Challenges, Roadmaps and Smart Energy Transition towards 100% Renewable Energy Markets in American Islands: A Review
Abstract
:1. Introduction
1.1. Review Method
- To what extent are wind and solar photovoltaic energy currently being used?
- To what extent do renewable energies contribute to the current energy demand?
- To what extent have the roadmaps for the American islands been designed?
- What other renewable sources are called to integrate the energy mix of the islands?
- Description of the island located on the American continent, consisting of the name, country, area, population and description of the current energy system.
- Description of the article including the authors, journal, year and objective of the study.
- Approach and methods identified: tools and database used, time frame, simulation approach, energy sectors analyzed and technologies considered.
- Information with sustainability criteria and cost assumptions.
1.2. Research Location
2. Analysis of the Renewable Energy Components in the American Islands
3. Renewable Energy Potentials in the American Islands
- (i)
- Missing or unverifiable data;
- (ii)
- The need for regulations;
- (iii)
- Limited financial opportunities;
- (iv)
- The lack of human talent on the islands;
- (v)
- Expensive infrastructure on site;
- (vi)
- Sociocultural impediments.
3.1. Referential Cartography to Identify Existing Energy Potentials on the American Continent
3.1.1. Solar Photovoltaic Power
3.1.2. Wind Power
3.1.3. Biomass Power
4. General Results of 100% RES Studies of American Islands
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviatures
BESS | Battery Energy Storage System |
CO2 | Carbon dioxide |
COP 21 | Conference Of Parties 21 |
COP 28 | Conference Of Parties 28 |
ESS | Energy storage solution |
GHG | Greenhouse gas |
IRENA | International Renewable Energy Agency |
PV | Photovoltaic |
RD&D | Research, development and demonstration |
RE | Renewable energy |
RES | Renewable energy system |
SIDS | Small Island Developing States |
TES | Thermal energy storage |
UN | United Nations |
References
- Guzović, Z.; Duić, N.; Piacentino, A.; Markovska, N.; Mathiesen, B.V.; Lund, H. Paving the Way for the Paris Agreement: Contributions of SDEWES Science. Energy 2023, 263, 125617. [Google Scholar] [CrossRef]
- Murphy, C.; Hotchkiss, E.L.; Anderson, K.H.; Barrows, C.P.; Cohen, S.M.; Dalvi, S.; Laws, N.D.; Maguire, J.B.; Stephen, G.W.; Wilson, E.J. Adapting Existing Energy Planning, Simulation, and Operational Models for Resilience Analysis; National Renewable Energy Lab. (NREL): Golden, CO, USA, 2020. [Google Scholar]
- Ruiz Romero, S.; Colmenar Santos, A.; Castro Gil, M.A. EU Plans for Renewable Energy. An Application to the Spanish Case. Renew. Energy 2012, 43, 322–330. [Google Scholar] [CrossRef]
- COP28 and International Energy Agency Reaffirm 1.5 °C—Aligned Energy Transition. Available online: https://www.cop28.com/en/news/2023/12/COP28-and-International-Energy-Agency (accessed on 13 December 2023).
- You, C.; Kim, J. Optimal Design and Global Sensitivity Analysis of a 100% Renewable Energy Sources Based Smart Energy Network for Electrified and Hydrogen Cities. Energy Convers. Manag. 2020, 223, 113252. [Google Scholar] [CrossRef]
- Roldán-Blay, C.; Escrivá-Escrivá, G.; Roldán-Porta, C.; Dasí-Crespo, D. Optimal Sizing and Design of Renewable Power Plants in Rural Microgrids Using Multi-Objective Particle Swarm Optimization and Branch and Bound Methods. Energy 2023, 284, 129318. [Google Scholar] [CrossRef]
- Vardopoulos, I.; Vannas, I.; Xydis, G.; Vassiliades, C. Homeowners’ Perceptions of Renewable Energy and Market Value of Sustainable Buildings. Energies 2023, 16, 4178. [Google Scholar] [CrossRef]
- Majidi Nezhad, M.; Shaik, R.U.; Heydari, A.; Razmjoo, A.; Arslan, N.; Astiaso Garcia, D. A SWOT Analysis for Offshore Wind Energy Assessment Using Remote-Sensing Potential. Appl. Sci. 2020, 10, 6398. [Google Scholar] [CrossRef]
- Igliński, B.; Pietrzak, M.B.; Kiełkowska, U.; Skrzatek, M.; Gajdos, A.; Zyadin, A.; Natarajan, K. How to Meet the Green Deal Objectives—Is It Possible to Obtain 100% RES at the Regional Level in the EU? Energies 2022, 15, 2296. [Google Scholar] [CrossRef]
- Mukherjee, S.; Pal, J.; Manna, S.; Saha, A.; Das, D. Chapter 10—El-Niño Southern Oscillation and Its Effects. In Visualization Techniques for Climate Change with Machine Learning and Artificial Intelligence; Srivastav, A., Dubey, A., Kumar, A., Kumar Narang, S., Ali Khan, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2023; pp. 207–228. ISBN 978-0-323-99714-0. [Google Scholar]
- Cucchiella, F.; Condemi, A.; Rotilio, M.; Annibaldi, V. Energy Transitions in Western European Countries: Regulation Comparative Analysis. Energies 2021, 14, 3940. [Google Scholar] [CrossRef]
- Papakonstantinou, A.G.; Konstanteas, A.I.; Papathanassiou, S.A. Solutions to Enhance Frequency Regulation in an Island System With Pumped-Hydro Storage Under 100% Renewable Energy Penetration. IEEE Access 2023, 11, 76675–76690. [Google Scholar] [CrossRef]
- Shastry, V.; Morse, S.M. The Gendered Implications of Energy Gaps in Health Care: A Comparative Analysis of Haiti, Senegal, and the Democratic Republic of Congo. Health Care Women Int. 2023, 44, 1050–1072. [Google Scholar] [CrossRef] [PubMed]
- Lüth, A.; Seifert, P.E.; Egging-Bratseth, R.; Weibezahn, J. How to Connect Energy Islands: Trade-Offs between Hydrogen and Electricity Infrastructure. Appl. Energy 2023, 341, 121045. [Google Scholar] [CrossRef]
- Carvache-Franco, M.; Carvache-Franco, W.; Hernández-Lara, A.B.; Carvache-Franco, O. Effects of Motivations in Marine Protected Areas: The Case of Galápagos Islands. PLoS ONE 2023, 18, e0293480. [Google Scholar] [CrossRef] [PubMed]
- Descarbonización Sostenible e Inclusiva de las Islas Galápagos. Available online: https://www.usfq.edu.ec/es/eventos/descarbonizacion-sostenible-e-inclusiva-de-las-islas-galapagos (accessed on 13 December 2023).
- Gobierno Del Ecuador Ratifica La Hoja de Ruta Del Proyecto Cero Combustibles Fósiles En Galápagos—Ministerio de Energia y Minas. Available online: https://www.recursosyenergia.gob.ec/gobierno-del-ecuador-ratifica-la-hoja-de-ruta-del-proyecto-cero-combustibles-fosiles-en-galapagos/ (accessed on 14 December 2023).
- Reilly, K.; O’Hagan, A.M.; Dalton, G. Attitudes and Perceptions of Fishermen on the Island of Ireland towards the Development of Marine Renewable Energy Projects. Mar. Policy 2015, 58, 88–97. [Google Scholar] [CrossRef]
- Brookes, N.; Sage, D.; Dainty, A.; Locatelli, G.; Whyte, J. An Island of Constancy in a Sea of Change: Rethinking Project Temporalities with Long-Term Megaprojects. Int. J. Proj. Manag. 2017, 35, 1213–1224. [Google Scholar] [CrossRef]
- Reilly, K.; O’Hagan, A.M.; Dalton, G. Moving from Consultation to Participation: A Case Study of the Involvement of Fishermen in Decisions Relating to Marine Renewable Energy Projects on the Island of Ireland. Ocean Coast. Manag. 2016, 134, 30–40. [Google Scholar] [CrossRef]
- Gatta, F.M.; Geri, A.; Lauria, S.; Maccioni, M.; Palone, F.; Portoghese, P.; Buono, L.; Necci, A. Replacing Diesel Generators With Hybrid Renewable Power Plants: Giglio Smart Island Project. IEEE Trans. Ind. Appl. 2019, 55, 1083–1092. [Google Scholar] [CrossRef]
- Chen, A.A.; Stephens, A.J.; Koon Koon, R.; Ashtine, M.; Mohammed-Koon Koon, K. Pathways to Climate Change Mitigation and Stable Energy by 100% Renewable for a Small Island: Jamaica as an Example. Renew. Sustain. Energy Rev. 2020, 121, 109671. [Google Scholar] [CrossRef]
- Sheinbaum-Pardo, C.; Ruiz, B.J. Energy Context in Latin America. Energy 2012, 40, 39–46. [Google Scholar] [CrossRef]
- Ellis, G.; Schneider, N.; Wüstenhagen, R. Dynamics of Social Acceptance of Renewable Energy: An Introduction to the Concept. Energy Policy 2023, 181, 113706. [Google Scholar] [CrossRef]
- Santos Ayres, V.F.D.; Rodrigues De Oliveira, M.; Branco De Queiroz, C.C.; De Vasconcelos, G.J.N.; Takeara, R. Chemical Composition and Acaricidal Activity of the Essential Oils of Piper Marginatum and Piper Callosum Collected in the Amazon Region. J. Essent. Oil Res. 2023, 35, 82–90. [Google Scholar] [CrossRef]
- Lau, H.C. Decarbonization Roadmaps for ASEAN and Their Implications. Energy Rep. 2022, 8, 6000–6022. [Google Scholar] [CrossRef]
- Nations, U. Net Zero Coalition|Naciones Unidas. Available online: https://www.un.org/es/climatechange/net-zero-coalition (accessed on 14 December 2023).
- Zhao, A.; Jiao, Y.; Quan, W.; Chen, Y. Net Zero Carbon Rural Integrated Energy System Design Optimization Based on the Energy Demand in Temporal and Spatial Dimensions. Renew. Energy 2024, 222, 119818. [Google Scholar] [CrossRef]
- Net Zero by 2050: A Roadmap for the Global Energy Sector—Event. Available online: https://www.iea.org/events/net-zero-by-2050-a-roadmap-for-the-global-energy-system (accessed on 14 December 2023).
- François, A.; Roche, R.; Grondin, D.; Benne, M. Assessment of Medium and Long Term Scenarios for the Electrical Autonomy in Island Territories: The Reunion Island Case Study. Renew. Energy 2023, 216, 119093. [Google Scholar] [CrossRef]
- Marocco, P.; Novo, R.; Lanzini, A.; Mattiazzo, G.; Santarelli, M. Towards 100% Renewable Energy Systems: The Role of Hydrogen and Batteries. J. Energy Storage 2023, 57, 106306. [Google Scholar] [CrossRef]
- Kotilainen, K.; Saari, U.A.; Mäkinen, S.J.; Ringle, C.M. Exploring the Microfoundations of End-User Interests toward Co-Creating Renewable Energy Technology Innovations. J. Clean. Prod. 2019, 229, 203–212. [Google Scholar] [CrossRef]
- Li, Y.; Bu, F.; Li, Y.; Long, C. Optimal Scheduling of Island Integrated Energy Systems Considering Multi-Uncertainties and Hydrothermal Simultaneous Transmission: A Deep Reinforcement Learning Approach. Appl. Energy 2023, 333, 120540. [Google Scholar] [CrossRef]
- Chiappetta Jabbour, C.J.; Fiorini, P.D.C.; Ndubisi, N.O.; Queiroz, M.M.; Piato, É.L. Digitally-Enabled Sustainable Supply Chains in the 21st Century: A Review and a Research Agenda. Sci. Total Environ. 2020, 725, 138177. [Google Scholar] [CrossRef]
- Hohmeyer, O.H.; Bohm, S. Trends toward 100% Renewable Electricity Supply in Germany and Europe: A Paradigm Shift in Energy Policies. WIREs Energy Environ. 2015, 4, 74–97. [Google Scholar] [CrossRef]
- Connolly, D.; Lund, H.; Mathiesen, B.V. Smart Energy Europe: The Technical and Economic Impact of One Potential 100% Renewable Energy Scenario for the European Union. Renew. Sustain. Energy Rev. 2016, 60, 1634–1653. [Google Scholar] [CrossRef]
- Lu, B.; Blakers, A.; Stocks, M.; Do, T.N. Low-Cost, Low-Emission 100% Renewable Electricity in Southeast Asia Supported by Pumped Hydro Storage. Energy 2021, 236, 121387. [Google Scholar] [CrossRef]
- Blakers, A.; Lu, B.; Stocks, M. 100% Renewable Electricity in Australia. Energy 2017, 133, 471–482. [Google Scholar] [CrossRef]
- Arroyo, M.F.R.; Miguel, L.J. Low-Carbon Energy Governance: Scenarios to Accelerate the Change in the Energy Matrix in Ecuador. Energies 2020, 13, 4731. [Google Scholar] [CrossRef]
- Erdinc, O.; Paterakis, N.G.; Catalão, J.P.S. Overview of Insular Power Systems under Increasing Penetration of Renewable Energy Sources: Opportunities and Challenges. Renew. Sustain. Energy Rev. 2015, 52, 333–346. [Google Scholar] [CrossRef]
- Liu, M.; Liu, H.-F.; Lee, C.-C. An Empirical Study on the Response of the Energy Market to the Shock from the Artificial Intelligence Industry. Energy 2024, 288, 129655. [Google Scholar] [CrossRef]
- Amin, A.; Mourshed, M. Weather and Climate Data for Energy Applications. Renew. Sustain. Energy Rev. 2024, 192, 114247. [Google Scholar] [CrossRef]
- Igeland, P.; Schroeder, L.; Yahya, M.; Okhrin, Y.; Uddin, G.S. The Energy Transition: The Behavior of Renewable Energy Stock during the Times of Energy Security Uncertainty. Renew. Energy 2024, 221, 119746. [Google Scholar] [CrossRef]
- Lund, H.; Thellufsen, J.Z.; Østergaard, P.A.; Sorknæs, P.; Skov, I.R.; Mathiesen, B.V. EnergyPLAN—Advanced Analysis of Smart Energy Systems. Smart Energy 2021, 1, 100007. [Google Scholar] [CrossRef]
- Oyewo, A.S.; Aghahosseini, A.; Movsessian, M.M.; Breyer, C. A Novel Geothermal-PV Led Energy System Analysis on the Case of the Central American Countries Guatemala, Honduras, and Costa Rica. Renew. Energy 2024, 221, 119859. [Google Scholar] [CrossRef]
- Huang, Y.; Bor, Y.J.; Peng, C.-Y. The Long-Term Forecast of Taiwan’s Energy Supply and Demand: LEAP Model Application. Energy Policy 2011, 39, 6790–6803. [Google Scholar] [CrossRef]
- Simsek, Y.; Sahin, H.; Lorca, Á.; Santika, W.G.; Urmee, T.; Escobar, R. Comparison of Energy Scenario Alternatives for Chile: Towards Low-Carbon Energy Transition by 2030. Energy 2020, 206, 118021. [Google Scholar] [CrossRef]
- Chen, T.; Pipattanasomporn, M.; Rahman, I.; Jing, Z.; Rahman, S. MATPLAN: A Probability-Based Planning Tool for Cost-Effective Grid Integration of Renewable Energy. Renew. Energy 2020, 156, 1089–1099. [Google Scholar] [CrossRef]
- Limpens, G.; Rixhon, X.; Contino, F.; Jeanmart, H. EnergyScope Pathway: An Open-Source Model to Optimise the Energy Transition Pathways of a Regional Whole-Energy System. Appl. Energy 2024, 358, 122501. [Google Scholar] [CrossRef]
- Vista Satelital del Continente Americano—Mapa Satelital. Available online: https://www.viasatelital.com/mapas/america.htm (accessed on 14 December 2023).
- Alberto Alvarez, E.; Korkeakoski, M.; Santos Fuentefría, A.; Lourdes Filgueiras Sainz de Rozas, M.; Arcila Padura, R.; Luukkanen, J. Long-Range Integrated Development Analysis: The Cuban Isla de La Juventud Study Case. Energies 2021, 14, 2865. [Google Scholar] [CrossRef]
- Mendoza-Vizcaino, J.; Sumper, A.; Sudria-Andreu, A.; Ramirez, J.M. Renewable Technologies for Generation Systems in Islands and Their Application to Cozumel Island, Mexico. Renew. Sustain. Energy Rev. 2016, 64, 348–361. [Google Scholar] [CrossRef]
- Godínez-Zamora, G.; Victor-Gallardo, L.; Angulo-Paniagua, J.; Ramos, E.; Howells, M.; Usher, W.; De León, F.; Meza, A.; Quirós-Tortós, J. Decarbonising the Transport and Energy Sectors: Technical Feasibility and Socioeconomic Impacts in Costa Rica. Energy Strategy Rev. 2020, 32, 100573. [Google Scholar] [CrossRef]
- Krajačić, G.; Duić, N.; Carvalho, M.d.G. H2RES, Energy Planning Tool for Island Energy Systems—The Case of the Island of Mljet. Int. J. Hydrogen Energy 2009, 34, 7015–7026. [Google Scholar] [CrossRef]
- Marczinkowski, H.M.; Østergaard, P.A. Evaluation of Electricity Storage versus Thermal Storage as Part of Two Different Energy Planning Approaches for the Islands Samsø and Orkney. Energy 2019, 175, 505–514. [Google Scholar] [CrossRef]
- Gils, H.C.; Simon, S. Carbon Neutral Archipelago—100% Renewable Energy Supply for the Canary Islands. Appl. Energy 2017, 188, 342–355. [Google Scholar] [CrossRef]
- Renewable Energy Statistics. 2023. Available online: https://www.irena.org/Publications/2023/Jul/Renewable-energy-statistics-2023 (accessed on 19 December 2023).
- Puerto Rico Profile. Available online: https://www.eia.gov/state/print.php?sid=RQ (accessed on 19 December 2023).
- Escamilla-García, P.E.; Fernández-Rodríguez, E.; Jiménez-Castañeda, M.E.; Jiménez-González, C.O.; Morales-Castro, J.A. A Review of the Progress and Potential of Energy Generation from Renewable Sources in Latin America. Lat. Am. Res. Rev. 2023, 58, 383–402. [Google Scholar] [CrossRef]
- Boston, M.A. 15 S.S. 4th F.; Us, M. 02109 P. 617 223-8666 C. Renewable Energy on the Islands—Boston Harbor Islands National Recreation Area (U.S. National Park Service). Available online: https://www.nps.gov/boha/learn/management/renewable-energy-installations.htm (accessed on 19 December 2023).
- Pantaleo, A.; Albert, M.R.; Snyder, H.T.; Doig, S.; Oshima, T.; Hagelqvist, N.E. Modeling a Sustainable Energy Transition in Northern Greenland: Qaanaaq Case Study. Sustain. Energy Technol. Assess. 2022, 54, 102774. [Google Scholar] [CrossRef]
- CER Canada’s Energy Future Data Appendices. 2016. Available online: https://www.cer-rec.gc.ca/en/data-analysis/canada-energy-future/ (accessed on 1 December 2023).
- Pinto, H.; Gates, I.D. Why Is It so Difficult to Replace Diesel in Nunavut, Canada? Renew. Sustain. Energy Rev. 2022, 157, 112030. [Google Scholar] [CrossRef]
- Canadian Energy Efficiency Outlook: A National Effort for Tackling Climate Change. Available online: https://www.routledge.com/Canadian-Energy-Efficiency-Outlook-A-National-Effort-for-Tackling-Climate/Langlois-Gauthier/p/book/9788770229470 (accessed on 19 December 2023).
- Korkeakoski, M.; Filgueiras Sainz de Rozas, M.L. Una Mirada a La Transición de La Matriz Energética Cubana. Ing. Energética 2022, 43, 40–47. [Google Scholar]
- González Lorente, Á.; Hernández López, M.; Martín Álvarez, F.J.; Mendoza Jiménez, J. Differences in Electricity Generation from Renewable Sources from Similar Environmental Conditions: The Cases of Spain and Cuba. Sustainability 2020, 12, 5190. [Google Scholar] [CrossRef]
- Quitoras, M.R.; Campana, P.E.; Crawford, C. Exploring Electricity Generation Alternatives for Canadian Arctic Communities Using a Multi-Objective Genetic Algorithm Approach. Energy Convers. Manag. 2020, 210, 112471. [Google Scholar] [CrossRef]
- Our Clean Energy Portfolio. Available online: http://www.hawaiianelectric.com/clean-energy-hawaii/our-clean-energy-portfolio (accessed on 19 December 2023).
- Falkland Islands Electricity Statistics—Worldometer. Available online: https://www.worldometers.info/electricity/falkland-islands-malvinas-electricity/ (accessed on 19 December 2023).
- Renewable Electricity Generation (GWh) by Region/Country/Area, Technology and Year. Available online: https://pxweb.irena.org:443/pxweb/en/IRENASTAT/IRENASTAT__PowerCapacityandGeneration/REGEN_2023_cycle2.px/ (accessed on 19 December 2023).
- Llerena-Pizarro, O.R.; Micena, R.P.; Tuna, C.E.; Silveira, J.L. Electricity Sector in the Galapagos Islands: Current Status, Renewable Sources, and Hybrid Power Generation System Proposal. Renew. Sustain. Energy Rev. 2019, 108, 65–75. [Google Scholar] [CrossRef]
- Icaza-Alvarez, D.; Jurado, F.; Tostado-Véliz, M.; Arevalo, P. Decarbonization of the Galapagos Islands. Proposal to Transform the Energy System into 100% Renewable by 2050. Renew. Energy 2022, 189, 199–220. [Google Scholar] [CrossRef]
- Electric—American Samoa Power Authority. Available online: https://www.aspower.com/electric.html (accessed on 19 December 2023).
- U.S. Energy Information Administration—EIA—Independent Statistics and Analysis. Available online: https://www.eia.gov/state/analysis.php?sid=CQ (accessed on 19 December 2023).
- Ministry of Energy and Energy Industries|Renewable Energy. Available online: https://www.energy.gov.tt/our-business/alternative-energy/renewable-energy/ (accessed on 19 December 2023).
- Healey, V.; Beshilas, L.; Coney, K.; Jackson, G. Energy Snapshot—Trinidad and Tobago; National Renewable Energy Lab. (NREL): Golden, CO, USA, 2020. [Google Scholar]
- Dominican Republic—Renewable Energy. Available online: https://www.trade.gov/country-commercial-guides/dominican-republic-renewable-energy (accessed on 19 December 2023).
- Bahamas—Energy. Available online: https://www.trade.gov/country-commercial-guides/bahamas-energy (accessed on 19 December 2023).
- On the Island of Bonaire, Views of a Potentially Rich Renewable Energy Resource. Available online: https://www.nationalgeographic.com/environment/article/on-the-island-of-bonaire-views-of-a-potentially-rich-renewable-energy-resource (accessed on 19 December 2023).
- Ritchie, H.; Roser, M.; Rosado, P. Energy. Our World Data. 2022. Available online: https://ourworldindata.org/renewable-energy (accessed on 19 December 2023).
- Wärtsilä Smart Power Generation Plant to Support Aruba’s Move to Renewable Energy. Available online: https://www.wartsila.com/jpn/media/news/21-12-2018-wartsila-smart-power-generation-plant-to-support-aruba-s-move-to-renewable-energy-2350449 (accessed on 19 December 2023).
- SGD—Affordable and Clean Energy|National Development Program—Curaçao 2030. Available online: http://www.curacao2030.cw/sustainable-development-goals/affordable-and-clean-energy (accessed on 19 December 2023).
- Grenada’s Clean Energy Vision Made Achievable in Three Steps; CCREEE: Bridgetown, Barbados, 2023.
- Energy Conservation & Renewable Energy—Energy.Gov.Bb. 2020. Available online: https://energy.gov.bb/departments/energy-conservation-renewable-energy/ (accessed on 19 December 2023).
- Caribe, C.E.; Para, A.L. y el Dominica is CARICOM Forerunner in Renewable Energy Use, Latest ECLAC Report Reveals. Available online: https://www.cepal.org/en/news/dominica-caricom-forerunner-renewable-energy-use-latest-eclac-report-reveals (accessed on 19 December 2023).
- FAO.Org. Available online: https://www.fao.org/faolex/results/details/en/c/LEX-FAOC143765/ (accessed on 19 December 2023).
- Saint Lucia Explores Geothermal, in Hope of a Resilient Future. Available online: https://www.worldbank.org/en/news/feature/2022/11/15/renewable-energy-caribbean-saint-lucia-explores-geothermal-resilient-future (accessed on 19 December 2023).
- Newenergyadmin. Martinique Makes Strides towards Energy Self-Sufficiency; New Energy Events: Miami, FL, USA, 2019. [Google Scholar]
- Tarkowski, R.; Uliasz-Misiak, B. Renewable Energy Sources in Guadeloupe. Appl. Energy 2003, 74, 221–228. [Google Scholar] [CrossRef]
- Energy Unit—Government of St. Kitts & Nevis. Available online: https://energyunit.gov.kn/ (accessed on 19 December 2023).
- Anguilla Energy Office|Climate & Development Knowledge Network. Available online: https://cdkn.org/node/15568 (accessed on 19 December 2023).
- McDonald, J.F.; Bowman, H.W. Land Value Functions: A Reevaluation. J. Urban Econ. 1979, 6, 25–41. [Google Scholar] [CrossRef]
- Koengkan, M.; Fuinhas, J.A.; Kazemzadeh, E.; Alavijeh, N.K.; de Araujo, S.J. The Impact of Renewable Energy Policies on Deaths from Outdoor and Indoor Air Pollution: Empirical Evidence from Latin American and Caribbean Countries. Energy 2022, 245, 123209. [Google Scholar] [CrossRef]
- América Latina y el Caribe son líderes en energía renovable. Energ. Para El Futuro 2016.
- Mapas de Recursos Solares de Mexico. Available online: https://solargis.com/es/maps-and-gis-data/download/mexico (accessed on 8 August 2023).
- ICI.Radio-Canada.ca, Z.E.—La Energía Eólica Marina es una Riqueza para la región del Atlántico Canadiense. Available online: https://ici.radio-canada.ca/rci/es/noticia/2018756/atlantico-canadiense-mina-oro-energia-eolica-marina (accessed on 27 December 2023).
- Akella, S. DP Energy, SBM Unveil Nova Scotia Floating Wind Farm Plans; Power Technology: New York, NY, USA, 2023. [Google Scholar]
- Environmental Geophysics Offshore: Topics by WorldWideScience.Org. Available online: https://worldwidescience.org/topicpages/e/environmental+geophysics+offshore.html (accessed on 27 December 2023).
- Normand Mousseau Université de Montréal, QC. CEMDI. Available online: https://cemdi.inrs.ca/events/prof-normand-mousseau/ (accessed on 27 December 2023).
- Zaidi, K.R. Wind Energy and Its Impact on Future Environmental Policy Planning: Powering Renewable Energy in Canada and Abroad. Albany Law Environ. Outlook J. 2006, 11, 198. [Google Scholar]
- ACP Wind Power Facts and Statistics. Available online: https://cleanpower.org/facts/wind-power/ (accessed on 27 December 2023).
- ¿Las Plantas Eólicas Offshore son el Futuro de la Energía en Latinoamérica? Dialogo Chino 2022. Available online: https://dialogochino.net/es/clima-y-energia-es/56207-las-plantas-eolicas-offshore-son-el-futuro-de-la-energia-en-latinoamerica/ (accessed on 28 December 2023).
- Rusu, E.; Onea, F. A Parallel Evaluation of the Wind and Wave Energy Resources along the Latin American and European Coastal Environments. Renew. Energy 2019, 143, 1594–1607. [Google Scholar] [CrossRef]
- Washburn, C.; Pablo-Romero, M. Measures to Promote Renewable Energies for Electricity Generation in Latin American Countries. Energy Policy 2019, 128, 212–222. [Google Scholar] [CrossRef]
- Latin America and the Caribbean Leading the Way in Renewable Energy; Energía para el Futuro. 2016. Available online: https://www.linkedin.com/pulse/latin-america-caribbean-leading-way-renewable-energy-arnaldo/ (accessed on 28 December 2023).
- Global Wind Atlas. Available online: https://globalwindatlas.info (accessed on 17 October 2020).
- Agbor, E.; Zhang, X.; Kumar, A. A Review of Biomass Co-Firing in North America. Renew. Sustain. Energy Rev. 2014, 40, 930–943. [Google Scholar] [CrossRef]
- López-Mársico, L.; Oyarzabal, M.; Altesor, A.; Paruelo, J.M. Grazing Exclusion Reduces Below-ground Biomass of Temperate Subhumid Grasslands of South America: A Meta-analysis and a Database. Austral Ecol. 2023, 49, e13304. [Google Scholar] [CrossRef]
- Vargas-García, Y.; Pazmiño-Sánchez, J.; Dávila-Rincón, J.; Vargas-García, Y.; Pazmiño-Sánchez, J.; Dávila-Rincón, J. Potencial de Biomasa en América del Sur para la Producción de Bioplásticos. Una Revisión. Rev. Politécnica 2021, 48, 7–20. [Google Scholar] [CrossRef]
- Welcome to Global Land Cover Viewer. Available online: http://lcviewer.vito.be/2019/Mexico (accessed on 9 August 2023).
- Galimova, T.; Satymov, R.; Keiner, D.; Breyer, C. Sustainable Energy Transition of Greenland and Its Prospects as a Potential Arctic E-Fuel and e-Chemical Export Hub for Europe and East Asia. Energy 2024, 286, 129605. [Google Scholar] [CrossRef]
- Zhang, Q.; Huai, B.; Ding, M.; Sun, W.; Liu, W.; Yan, J.; Zhao, S.; Wang, Y.; Wang, Y.; Wang, L.; et al. Projections of Greenland Climate Change from CMIP5 and CMIP6. Glob. Planet. Chang. 2024, 232, 104340. [Google Scholar] [CrossRef]
- Islam, M.S.; Das, B.K.; Das, P.; Rahaman, M.H. Techno-Economic Optimization of a Zero Emission Energy System for a Coastal Community in Newfoundland, Canada. Energy 2021, 220, 119709. [Google Scholar] [CrossRef]
- Elsaraf, H.; Jamil, M.; Pandey, B. Techno-Economic Design of a Combined Heat and Power Microgrid for a Remote Community in Newfoundland Canada. IEEE Access 2021, 9, 91548–91563. [Google Scholar] [CrossRef]
- Korkeakoski, M. Towards 100% Renewables by 2030: Transition Alternatives for a Sustainable Electricity Sector in Isla de La Juventud, Cuba. Energies 2021, 14, 2862. [Google Scholar] [CrossRef]
- Soler-Castillo, Y.; Rimada, J.C.; Hernández, L.; Martínez-Criado, G. Modelling of the Efficiency of the Photovoltaic Modules: Grid-Connected Plants to the Cuban National Electrical System. Sol. Energy 2021, 223, 150–157. [Google Scholar] [CrossRef]
- Vazquez, L.; Majanne, Y.; Castro, M.; Luukkanen, J.; Hohmeyer, O.; Vilaragut, M.; Diaz, D. Energy System Planning towards Renewable Power System: Energy Matrix Change in Cuba by 2030. IFAC-PapersOnLine 2018, 51, 522–527. [Google Scholar] [CrossRef]
- Sagastume Gutiérrez, A.; Cabello Eras, J.J.; Huisingh, D.; Vandecasteele, C.; Hens, L. The Current Potential of Low-Carbon Economy and Biomass-Based Electricity in Cuba. The Case of Sugarcane, Energy Cane and Marabu (Dichrostachys Cinerea) as Biomass Sources. J. Clean. Prod. 2018, 172, 2108–2122. [Google Scholar] [CrossRef]
- Korkeakoski, M. State of Play for 100% Renewable Energy Futures for Cuba: Recent Changes and Challenges. Sustainability 2022, 14, 13825. [Google Scholar] [CrossRef]
- Critz, D.K.; Busche, S.; Connors, S. Power Systems Balancing with High Penetration Renewables: The Potential of Demand Response in Hawaii. Energy Convers. Manag. 2013, 76, 609–619. [Google Scholar] [CrossRef]
- Icaza, D.; Borge-Diez, D.; Pulla-Galindo, S. Systematic Long-Term Planning of 100% Renewable Energy to 2050 in Heritage Cities: Unified Case Study of the City of Cuenca and the Galapagos Islands in Ecuador. Renew. Energy Focus 2023, 45, 68–92. [Google Scholar] [CrossRef]
- Arévalo, P.; Cano, A.; Jurado, F. Mitigation of Carbon Footprint with 100% Renewable Energy System by 2050: The Case of Galapagos Islands. Energy 2022, 245, 123247. [Google Scholar] [CrossRef]
- Arévalo, P.; Eras-Almeida, A.A.; Cano, A.; Jurado, F.; Egido-Aguilera, M.A. Planning of Electrical Energy for the Galapagos Islands Using Different Renewable Energy Technologies. Electr. Power Syst. Res. 2022, 203, 107660. [Google Scholar] [CrossRef]
- Fronsdahl, N.; Singh, P. Investigation of the Electric Power System for San Cristobal Island in the Galapagos Archipelago. In Proceedings of the 2021 IEEE Global Humanitarian Technology Conference (GHTC), Bangalore, India, 30 September–2 October 2021; pp. 94–100. [Google Scholar]
- Vaiaso, T.V., Jr.; Jack, M.W. Quantifying the Trade-off between Percentage of Renewable Supply and Affordability in Pacific Island Countries: Case Study of Samoa. Renew. Sustain. Energy Rev. 2021, 150, 111468. [Google Scholar] [CrossRef]
- Prasad, R.D.; Raturi, A. Low Carbon Alternatives and Their Implications for Fiji’s Electricity Sector. Util. Policy 2019, 56, 1–19. [Google Scholar] [CrossRef]
- Malik, A.Q. Renewables for Fiji—Path for Green Power Generation. Renew. Sustain. Energy Rev. 2021, 149, 111374. [Google Scholar] [CrossRef]
- Nikolic, D.; Tereapii, T.; Lee, W.Y.; Blanksby, C. Cook Islands: 100% Renewable Energy in Different Guises. Energy Procedia 2016, 103, 207–212. [Google Scholar] [CrossRef]
- Ramadhar Singh, R.; Clarke, R.M.; Chadee, X.T. Transitioning from 100 Percent Natural Gas Power to Include Renewable Energy in a Hydrocarbon Economy. Smart Energy 2022, 5, 100060. [Google Scholar] [CrossRef]
- Quevedo, J.; Moya, I.H. Modeling of the Dominican Republic Energy Systems with OSeMOSYS to Assess Alternative Scenarios for the Expansion of Renewable Energy Sources. Energy Nexus 2022, 6, 100075. [Google Scholar] [CrossRef]
- Shah, K.U. Potential Clean Energy Transition Pathways in the U.S. Virgin Islands Using Carbon Sensitive Policy Options. Energy Sustain. Dev. 2022, 71, 89–103. [Google Scholar] [CrossRef]
- Taibi, E.; Fernández del Valle, C.; Howells, M. Strategies for Solar and Wind Integration by Leveraging Flexibility from Electric Vehicles: The Barbados Case Study. Energy 2018, 164, 65–78. [Google Scholar] [CrossRef]
- Harewood, A.; Dettner, F.; Hilpert, S. Open Source Modelling of Scenarios for a 100% Renewable Energy System in Barbados Incorporating Shore-to-Ship Power and Electric Vehicles. Energy Sustain. Dev. 2022, 68, 120–130. [Google Scholar] [CrossRef]
- Bhagaloo, K.; Ali, R.; Baboolal, A.; Ward, K. Powering the Sustainable Transition with Geothermal Energy: A Case Study on Dominica. Sustain. Energy Technol. Assess. 2022, 51, 101910. [Google Scholar] [CrossRef]
N° | Island | Country/Region | Latitude | Longitude | Total (GWh) | Non-Renewable (%) | Renewable Energy (%) |
---|---|---|---|---|---|---|---|
1 | Greenland | North America | 71.7069 | −42.6043 | 504.40 | 9% | 91% |
2 | Nunavut | North America | 70.2998 | −83.1076 | 294.21 | 99.83% | 0.17% |
3 | Newfoundland | North America | 49.2827 | −56.0436 | 44,699.21 | 0.38% | 99.62% |
4 | Cuba | Caribbean | 21.5218 | −77.7812 | 15,633.7 | 94.40% | 5.59% |
5 | Haiti | Caribbean | 18.9712 | −72.2852 | 1059 | 91.59% | 19.64% |
6 | British Columbia | North America | 53.7267 | −127.6476 | 78,904.41 | 1.78% | 98.22% |
7 | Jamaica | Caribbean | 18.1096 | −77.2975 | 4346 | 85.27% | 14.73% |
8 | Hawaii | United States | 19.8968 | −155.5828 | 10,285 | 62.77% | 31.78% |
9 | Nova Scotia | North America | 44.682 | −63.7443 | 8180.02 | 61.05% | 38.95% |
10 | Puerto Rico | United States (Unincorporated Territory) | 18.2208 | −66.5901 | 19,430 | 97.62% | 2.54% |
11 | East Falkland Island | South America | −51.796 | −59.5236 | 19 | 52.63% | 48.02% |
12 | Prince Edward Island | North America | 46.5107 | −63.4168 | 607.97 | 1% | 98.92% |
13 | Galapagos Island | South America | −0.8277 | −91.1369 | 55.614 | 84% | 16.02% |
14 | American Samoa | United States (Unincorporated Territory) | −14.306 | −170.695 | 0.16941 | 97% | 3.04% |
16 | Commonwealth of the Northern Mariana | United States (Unincorporated Territory) | 15.0979 | 145.6739 | 0.10 | 98% | 2.00% |
22 | Guam | United States (Unincorporated Territory) | 13.4443 | 144.7937 | 1656 | 94% | 6.00% |
34 | Trinidad and Tobago | Caribbean | 10.6918 | −61.2225 | 9262 | 99.94% | 0.06% |
35 | Dominican Republic | Caribbean | 18.7357 | −70.1627 | 23,363 | 83.04% | 16.96% |
36 | Bahamas | Caribbean | 25.0343 | −77.3963 | 1759 | 99.55% | 0.51% |
37 | Bonaire, Sint Eustatius and Saba Island | Caribbean | 12.1784 | −68.2385 | 156 | 76.28% | 24.36% |
38 | Cayman Island | Caribbean | 19.3133 | −81.2546 | 733 | 97% | 3.00% |
39 | British Virgin Islands | Caribbean | 18.4207 | −64.6399 | 171 | 97.66% | 2.34% |
40 | United States Virgin Islands | Caribbean | 18.3358 | −64.8963 | 466.667 | 97.00% | 3.00% |
41 | Turks and Caicos Islands | Caribbean | 21.6940 | −71.7979 | 267 | 98.50% | 1.50% |
42 | Aruba | Caribbean | 12.5211 | −69.9683 | 1061 | 85.20% | 14.80% |
43 | Curacao | Caribbean | 12.1696 | −68.9900 | 794 | 80.48% | 19.52% |
44 | Grenada | Caribbean | 12.1165 | −61.6790 | 229.2 | 98.50% | 1.50% |
45 | Barbados | Caribbean | 13.1939 | −59.5432 | 1200 | 92.67% | 7.33% |
46 | Dominica | Caribbean | 15.4149 | −61.3705 | 102 | 79.41% | 20.59% |
47 | Saint Vincent and the Grenadines | Caribbean | 13.2528 | −61.1971 | 144 | 84.72% | 15.28% |
48 | Saint Lucia | Caribbean | 13.9094 | −60.9789 | 400 | 97.50% | 2.55% |
49 | Martinique | Caribbean | 14.6415 | −61.0242 | 1527 | 76.88% | 23.18% |
50 | Guadeloupe | Caribbean | 16.2650 | −61.5506 | 1665 | 66.13% | 33.81% |
51 | Saint Kitts and Nevis | Caribbean | 17.3578 | −62.7828 | 228 | 95.18% | 4.82% |
52 | Anguilla | Caribbean | 18.2206 | −63.0686 | 108 | 97.22% | 2.78% |
N° | Island | Solar (GWh) | Solar % | Hydro and Marine (GWh) | Hydro and Marine % | Wind (GWh) | Wind % | Bioenergy (GWh) | Bioenergy % | Geothermal (GWh) | Geothermal % | Renewable Energy Share of Electricity Capacity (GWh) | Renewable Energy Share of Electricity Capacity (%) | References |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Greenland | 0 | 0% | 430 | 85.25% | 0 | 0% | 29 | 5.75% | 0 | 0% | 459 | 91% | [57,61] |
2 | Nunavut | 0.5 | 0.17% | 0 | 0.00% | 0 | 0.00% | 0 | 0.00% | 0 | 0.00% | 0.5 | 0.17% | [62,63,64] |
3 | Newfoundland | 1.17 | 0.00% | 44,235.28 | 98.96% | 194.5 | 0.44% | 99.73 | 0.22% | 0 | 0.00% | 44,530.68 | 99.62% | [62] |
4 | Cuba | 156 | 0.998% | 115 | 0.736% | 40 | 0.26% | 563 | 3.60% | 0 | 0.00% | 862 | 5.59% | [57,65,66] |
5 | Haiti | 4 | 0.38% | 200 | 18.89% | 4 | 0.38% | 0 | 0.00% | 0 | 0% | 204 | 19.64% | [57] |
6 | British Columbia | 22.15 | 0.03% | 72,486.33 | 91.87% | 1695.92 | 2.15% | 0 | 0.00% | 3292.73 | 4.17% | 77,497.13 | 98.22% | [62,67] |
7 | Jamaica | 124 | 2.85% | 136 | 3.13% | 280 | 6.44% | 100 | 2.30% | 0 | 0.00% | 640 | 14.73% | [57] |
8 | Hawaii | 1310.74 | 12.74% | 72 | 0.70% | 1052.5 | 10.23% | 294.84 | 2.87% | 538.25 | 5.23% | 3268.33 | 31.78% | [68] |
9 | Nova Scotia | 1.87 | 0.02% | 890.45 | 10.89% | 1953.85 | 23.89% | 0.00% | 340.21 | 4.16% | 3186.38 | 38.95% | [60] | |
10 | Puerto Rico | 259 | 1.33% | 51 | 0.26% | 143 | 0.74% | 41 | 0.21% | 0.00% | 462 | 2.54% | [57,58] | |
11 | East Falkland Island | 0.123 | 0.65% | 0 | 0.00% | 9 | 47.37% | 0 | 0.00% | 0 | 0.00% | 9 | 48.02% | [69,70] |
12 | Prince Edward Island | 0.68 | 0.11% | 0 | 0.00% | 598.56 | 98% | 2.19 | 0.36% | 0 | 0% | 601.43 | 98.92% | [62] |
13 | Galapagos Island | 2.24 | 4.03% | 0 | 0.00% | 6.67 | 11.99% | 0 | 0.00% | 0 | 0% | 8.91 | 16.02% | [71,72] |
14 | American Samoa | 0.00515 | 3% | 0 | 0.00% | 0 | 0% | 0 | 0.00% | 0.0 | 0% | 0.005150064 | 3.04% | [73] |
16 | Commonwealth of the Northern Mariana | 0.00209 | 2% | 0 | 0.00% | 0 | 0% | 0 | 0.00% | 0.0 | 0% | 0.00209 | 2.00% | [74] |
22 | Guam | 99.36 | 6% | 0 | 0.00% | 0 | 0% | 0 | 0.00% | 0.0 | 0% | 99.36 | 6.00% | [74] |
34 | Trinidad and Tobago | 6 | 0.06% | 0 | 0.00% | 0 | 0.00% | 0 | 0.00% | 0 | 0.00% | 6 | 0.06% | [75,76] |
35 | Dominican Republic | 878 | 3.76% | 1504 | 6.44% | 1231 | 5.27% | 349 | 1.49% | 0 | 0.00% | 3962.00 | 16.96% | [77] |
36 | Bahamas | 8 | 0.45% | 0 | 0.00% | 1 | 0.06% | 0 | 0.00% | 0 | 0.00% | 9.00 | 0.51% | [78] |
37 | Bonaire, Sint Eustatius and Saba Island | 9 | 5.77% | 0 | 0.00% | 29 | 19% | 0 | 0.00% | 0 | 0.00% | 42 | 24.36% | [79] |
38 | Cayman Island | 22 | 3% | 0 | 0.00% | 0 | 0% | 0 | 0.00% | 0 | 0% | 0 | 3.00% | [57] |
39 | British Virgin Islands | 2 | 1.17% | 0 | 0.00% | 2 | 1.17% | 0 | 0.00% | 0 | 0.00% | 4 | 2.34% | [57] |
40 | Virgin Islands | 14 | 3.00% | 0 | 0.00% | 0 | 0.00% | 0 | 0.00% | 0 | 0.00% | 14 | 3.00% | [57] |
41 | Turks and Caicos Islands | 4 | 1.50% | 0 | 0.00% | 0 | 0.00% | 0 | 0.00% | 0 | 0.00% | 4 | 1.50% | [80] |
42 | Aruba | 24 | 2.26% | 0 | 0.00% | 133 | 12.54% | 0 | 0.00% | 0 | 0.00% | 157 | 14.80% | [81] |
43 | Curacao | 14 | 1.76% | 0 | 0.00% | 141 | 17.76% | 0 | 0.00% | 0 | 0.00% | 154 | 19.52% | [82] |
44 | Grenada | 2.8 | 1.22% | 0 | 0.00% | 0.64 | 0.28% | 0 | 0.00% | 0 | 0.00% | 3.44 | 1.50% | [83] |
45 | Barbados | 88.00 | 7.33% | 0 | 0.00% | 0 | 0.00% | 0.00 | 0.00% | 0 | 0.00% | 54.16 | 7.33% | [84] |
46 | Dominica | 0 | 0.00% | 20 | 19.61% | 1 | 0.98% | 0 | 0.00% | 0 | 0.00% | 21 | 20.59% | [85] |
47 | Saint Vincent and the Grenadines | 3 | 2.08% | 19 | 13.19% | 0 | 0.00% | 0 | 0.00% | 0 | 0.00% | 21 | 15.28% | [86] |
48 | Saint Lucia | 7.5 | 1.88% | 0 | 0.00% | 0 | 0% | 2.7 | 0.68% | 0 | 0.00% | 10 | 2.55% | [87] |
49 | Martinique | 84 | 5.50% | 0 | 0.00% | 42 | 2.75% | 228 | 14.93% | 0 | 0.00% | 353 | 23.18% | [88] |
50 | Guadeloupe | 114 | 6.85% | 11 | 0.66% | 107 | 6.43% | 247 | 14.83% | 84 | 5.05% | 563 | 33.81% | [89] |
51 | Saint Kitts and Nevis | 5 | 2.19% | 0 | 0.00% | 6 | 2.63% | 0 | 0.00% | 0 | 0% | 11 | 4.82% | [90] |
52 | Anguilla | 3 | 2.78% | 0 | 0.00% | 0 | 0.00% | 0 | 0.00% | 0 | 0.00% | 3 | 2.78% | [91] |
N° | Island | Energy PLAN | Homer | Ose MOSYS | LEAP | PLEXOS | Own Program | No Tool | Journal | Congress | Total Research Indexed in Scopus |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | Greenland | [111] | [112] | [61] | 3 | 3 | |||||
2 | Newfoundland | [113,114] | 2 | 2 | |||||||
3 | Cuba | [115] | [51,116] | [117,118,119] | 5 | 1 | 6 | ||||
4 | Jamaica | [22] | 1 | 1 | |||||||
5 | Hawaii | [120] | 1 | 1 | |||||||
6 | Galapagos | [72,121,122] | [123] | [124] | 5 | 5 | |||||
7 | Samoa | [125] | 1 | 1 | |||||||
8 | Fiji | [126] | [127] | 2 | 2 | ||||||
9 | Cook Islands | [128] | 1 | 1 | |||||||
10 | Trinidad and Tobago | [129] | 1 | 1 | |||||||
11 | Dominican Republic | [130] | 1 | 1 | |||||||
12 | Virgin Islands | [131] | 1 | 1 | |||||||
13 | Barbados | [132] | [133] | 2 | 2 | ||||||
14 | Dominica | [134] | 1 | 1 | |||||||
TOTAL | 6 | 3 | 1 | 1 | 1 | 7 | 9 | 26 | 2 | 28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Icaza, D.; Vallejo-Ramirez, D.; Guerrero Granda, C.; Marín, E. Challenges, Roadmaps and Smart Energy Transition towards 100% Renewable Energy Markets in American Islands: A Review. Energies 2024, 17, 1059. https://doi.org/10.3390/en17051059
Icaza D, Vallejo-Ramirez D, Guerrero Granda C, Marín E. Challenges, Roadmaps and Smart Energy Transition towards 100% Renewable Energy Markets in American Islands: A Review. Energies. 2024; 17(5):1059. https://doi.org/10.3390/en17051059
Chicago/Turabian StyleIcaza, Daniel, David Vallejo-Ramirez, Carlos Guerrero Granda, and Edwin Marín. 2024. "Challenges, Roadmaps and Smart Energy Transition towards 100% Renewable Energy Markets in American Islands: A Review" Energies 17, no. 5: 1059. https://doi.org/10.3390/en17051059
APA StyleIcaza, D., Vallejo-Ramirez, D., Guerrero Granda, C., & Marín, E. (2024). Challenges, Roadmaps and Smart Energy Transition towards 100% Renewable Energy Markets in American Islands: A Review. Energies, 17(5), 1059. https://doi.org/10.3390/en17051059