Effect of Emerging Micropollutants on the Anaerobic Digestion of Sewage Sludge
Abstract
:1. Introduction
2. The Effect of BPA on Anaerobic Digestion
2.1. The Presence of BPA in the Environment and Its Degradation
2.2. The Effect of BPA on Methane Production from Sewage Sludge
2.3. The Effect of BPA on VFA Production from Sewage Sludge
2.4. The Effect of BPA on Hydrogen Production from Sewage Sludge
3. The Effect of Pharmaceuticals on Anaerobic Digestion
3.1. The Presence of Pharmaceuticals in the Environment and Its Degradation
3.2. The Effect of Pharmaceuticals on Anaerobic Digestion
4. The Effect of Engineered NPs on Anaerobic Digestion
4.1. NPs in Wastewater and Sewage Sludge
4.2. The Effect of NPs on Anaerobic Digestion
4.3. The Effect of NPs on Wastewater Treatment
5. The Effect of MPs on Anaerobic Digestion
5.1. MPs in Sewage Sludge
5.2. The Effect of MPs and Its Additives on Anaerobic Digestion
5.3. Mechanisms of MP Inhibition
5.4. H2 Production
5.5. The Effect of MPs on Sludge Disposal
6. Conclusions
7. Future Directions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hu, Y.; Zhu, Q.; Yan, X.; Liao, C.; Jiang, G. Occurrence, Fate and Risk Assessment of BPA and Its Substituents in Wastewater Treatment Plant: A Review. Environ. Res. 2019, 178, 108732. [Google Scholar] [CrossRef]
- Nikolaou, A.; Meric, S.; Fatta, D. Occurrence Patterns of Pharmaceuticals in Water and Wastewater Environments. Anal. Bioanal. Chem. 2007, 387, 1225–1234. [Google Scholar] [CrossRef]
- Ferrer-Polonio, E.; Alvim, C.B.; Fernández-Navarro, J.; Mompó-Curell, R.; Mendoza-Roca, J.A.; Bes-Piá, A.; Alonso-Molina, J.L.; Amorós-Muñoz, I. Influence of Bisphenol A Occurrence in Wastewaters on Biomass Characteristics and Activated Sludge Process Performance. Sci. Total Environ. 2021, 778, 146355. [Google Scholar] [CrossRef]
- Jiang, X.; Yan, Y.; Feng, L.; Wang, F.; Guo, Y.; Zhang, X.; Zhang, Z. Bisphenol A Alters Volatile Fatty Acids Accumulation during Sludge Anaerobic Fermentation by Affecting Amino Acid Metabolism, Material Transport and Carbohydrate-Active Enzymes. Bioresour. Technol. 2021, 323, 124588. [Google Scholar] [CrossRef]
- Li, Y.; Thompson, J.; Wang, Z.; Bräunig, J.; Zheng, Q.; Thai, P.K.; Mueller, J.F.; Yuan, Z. Transformation and Fate of Pharmaceuticals, Personal Care Products, and per- and Polyfluoroalkyl Substances during Aerobic Digestion of Anaerobically Digested Sludge. Water Res. 2022, 219, 118568. [Google Scholar] [CrossRef]
- Fang, Y.R.; Li, S.; Zhang, Y.; Xie, G.H. Spatio-Temporal Distribution of Sewage Sludge, Its Methane Production Potential, and a Greenhouse Gas Emissions Analysis. J. Clean. Prod. 2019, 238, 117895. [Google Scholar] [CrossRef]
- Manu, M.K.; Luo, L.; Kumar, R.; Johnravindar, D.; Li, D.; Varjani, S.; Zhao, J.; Wong, J. A Review on Mechanistic Understanding of Microplastic Pollution on the Performance of Anaerobic Digestion. Environ. Pollut. 2023, 325, 121426. [Google Scholar] [CrossRef]
- Bryant, M.P. Microbial Methane Production—Theoretical Aspects2. J. Anim. Sci. 1979, 48, 193–201. [Google Scholar] [CrossRef]
- Liang, T.; Elmaadawy, K.; Liu, B.; Hu, J.; Hou, H.; Yang, J. Anaerobic Fermentation of Waste Activated Sludge for Volatile Fatty Acid Production: Recent Updates of Pretreatment Methods and the Potential Effect of Humic and Nutrients Substances. Process Saf. Environ. Prot. 2021, 145, 321–339. [Google Scholar] [CrossRef]
- Ali Shah, F.; Mahmood, Q.; Maroof Shah, M.; Pervez, A.; Ahmad Asad, S. Microbial Ecology of Anaerobic Digesters: The Key Players of Anaerobiosis. Sci. World J. 2014, 2014, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Limam, I.; Mezni, M.; Guenne, A.; Madigou, C.; Driss, M.R.; Bouchez, T.; Mazéas, L. Evaluation of Biodegradability of Phenol and Bisphenol A during Mesophilic and Thermophilic Municipal Solid Waste Anaerobic Digestion Using 13C-Labeled Contaminants. Chemosphere 2013, 90, 512–520. [Google Scholar] [CrossRef]
- Abril, C.; Santos, J.L.; Martín, J.; Aparicio, I.; Alonso, E. Occurrence, Fate and Environmental Risk of Anionic Surfactants, Bisphenol A, Perfluorinated Compounds and Personal Care Products in Sludge Stabilization Treatments. Sci. Total Environ. 2020, 711, 135048. [Google Scholar] [CrossRef]
- Choi, Y.J.; Nies, L.F.; Lee, L.S. Persistence of Three Bisphenols and Other Trace Organics of Concern in Anaerobic Sludge under Methanogenic Conditions. Environ. Technol. 2021, 42, 1373–1382. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Gil, L.; Mauricio-Iglesias, M.; Serrano, D.; Lema, J.M.; Carballa, M. Role of Methanogenesis on the Biotransformation of Organic Micropollutants during Anaerobic Digestion. Sci. Total. Environ. 2018, 622–623, 459–466. [Google Scholar] [CrossRef]
- Chen, J.L.; Ortiz, R.; Steele, T.W.J.; Stuckey, D.C. Toxicants Inhibiting Anaerobic Digestion: A Review. Biotechnol. Adv. 2014, 32, 1523–1534. [Google Scholar] [CrossRef] [PubMed]
- Hardegen, J.; Braeutigam, P.; Abendroth, C.; Wichard, T. Bisphenol A: Quantification in Complex Matrices and Removal by Anaerobic Sludges. Pollutants 2021, 1, 194–206. [Google Scholar] [CrossRef]
- Liu, J.L.; Wong, M.H. Pharmaceuticals and Personal Care Products (PPCPs): A Review on Environmental Contamination in China. Environ. Int. 2013, 59, 208–224. [Google Scholar] [CrossRef] [PubMed]
- Abdelsalam, E.; Samer, M.; Attia, Y.A.; Abdel-Hadi, M.A.; Hassan, H.E.; Badr, Y. Influence of Zero Valent Iron Nanoparticles and Magnetic Iron Oxide Nanoparticles on Biogas and Methane Production from Anaerobic Digestion of Manure. Energy 2017, 120, 842–853. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, J.; Zhang, D.; Hu, Z.; Sun, Y. Effect of Emerging Pollutant Fluoxetine on the Excess Sludge Anaerobic Digestion. Sci. Total Environ. 2021, 752, 141932. [Google Scholar] [CrossRef] [PubMed]
- Jadhav, P.; Bin Khalid, Z.; Zularisam, A.W.; Krishnan, S.; Nasrullah, M. The Role of Iron-Based Nanoparticles (Fe-NPs) on Methanogenesis in Anaerobic Digestion (AD) Performance. Environ. Res. 2022, 204, 112043. [Google Scholar] [CrossRef]
- Mu, H.; Chen, Y. Long-Term Effect of ZnO Nanoparticles on Waste Activated Sludge Anaerobic Digestion. Water Res. 2011, 45, 5612–5620. [Google Scholar] [CrossRef]
- Malm, J. Inclusion of Substances of Very High Concern in the Candidate List for Eventual Inclusion in Annex XIV; European Chemicals Agency: Helsinki, Finland, 2017. [Google Scholar]
- Chen, J.; Saili, K.S.; Liu, Y.; Li, L.; Zhao, Y.; Jia, Y.; Bai, C.; Tanguay, R.L.; Dong, Q.; Huang, C. Developmental Bisphenol A Exposure Impairs Sperm Function and Reproduction in Zebrafish. Chemosphere 2017, 169, 262–270. [Google Scholar] [CrossRef] [PubMed]
- Corrales, J.; Kristofco, L.A.; Steele, W.B.; Yates, B.S.; Breed, C.S.; Williams, E.S.; Brooks, B.W. Global Assessment of Bisphenol A in the Environment. Dose-Response 2015, 13, 155932581559830. [Google Scholar] [CrossRef] [PubMed]
- Gardner, M.; Jones, V.; Comber, S.; Scrimshaw, M.D.; Coello-Garcia, T.; Cartmell, E.; Lester, J.; Ellor, B. Performance of UK Wastewater Treatment Works with Respect to Trace Contaminants. Sci. Total. Environ. 2013, 456–457, 359–369. [Google Scholar] [CrossRef] [PubMed]
- Kusvuran, E.; Yildirim, D. Degradation of Bisphenol A by Ozonation and Determination of Degradation Intermediates by Gas Chromatography–Mass Spectrometry and Liquid Chromatography–Mass Spectrometry. Chem. Eng. J. 2013, 220, 6–14. [Google Scholar] [CrossRef]
- Yu, Q.; Feng, L.; Chai, X.; Qiu, X.; Ouyang, H.; Deng, G. Enhanced Surface Fenton Degradation of BPA in Soil with a High PH. Chemosphere 2019, 220, 335–343. [Google Scholar] [CrossRef] [PubMed]
- Frankowski, R.; Płatkiewicz, J.; Stanisz, E.; Grześkowiak, T.; Zgoła-Grześkowiak, A. Biodegradation and Photo-Fenton Degradation of Bisphenol A, Bisphenol S and Fluconazole in Water. Environ. Pollut. 2021, 289, 117947. [Google Scholar] [CrossRef] [PubMed]
- Amin, M.M.; Arvin, A.; Hosseini, M.; Darzi, G.N.; Ghasemi, Y. The Degradation and Simultaneous Influence of Bisphenol A on Methane Production in a Bio-Anode Single-Chamber Microbial Electrolysis Cell. Biochem. Eng. J. 2021, 176, 108219. [Google Scholar] [CrossRef]
- Ferro Orozco, A.M.; Contreras, E.M.; Zaritzky, N.E. Biodegradation of Bisphenol A and Its Metabolic Intermediates by Activated Sludge: Stoichiometry and Kinetics Analysis. Int. Biodeterior. Biodegrad. 2016, 106, 1–9. [Google Scholar] [CrossRef]
- Cydzik-Kwiatkowska, A.; Bernat, K.; Zielińska, M.; Bułkowska, K.; Wojnowska-Baryła, I. Aerobic Granular Sludge for Bisphenol A (BPA) Removal from Wastewater. Int. Biodeterior. Biodegrad. 2017, 122, 1–11. [Google Scholar] [CrossRef]
- Zielińska, M.; Bułkowska, K.; Cydzik-Kwiatkowska, A.; Bernat, K.; Wojnowska-Baryła, I. Removal of Bisphenol A (BPA) from Biologically Treated Wastewater by Microfiltration and Nanofiltration. Int. J. Environ. Sci. Technol. 2016, 13, 2239–2248. [Google Scholar] [CrossRef]
- Ouarda, Y.; Zolfaghari, M.; Drogui, P.; Seyhi, B.; Buelna, G.; Dubé, R. Performance of a Membrane Bioreactor in Extreme Concentrations of Bisphenol A. Water Sci. Technol. 2018, 77, 1505–1513. [Google Scholar] [CrossRef]
- Zielińska, M.; Cydzik-Kwiatkowska, A.; Bernat, K.; Bułkowska, K.; Wojnowska-Baryła, I. Removal of Bisphenol A (BPA) in a Nitrifying System with Immobilized Biomass. Bioresour. Technol. 2014, 171, 305–313. [Google Scholar] [CrossRef]
- Xiao, C.; Wang, L.; Zhou, Q.; Huang, X. Hazards of Bisphenol A (BPA) Exposure: A Systematic Review of Plant Toxicology Studies. J. Hazard. Mater. 2020, 384, 121488. [Google Scholar] [CrossRef]
- Gehring, M. Verhalten Der Endokrin Wirksamen Substanz Bisphenol A Bei Der Kommunalen Abwasserentsorgung (Behaviour of the Endocrine Disrupting Substance Bisphenol A in Municipal Wastewater Disposal). Ph.D. Thesis, Technische Universität Dresden, Dresden, Germany, 2004. [Google Scholar]
- Lee, H.-B.; Peart, T.E. Determination of Bisphenol A in Sewage Effluent and Sludge by Solid-Phase and Supercritical Fluid Extraction and Gas Chromatography/Mass Spectrometry. J. AOAC Int. 2000, 83, 290–298. [Google Scholar] [CrossRef]
- Ma, Y.; Liu, H.; Wu, J.; Yuan, L.; Wang, Y.; Du, X.; Wang, R.; Marwa, P.W.; Petlulu, P.; Chen, X.; et al. The Adverse Health Effects of Bisphenol A and Related Toxicity Mechanisms. Environ. Res. 2019, 176, 108575. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.; Huang, Q.-S.; Sun, J.; Wang, J.-Y.; Wu, S.-L.; Ni, B.-J. Polyvinyl Chloride Microplastics Affect Methane Production from the Anaerobic Digestion of Waste Activated Sludge through Leaching Toxic Bisphenol-A. Environ. Sci. Technol. 2019, 53, 2509–2517. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Su, C.; Deng, X.; Wu, S.; Tang, L.; Li, X.; Liu, J.; Huang, X. Influence of Polyether Sulfone Microplastics and Bisphenol A on Anaerobic Granular Sludge: Performance Evaluation and Microbial Community Characterization. Ecotoxicol. Environ. Saf. 2020, 205, 111318. [Google Scholar] [CrossRef]
- Hou, G.; Zhang, R.; Hao, X.; Liu, C. An Exploration of the Effect and Interaction Mechanism of Bisphenol A on Waste Sludge Hydrolysis with Multi-Spectra, Isothermal Titration Microcalorimetry and Molecule Docking. J. Hazard. Mater. 2017, 333, 32–41. [Google Scholar] [CrossRef]
- Chen, H.; Zou, Z.; Tang, M.; Yang, X.; Tsang, Y.F. Polycarbonate Microplastics Induce Oxidative Stress in Anaerobic Digestion of Waste Activated Sludge by Leaching Bisphenol A. J. Hazard. Mater. 2023, 443, 130158. [Google Scholar] [CrossRef]
- Moretto, G.; Russo, I.; Bolzonella, D.; Pavan, P.; Majone, M.; Valentino, F. An Urban Biorefinery for Food Waste and Biological Sludge Conversion into Polyhydroxyalkanoates and Biogas. Water Res. 2020, 170, 115371. [Google Scholar] [CrossRef]
- Sun, W.X.; Fu, S.F.; Zhu, R.; Wang, Z.Y.; Zou, H.; Zheng, Y. Improved Anaerobic Digestion Efficiency of High-Solid Sewage Sludge by Enhanced Direct Interspecies Electron Transfer with Activated Carbon Mediator. Bioresour. Technol. 2020, 313, 123648. [Google Scholar] [CrossRef]
- Worwag, M.; Kwarciak-Kozłowska, A. Volatile Fatty Acid (VFA) Yield from Sludge Anaerobic Fermentation through a Biotechnological Approach. In Industrial and Municipal Sludge: Emerging Concerns and Scope for Resource Recovery; Butterworth-Heinemann: Oxford, UK, 2019; pp. 681–703. [Google Scholar] [CrossRef]
- Cydzik-Kwiatkowska, A.; Zielińska, M. Waste-Organics Supported Treatment of Nitrogen-Rich Digester Supernatant. J. Water Process Eng. 2020, 37, 101385. [Google Scholar] [CrossRef]
- Cai, W.; Huang, W.; Lei, Z.; Zhang, Z.; Lee, D.J.; Adachi, Y. Granulation of Activated Sludge Using Butyrate and Valerate as Additional Carbon Source and Granular Phosphorus Removal Capacity during Wastewater Treatment. Bioresour. Technol. 2019, 282, 269–274. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Cheng, J.J.; Creamer, K.S. Inhibition of Anaerobic Digestion Process: A Review. Bioresour. Technol. 2008, 99, 4044–4064. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Melkania, U. Effect of Phenolic Compounds on Hydrogen Production from Municipal Solid Waste. Waste Manag. 2018, 78, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Wen, C.; Dai, Z.; Cheng, F.; Cheng, H.; Yang, Z.; Cai, Q.; Zha, X.; Lu, X. Review on Research Achievements of Blackwater Anaerobic Digestion for Enhanced Resource Recovery. Environ. Dev. Sustain. 2022. [Google Scholar] [CrossRef]
- Tawfik, A.; Mohsen, M.; Ismail, S.; Alhajeri, N.S.; Osman, A.I.; Rooney, D.W. Methods to Alleviate the Inhibition of Sludge Anaerobic Digestion by Emerging Contaminants: A Review. Environ. Chem. Lett. 2022, 20, 3811–3836. [Google Scholar] [CrossRef]
- Verlicchi, P.; Zambello, E. Pharmaceuticals and Personal Care Products in Untreated and Treated Sewage Sludge: Occurrence and Environmental Risk in the Case of Application on Soil—A Critical Review. Sci. Total Environ. 2015, 538, 750–767. [Google Scholar] [CrossRef]
- McClellan, K.; Halden, R.U. Pharmaceuticals and Personal Care Products in Archived U.S. Biosolids from the 2001 EPA National Sewage Sludge Survey. Water Res 2010, 44, 658–668. [Google Scholar] [CrossRef]
- Butkovskyi, A.; Leal, L.H.; Zeeman, G.; Rijnaarts, H.H.M. Micropollutants in Source Separated Wastewater Streams and Recovered Resources of Source Separated Sanitation. Environ. Res. 2017, 156, 434–442. [Google Scholar] [CrossRef]
- Gros, M.; Ahrens, L.; Levén, L.; Koch, A.; Dalahmeh, S.; Ljung, E.; Lundin, G.; Jönsson, H.; Eveborn, D.; Wiberg, K. Pharmaceuticals in Source Separated Sanitation Systems: Fecal Sludge and Blackwater Treatment. Sci. Total Environ. 2020, 703, 135530. [Google Scholar] [CrossRef] [PubMed]
- Venegas, M.; Leiva, A.M.; Reyes-Contreras, C.; Neumann, P.; Piña, B.; Vidal, G. Presence and Fate of Micropollutants during Anaerobic Digestion of Sewage and Their Implications for the Circular Economy: A Short Review. J. Environ. Chem. Eng. 2021, 9, 104931. [Google Scholar] [CrossRef]
- Martins, G.; Salvador, A.F.; Pereira, L.; Alves, M.M. Methane Production and Conductive Materials: A Critical Review. Environ. Sci. Technol. 2018, 52, 10241–10253. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, D.; Yi, N.; Li, Y.; Ni, B.J.; Wang, Q.; Wang, H.; Li, X. Insights into the Toxicity of Troclocarban to Anaerobic Digestion: Sludge Characteristics and Methane Production. J. Hazard. Mater. 2020, 385, 121615. [Google Scholar] [CrossRef] [PubMed]
- Alenzi, A.; Hunter, C.; Spencer, J.; Roberts, J.; Craft, J.; Pahl, O.; Escudero, A. Pharmaceuticals Effect and Removal, at Environmentally Relevant Concentrations, from Sewage Sludge during Anaerobic Digestion. Bioresour. Technol. 2021, 319, 124102. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, H.; Zhang, J.; Zhou, C.; Zhang, Y.; Zang, L. Understanding the Effect of Carbamazepine on the Recovery of Methane from Lactic Acid Wastewater by Anaerobic Digestion. J. Clean. Prod. 2023, 383, 135420. [Google Scholar] [CrossRef]
- Fountoulakis, M.S.; Stamatelatou, K.; Lyberatos, G. The Effect of Pharmaceuticals on the Kinetics of Methanogenesis and Acetogenesis. Bioresour. Technol. 2008, 99, 7083–7090. [Google Scholar] [CrossRef]
- Fáberová, M.; Ivanová, L.; Szabová, P.; Štolcová, M.; Bodík, I. The Influence of Selected Pharmaceuticals on Biogas Production from Laboratory and Real Anaerobic Sludge. Environ. Sci. Pollut. Res. 2019, 26, 31846–31855. [Google Scholar] [CrossRef]
- Yan, S.; Wang, M.; Zhang, S.; Tong, Z.; Li, S.; Yong, X.; Zhang, X.; Zhou, J. Fe-Doped Hydrochar Facilitating Simultaneous Methane Production and Pharmaceutical and Personal Care Products (PPCPs) Degradation in Co-Anaerobic Digestion of Municipal Sludge and Food Waste. Chem. Eng. J. 2023, 474, 146001. [Google Scholar] [CrossRef]
- Bundschuh, M.; Filser, J.; Lüderwald, S.; McKee, M.S.; Metreveli, G.; Schaumann, G.E.; Schulz, R.; Wagner, S. Nanoparticles in the Environment: Where Do We Come from, Where Do We Go To? Environ. Sci. Eur. 2018, 30, 6. [Google Scholar] [CrossRef] [PubMed]
- Brar, S.K.; Verma, M.; Tyagi, R.D.; Surampalli, R.Y. Engineered Nanoparticles in Wastewater and Wastewater Sludge—Evidence and Impacts. Waste Manag. 2010, 30, 504–520. [Google Scholar] [CrossRef]
- Eduok, S.; Ferguson, R.; Jefferson, B.; Villa, R.; Coulon, F. Aged-Engineered Nanoparticles Effect on Sludge Anaerobic Digestion Performance and Associated Microbial Communities. Sci. Total Environ. 2017, 609, 232–241. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Blanco, E.; Bhatti, M.; Borrion, A. Impact of Metallic Nanoparticles on Anaerobic Digestion: A Systematic Review. Sci. Total Environ. 2021, 757, 143747. [Google Scholar] [CrossRef] [PubMed]
- Hassanein, A.; Naresh Kumar, A.; Lansing, S. Impact of Electro-Conductive Nanoparticles Additives on Anaerobic Digestion Performance—A Review. Bioresour. Technol. 2021, 342, 126023. [Google Scholar] [CrossRef]
- Grosser, A.; Grobelak, A.; Rorat, A.; Courtois, P.; Vandenbulcke, F.; Lemière, S.; Guyoneaud, R.; Attard, E.; Celary, P. Effects of Silver Nanoparticles on Performance of Anaerobic Digestion of Sewage Sludge and Associated Microbial Communities. Renew. Energy 2021, 171, 1014–1025. [Google Scholar] [CrossRef]
- Baniamerian, H.; Ghofrani-Isfahani, P.; Tsapekos, P.; Alvarado-Morales, M.; Shahrokhi, M.; Angelidaki, I. Multicomponent Nanoparticles as Means to Improve Anaerobic Digestion Performance. Chemosphere 2021, 283, 131277. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, R.; Xiang, Y.; Lu, Y.; Jia, M.; Huang, J.; Xu, Z.; Cao, J.; Xiong, W.; Yang, Z. Addition of Nanoparticles Increases the Abundance of Mobile Genetic Elements and Changes Microbial Community in the Sludge Anaerobic Digestion System. J. Hazard. Mater. 2021, 405, 124206. [Google Scholar] [CrossRef]
- Araújo, E.S.; Pereira, M.F.G.; da Silva, G.M.G.; Tavares, G.F.; Oliveira, C.Y.B.; Faia, P.M. A Review on the Use of Metal Oxide-Based Nanocomposites for the Remediation of Organics-Contaminated Water via Photocatalysis: Fundamentals, Bibliometric Study and Recent Advances. Toxics 2023, 11, 658. [Google Scholar] [CrossRef]
- Hou, L.; Kumar, D.; Yoo, C.G.; Gitsov, I.; Majumder, E.L.-W. Conversion and Removal Strategies for Microplastics in Wastewater Treatment Plants and Landfills. Chem. Eng. J. 2021, 406, 126715. [Google Scholar] [CrossRef]
- Cheng, Y.L.; Kim, J.-G.; Kim, H.-B.; Choi, J.H.; Fai Tsang, Y.; Baek, K. Occurrence and Removal of Microplastics in Wastewater Treatment Plants and Drinking Water Purification Facilities: A Review. Chem. Eng. J. 2021, 410, 128381. [Google Scholar] [CrossRef]
- Hajji, S.; Ben-Haddad, M.; Abelouah, M.R.; De-la-Torre, G.E.; Alla, A.A. Occurrence, Characteristics, and Removal of Microplastics in Wastewater Treatment Plants Located on the Moroccan Atlantic: The Case of Agadir Metropolis. Sci. Total Environ. 2023, 862, 160815. [Google Scholar] [CrossRef]
- Carr, S.A.; Liu, J.; Tesoro, A.G. Transport and Fate of Microplastic Particles in Wastewater Treatment Plants. Water Res. 2016, 91, 174–182. [Google Scholar] [CrossRef]
- Bretas Alvim, C.; Castelluccio, S.; Ferrer-Polonio, E.; Bes-Piá, M.A.; Mendoza-Roca, J.A.; Fernández-Navarro, J.; Alonso, J.L.; Amorós, I. Effect of Polyethylene Microplastics on Activated Sludge Process—Accumulation in the Sludge and Influence on the Process and on Biomass Characteristics. Process Saf. Environ. Prot. 2021, 148, 536–547. [Google Scholar] [CrossRef]
- Jachimowicz, P.; Jo, Y.-J.; Cydzik-Kwiatkowska, A. Polyethylene Microplastics Increase Extracellular Polymeric Substances Production in Aerobic Granular Sludge. Sci. Total Environ. 2022, 851, 158208. [Google Scholar] [CrossRef] [PubMed]
- Su, X.; Chen, C.; Li, J.; Lu, S.; Xu, G. Effect of Polypropylene Microplastics Concentration on Wastewater Denitrification. Sci. J. Chem. 2022, 10, 53. [Google Scholar] [CrossRef]
- Harley-Nyang, D.; Memon, F.A.; Osorio Baquero, A.; Galloway, T. Variation in Microplastic Concentration, Characteristics and Distribution in Sewage Sludge & Biosolids around the World. Sci. Total Environ. 2023, 891, 164068. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, M.; Suthar, S. Microplastic Abundance and Characterization in Municipal Sewage Sludge from Cities across Upper Ganga River, India: Apprising Microplastic Uptakes and Their Toxicity in the Plant during Sludge Application in Agriculture. Phys. Chem. Earth Parts A/B/C 2023, 132, 103468. [Google Scholar] [CrossRef]
- Harley-Nyang, D.; Memon, F.A.; Jones, N.; Galloway, T. Investigation and Analysis of Microplastics in Sewage Sludge and Biosolids: A Case Study from One Wastewater Treatment Works in the UK. Sci. Total Environ. 2022, 823, 153735. [Google Scholar] [CrossRef] [PubMed]
- Cydzik-Kwiatkowska, A.; Milojevic, N.; Jachimowicz, P. The Fate of Microplastic in Sludge Management Systems. Sci. Total Environ. 2022, 848, 157466. [Google Scholar] [CrossRef] [PubMed]
- Dai, X.; Luo, F.; Dai, L.; Dong, B. Degradation of Extracellular Polymeric Substances (EPS) in Anaerobic Digestion of Dewatered Sludge. Procedia Environ. Sci. 2013, 18, 515–521. [Google Scholar] [CrossRef]
- Ma, H.; Guo, C.; Wu, M.; Liu, H.; Wang, Z.; Wang, S. Use of Extracellular Polymer Substance as an Additive to Improve Biogas Yield and Digestion Performance. Energy Fuels 2019, 33, 12628–12636. [Google Scholar] [CrossRef]
- Peng, M.; Xu, J.; Yang, G.; Xu, H. Digestion Properties of Intracellular Polymers and Extracellular Polymeric Substances and Influences of Extracellular Polymeric Substances on Anaerobic Digestion of Sludge. J. Environ. Eng. 2020, 146, 04020112. [Google Scholar] [CrossRef]
- Hajji, S.; Ben-Haddad, M.; Rida Abelouah, M.; De-la-Torre, G.E.; Ait Alla, A. Sludge Drying and Dewatering Processes Influence the Abundance and Characteristics of Microplastics in Wastewater Treatment Plants. Chemosphere 2023, 339, 139743. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Mei, Q.; Chen, L.; Zhang, H.; Dong, B.; Dai, X.; He, C.; Zhou, J. Enhancement in Adsorption Potential of Microplastics in Sewage Sludge for Metal Pollutants after the Wastewater Treatment Process. Water Res. 2019, 157, 228–237. [Google Scholar] [CrossRef] [PubMed]
- Abou-Zeid, D.-M.; Müller, R.-J.; Deckwer, W.-D. Degradation of Natural and Synthetic Polyesters under Anaerobic Conditions. J. Biotechnol. 2001, 86, 113–126. [Google Scholar] [CrossRef]
- Gómez, E.F.; Michel, F.C. Biodegradability of Conventional and Bio-Based Plastics and Natural Fiber Composites during Composting, Anaerobic Digestion and Long-Term Soil Incubation. Polym. Degrad. Stab. 2013, 98, 2583–2591. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, M.; Li, C.; Miao, H.; Huang, Z.; Dai, X.; Ruan, W. Evaluation the Impact of Polystyrene Micro and Nanoplastics on the Methane Generation by Anaerobic Digestion. Ecotoxicol. Environ. Saf. 2020, 205, 111095. [Google Scholar] [CrossRef]
- Wang, J.; Ma, D.; Feng, K.; Lou, Y.; Zhou, H.; Liu, B.; Xie, G.; Ren, N.; Xing, D. Polystyrene Nanoplastics Shape Microbiome and Functional Metabolism in Anaerobic Digestion. Water Res. 2022, 219, 118606. [Google Scholar] [CrossRef]
- Wang, P.; Guo, Y.; Yu, M.; Riya, S.; Zheng, Y.; Ren, L. The Effect and Mechanism of Polyethylene Terephthalate Microplastics on Anaerobic Co-Digestion of Sewage Sludge and Food Waste. Biochem. Eng. J. 2023, 198, 109012. [Google Scholar] [CrossRef]
- Wei, W.; Huang, Q.-S.; Sun, J.; Dai, X.; Ni, B.-J. Revealing the Mechanisms of Polyethylene Microplastics Affecting Anaerobic Digestion of Waste Activated Sludge. Environ. Sci. Technol. 2019, 53, 9604–9613. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.-T.; Wei, W.; Huang, Q.-S.; Wang, C.; Wang, Y.; Ni, B.-J. Insights into the Microbial Response of Anaerobic Granular Sludge during Long-Term Exposure to Polyethylene Terephthalate Microplastics. Water Res. 2020, 179, 115898. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Hu, T.; Ma, H.; He, S.; Zhao, Q.; Jiang, J.; Wei, L. Deciphering the Role of Polystyrene Microplastics in Waste Activated Sludge Anaerobic Digestion: Changes of Organics Transformation, Microbial Community and Metabolic Pathway. Sci. Total Environ. 2023, 901, 166551. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Chen, Y. Effects of Microplastics on Wastewater and Sewage Sludge Treatment and Their Removal: A Review. Chem. Eng. J. 2020, 382, 122955. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, Y.; Zhang, Z. Occurrence, Effects, and Biodegradation of Plastic Additives in Sludge Anaerobic Digestion: A Review. Environ. Pollut. 2021, 287, 117568. [Google Scholar] [CrossRef]
- Hahladakis, J.N.; Velis, C.A.; Weber, R.; Iacovidou, E.; Purnell, P. An Overview of Chemical Additives Present in Plastics: Migration, Release, Fate and Environmental Impact during Their Use, Disposal and Recycling. J. Hazard. Mater. 2018, 344, 179–199. [Google Scholar] [CrossRef]
- Carmen, S. Microbial Capability for the Degradation of Chemical Additives Present in Petroleum-Based Plastic Products: A Review on Current Status and Perspectives. J. Hazard. Mater. 2021, 402, 123534. [Google Scholar] [CrossRef]
- Chen, H.; Tang, M.; Yang, X.; Tsang, Y.F.; Wu, Y.; Wang, D.; Zhou, Y. Polyamide 6 Microplastics Facilitate Methane Production during Anaerobic Digestion of Waste Activated Sludge. Chem. Eng. J. 2021, 408, 127251. [Google Scholar] [CrossRef]
- Duan, X.; Wang, X.; Xie, J.; Feng, L.; Yan, Y.; Zhou, Q. Effect of Nonylphenol on Volatile Fatty Acids Accumulation during Anaerobic Fermentation of Waste Activated Sludge. Water Res. 2016, 105, 209–217. [Google Scholar] [CrossRef] [PubMed]
- Duan, X.; Wang, X.; Dai, L.; Feng, L.; Yan, Y.; Zhou, Q. Simultaneous Enhancement of Nonylphenol Biodegradation and Short-Chain Fatty Acids Production in Waste Activated Sludge under Acidogenic Conditions. Sci. Total Environ. 2019, 651, 24–31. [Google Scholar] [CrossRef] [PubMed]
- Gong, R.; Tang, X.; Fan, C.; Zhang, B.; Zhou, M. Effect of DEHP on SCFA Production by Anaerobic Fermentation of Waste Activated Sludge. Adv. Polym. Technol. 2020, 2020, 1705232. [Google Scholar] [CrossRef]
- Mohammad Mirsoleimani Azizi, S.; Zakaria, B.S.; Haffiez, N.; Ranjan Dhar, B. Granular Activated Carbon Remediates Antibiotic Resistance Propagation and Methanogenic Inhibition Induced by Polystyrene Nanoplastics in Sludge Anaerobic Digestion. Bioresour. Technol. 2023, 377, 128938. [Google Scholar] [CrossRef]
- Feng, Y.; Duan, J.-L.; Sun, X.-D.; Ma, J.-Y.; Wang, Q.; Li, X.-Y.; Tian, W.-X.; Wang, S.-G.; Yuan, X.-Z. Insights on the Inhibition of Anaerobic Digestion Performances under Short-Term Exposure of Metal-Doped Nanoplastics via Methanosarcina Acetivorans. Environ. Pollut. 2021, 275, 115755. [Google Scholar] [CrossRef]
- Fu, S.-F.; Ding, J.-N.; Zhang, Y.; Li, Y.-F.; Zhu, R.; Yuan, X.-Z.; Zou, H. Exposure to Polystyrene Nanoplastic Leads to Inhibition of Anaerobic Digestion System. Sci. Total Environ. 2018, 625, 64–70. [Google Scholar] [CrossRef]
- Kaykhaii, M.; Honarmandrad, Z.; Gębicki, J. Effect of Microplastics Pollution on Hydrogen Production from Biomass: A Comprehensive Review. Ind. Eng. Chem. Res. 2023, 62, 3835–3843. [Google Scholar] [CrossRef]
- Wei, W.; Zhang, Y.-T.; Huang, Q.-S.; Ni, B.-J. Polyethylene Terephthalate Microplastics Affect Hydrogen Production from Alkaline Anaerobic Fermentation of Waste Activated Sludge through Altering Viability and Activity of Anaerobic Microorganisms. Water Res. 2019, 163, 114881. [Google Scholar] [CrossRef]
- Wei, W.; Zhang, Y.-T.; Wang, C.; Guo, W.; Ngo, H.H.; Chen, X.; Ni, B.-J. Responses of Anaerobic Hydrogen-Producing Granules to Acute Microplastics Exposure during Biological Hydrogen Production from Wastewater. Water Res. 2022, 220, 118680. [Google Scholar] [CrossRef]
- Wang, C.; Wei, W.; Chen, Z.; Wang, Y.; Chen, X.; Ni, B.-J. Polystyrene Microplastics and Nanoplastics Distinctively Affect Anaerobic Sludge Treatment for Hydrogen and Methane Production. Sci. Total Environ. 2022, 850, 158085. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.-T.; Wei, W.; Wang, C.; Ni, B.-J. Understanding and Mitigating the Distinctive Stresses Induced by Diverse Microplastics on Anaerobic Hydrogen-Producing Granular Sludge. J. Hazard. Mater. 2022, 440, 129771. [Google Scholar] [CrossRef]
- Wang, Z.; Gao, J.; Li, D.; Dai, H.; Zhao, Y. Co-Occurrence of Microplastics and Triclosan Inhibited Nitrification Function and Enriched Antibiotic Resistance Genes in Nitrifying Sludge. J. Hazard. Mater. 2020, 399, 123049. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Wang, X.; Zhang, Z.; Yan, Z.; Zhang, Y. Effects of Chronic Exposure to Different Sizes and Polymers of Microplastics on the Characteristics of Activated Sludge. Sci. Total Environ. 2021, 783, 146954. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Geng, S.; Li, Z.; Song, K. Effect of Microplastic on Anaerobic Digestion of Wasted Activated Sludge. Chemosphere 2020, 247, 125874. [Google Scholar] [CrossRef] [PubMed]
Micropollutant | Dose of Micropollutant | Effect of Micropollutant on Biogas Production | References |
---|---|---|---|
BPA | 228 µg/kg | No effect | [16] |
3.6 µg/L | Decreasing CH4 production by 24% | [39] | |
1.26 mg/L | Increasing CH4 production by 24.7% | [42] | |
4.02 mg/L | Decreasing CH4 production by 8.1% | [42] | |
10–80 mg/L | Decreasing CH4 production by 18% | [29] | |
0.5–25 mg/L | Decreasing H2 production by 9.2–75.3% | [49] | |
Pharmaceuticals | 0.1 mg fluoxetine/kg d.w. | No effect | [19] |
2.0 mg fluoxetine/kg d.w. | Decreasing CH4 production by 40% | [19] | |
0–0.14 mM carbamazepine | Decreasing CH4 production by 33% | [60] | |
500 μg ibuprofen/L | Increasing biogas production by 61% | [62] | |
500 μg ciprofloxacin/L | Decreasing biogas production by 52% | [62] | |
Engineered NPs | 40 mg Ag-NPs/L | Increasing CH4 production by 15% | [69] |
5–20 mg Fe-NPs/L | Increasing biogas production by 45% and methane production by 59% | [18] | |
1 mg ZnO/g d.w. | No effect | [21] | |
30 mg ZnO/g d.w. | Decreasing CH4 production by 18.3% | [21] | |
150 mg ZnO/g d.w. | Decreasing CH4 production by 75.1% | [21] | |
MPs | 0.2 g/L | No effect | [91] |
above 0.25 g/L | Decreasing CH4 production by19.3 and 17.9%, depending on the particle size | [91] | |
2.70 mg/g d.w. | Decreasing CH4 production by 21.63 and 15.87%, depending on the particle size | [93] | |
10, 30, and 60 particles/g d.w. | No effect | [94] | |
100 and 200 particles/g d.w. | Decreasing CH4 production by 12.4–27.5% | [94] | |
10 to 60 particles/g d.w. | Increasing CH4 production by up to 25% | [42] | |
200 particles/g d.w. | Decreasing CH4 production by 8% | [42] | |
75–300 particles/L | Decreasing CH4 production by 17.2–28.4% | [95] | |
20–40 particles/g d.w. | Increasing CH4 production by 3.38–8.22% | [96] | |
80–160 particles/g d.w. | Decreasing CH4 production by 4.78–11.04% | [96] | |
150 µg/L | Decreasing CH4 production by 32.3% | [105] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zielińska, M.; Cydzik-Kwiatkowska, A. Effect of Emerging Micropollutants on the Anaerobic Digestion of Sewage Sludge. Energies 2024, 17, 1033. https://doi.org/10.3390/en17051033
Zielińska M, Cydzik-Kwiatkowska A. Effect of Emerging Micropollutants on the Anaerobic Digestion of Sewage Sludge. Energies. 2024; 17(5):1033. https://doi.org/10.3390/en17051033
Chicago/Turabian StyleZielińska, Magdalena, and Agnieszka Cydzik-Kwiatkowska. 2024. "Effect of Emerging Micropollutants on the Anaerobic Digestion of Sewage Sludge" Energies 17, no. 5: 1033. https://doi.org/10.3390/en17051033
APA StyleZielińska, M., & Cydzik-Kwiatkowska, A. (2024). Effect of Emerging Micropollutants on the Anaerobic Digestion of Sewage Sludge. Energies, 17(5), 1033. https://doi.org/10.3390/en17051033