analysis of the Effect of the Biomass Torrefaction Process on Selected Parameters of Dust Explosivity. Molecules 2020, 25, 3525. [Google Scholar] [CrossRef] [PubMed]
- Masci, F.; Spatari, G.; Giorgianni, C.M.; Antonangeli, L.M.; D’Arrigo, A.; Biasina, A.M.; Priori, A.; Colosio, C. Occupational hand and wrist disorders among forestry workers: An exposed-control study to investigate preventive strategies. Work 2022, 72, 1249–1257. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, T.; Wahlstrőm, J.; Burstrőm, L. Hand-arm vibration and the risk of vascular and neurological diseases—A systematic review and meta-analysis. PLoS ONE 2017, 12, e0180795. [Google Scholar] [CrossRef]
- Hnilica, R.; Jankovský, M.; Dado, M. Model Assessment of the Complex Workload of Harvester Operator. Forests 2022, 13, 1196. [Google Scholar] [CrossRef]
- Jankovský, M.; Merganič, J.; Allman, M.; Ferenčík, M.; Messingerová, V. The cumulative effects of work-related factors increase the heart rate of cabin field machine operators. Int. J. Ind. Ergonom. 2018, 65, 173–178. [Google Scholar] [CrossRef]
- Hyde, M.; Jappinen, P.; Theorell, T.; Oxenstierna, G. Workplace conflict resolution and the health of employees in the Swedish and Finnish units of an industrial company. Soc. Sci. Med. 2006, 63, 2218–2227. [Google Scholar] [CrossRef] [PubMed]
- Pietryczuk, A.; Górniak, A.S.; Wiecko, A.; Cudowski, A. Biomass and Abundance of Aquatic Fungi in a Polyhumic Dam Reservoir. Pol. J. Environ. Stud. 2013, 22, 819–824. [Google Scholar]
- Suchomel, J.; Belanová, K.; Gejdoš, M.; Němec, M.; Danihelová, A.; Mašková, Z. Analysis of fungi in wood chip storage piles. Bioresources 2014, 9, 4410–4420. [Google Scholar] [CrossRef]
- Gejdoš, M.; Lieskovský, M.; Slančík, M.; Němec, M.; Danihelová, Z. Storage and fuel quality of coniferous wood chips. Bioresources 2015, 10, 5544–5553. [Google Scholar] [CrossRef]
- Lieskovský, M.; Gejdoš, M.; Messingerová, V.; Němec, M.; Danihelová, Z.; Moravčíková, V. Biological risks from long-term storage of wood chips. Pol. J. Environ. Stud. 2017, 26, 2633–2641. [Google Scholar] [CrossRef] [PubMed]
- Lieskovský, M.; Gejdoš, M. Monitoring of Respiratory Health Risks Caused by Biomass Storage in Urban-Type Heating Plants. Forests 2023, 14, 707. [Google Scholar] [CrossRef]
- Barontini, M.; Crognale, S.; Scarfone, A.; Gallo, P.; Gallucci, F.; Petruccioli, M.; Pesciarolli, L.; Pari, L. Airborne fungi in biofuel wood chip storage sites. Int. Biodeter. Biodegr. 2014, 90, 17–22. [Google Scholar] [CrossRef]
- Alshammari, N. Mycotoxin source and its exposure causing mycotoxicoses. Bioinformation 2023, 19, 348–357. [Google Scholar] [CrossRef]
- González-García, P.; Alonso-Sardón, M.; Rodríguez-Alonso, B.; Almeida, H.; Romero-Alegría, A.; Vega-Rodríguez, V.J.; López-Bernús, A.; Muňoz-Bellido, J.L.; Muro, A.; Pardo-Lledías, J.; et al. How Has the Aspergillosis Case Fatality Rate Changed over the Last Two Decades in Spain? J. Fungi 2022, 8, 576. [Google Scholar] [CrossRef]
- Steinbrink, J.M.; Miceli, M.H. Mucormycosis. Infect. Dis. Clin. N. Am. 2021, 35, 435–452. [Google Scholar] [CrossRef]
- Marple, B. Fusarium: A potential cause of chronic rhinosinusitis? Int. Forum. Allergy Rhinol. 2019, 9, E1. [Google Scholar] [CrossRef]
- Otero, C.; Arredondo, C.; Echeverría-Vega, A.; Gordillo-Fuenzalida, F. Penicillium spp. mycotoxins found in food and feed and their health effects. World Mycotoxin J. 2020, 13, 323–343. [Google Scholar] [CrossRef]
- Samuels, G.J.; Dodd, S.; Lu, B.; Petrini, O.; Schroers, H.; Druzhinina, I.S. The Trichoderma Konigii Morphological Species. Stud. Mycol. 2006, 56, 67–133. [Google Scholar] [CrossRef] [PubMed]
- Jirjis, R. Effects of particle size and pile height on storage and fuel quality of comminuted Salix viminalis. Biomass Bioenerg. 2005, 28, 193–201. [Google Scholar] [CrossRef]
- Noll, M.; Jirjis, R. Microbial communities in large-scale wood piles and their effects on wood quality and the environment. Appl. Microbiol. Biot. 2012, 95, 551–563. [Google Scholar] [CrossRef]
- Crook, B.; Botheroyd, E.M.; Glass, S.A.T.; Gould, J.R.M. The exposure of Scottish wood bark chip handlers to microbially contaminated airborne dust. In Inhaled Particles VII, Proceedings of the 7th International Symposium on Inhaled Particles, Edinburgh, UK, 16–20 September 1991; Dodgson, J., McCallum, R.I., Eds.; Pergamon Press: Oxford, UK,, 1993. [Google Scholar]
- Diehl, S.V. Respiratory health problems associated with worker exposure to fungi on wood and wood chips. Tappi J. 1998, 81, 115–118. [Google Scholar]
- Hedlund, F.H.; Astad, J.; Nichols, J. Inherent hazards, poor reporting and limited learning in the solid biomass energy sector: A case study of a wheel loader igniting wood dust, leading to fatal explosion at wood pellet manufacturer. Biomass Bioenerg. 2014, 66, 450–459. [Google Scholar] [CrossRef]
- Du, X.; Varde, A.S. Mining PM2.5 and Traffic Conditions for Air Quality. In Proceedings of the 7th International Conference on Information and Communication Systems (ICICS), Irbid, Jordan, 5–7 April 2016. [Google Scholar]
- Pai, S.J.; Carter, T.S.; Heald, C.L.; Kroll, J.H. Updated World Health Organization Air Quality Guidelines Highlight the Importance of Non-antropogenic PM2.5. Environ. Sci. Technol. Lett. 2022, 9, 501–506. [Google Scholar] [CrossRef]
- Lulbadda-Waduge, L.L.; Zigan, S. Analysis of airborne fines in cylindrical biomass storage silos. In Proceedings of the IV. International Conference of Particle-Based Methods: Fundamentals and Applications—PARTICLES 2015, Barcelona, Spain, 28–30 September 2015. [Google Scholar]
- Eckhoff, R.K. Understanding dust explosions. The role of powder science and technology. J. Loss Prevent. Proc. 2009, 22, 105–116. [Google Scholar] [CrossRef]
- Alakoski, E.; Jämsén, M.; Agar, D.; Tampio, E.; Wihersaari, M. From wood pellets to wood chips, risks of degradation and emissions from the storage of woody biomass—A short review. Renew. Sustain. Energy Rev. 2016, 54, 376–383. [Google Scholar] [CrossRef]
- Sheng, C.D.; Yao, C. Review on Self-Heating of Biomass Materials: Understanding and Description. Energy Fuels 2022, 36, 731–761. [Google Scholar] [CrossRef]
- Žid, M.; Lieskovský, M.; Gejdoš, M.; Slančík, M. Riziká dlhodobého skladovania energetických štiepok [Risks of long-term storage of energy chips]. Acta Fac. For. Zvolen 2016, 58, 111–124. [Google Scholar]
- van Bruggen, A.H.C.; Finckh, M.R.; He, M.; Ritsema, C.J.; Harkes, P.; Knuth, D.; Geissen, V. Indirect Effects of the Herbicide Glyphosate on Plant, Animal and Human Health Through its Effects on Microbial Communities. Front. Environ. Sci. 2021, 9, 763917. [Google Scholar] [CrossRef]
- Dumfort, S.; Lenz, H.; Ascher-Jenull, J.; Longa, C.M.O.; Zőhrer, J.; Insam, H.; Pecenka, R. The effect of calcium hydroxide on the storage behaviour of poplar wood chips in open-air piles. Biomass Bioenergy 2023, 177, 106945. [Google Scholar] [CrossRef]
Factor | Risk | References |
---|---|---|
Herbicides Glyphosate, chlorpyrifos, aldicarb | Cancer diseases | [49,50,51,52,53,58] |
Chlorpyrifos, coumaphos, carbofuran, metalaxyl, pendimethalin and trifuralin | Myocardial infarction, respiratory diseases, allergies | [54,55] |
Heptachlor | Chronic bronchitis | [56] |
Biological factors- | ||
Common tick bite | Lyme disease | [61,62,63] |
Tick-borne encephalitis | [64,65,66,67,68,69,70] |
Work Operation | Wood Species | Chipper Behind Tractor | Chipper on Truck | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Average | Sd | Min. | Max. | Comparison Source [80] Chipper KESLA (Max.) | Average | Sd | Min. | Max. | ||
Chipping (m·s−2) | Conifer | 0.27 | 0.02 | 0.23 | 0.31 | 0.51 | 0.63 | 0.02 | 0.58 | 0.65 |
Non-conifer | 0.31 | 0.03 | 0.27 | 0.35 | 2.1 | 0.70 | 0.04 | 0.65 | 0.78 | |
Movement (m·s−2) | Conifer/non-conifer | 0.84 | 0.17 | 0.53 | 1.08 | 0.50 | 0.12 | 0.24 | 0.64 | |
Downtime (m·s−2) | Conifer/non-conifer | 0.05 | 0.02 | 0.02 | 0.08 | 0.34 | 0.13 | 0.02 | 0.10 | 0.14 |
Factor | Risks | References |
---|---|---|
Noise, vibrations | Vasoneurosis | [78,79,80] |
Limited mobility of limbs, headache | [73,74,75,76,77] | |
Hearing damage | [74,77,82] | |
Wood dust | Allergies | [85] |
Dermatoses, respiratory problems, cancer | [86,87] | |
Explosion, fire | [90,91] | |
Long-term, excessive, and one-sided loading of limbs | Movement problems, Carpal tunnel syndrome | [92,93] |
Neuropsychological stress, bad work atmosphere | Excessive load on the cardiovascular system | [95] |
Exhaustion, burnout syndrome, psychological problems | [96] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gejdoš, M.; Lieskovský, M. Overview of Health and Safety Risks in the Process of Production and Storage of Forest Biomass for Energy Purposes—A Review. Energies 2024, 17, 1064. https://doi.org/10.3390/en17051064
Gejdoš M, Lieskovský M. Overview of Health and Safety Risks in the Process of Production and Storage of Forest Biomass for Energy Purposes—A Review. Energies. 2024; 17(5):1064. https://doi.org/10.3390/en17051064
Chicago/Turabian StyleGejdoš, Miloš, and Martin Lieskovský. 2024. "Overview of Health and Safety Risks in the Process of Production and Storage of Forest Biomass for Energy Purposes—A Review" Energies 17, no. 5: 1064. https://doi.org/10.3390/en17051064
APA StyleGejdoš, M., & Lieskovský, M. (2024). Overview of Health and Safety Risks in the Process of Production and Storage of Forest Biomass for Energy Purposes—A Review. Energies, 17(5), 1064. https://doi.org/10.3390/en17051064