Quasi-Resonant Converter for Electric Vehicle Charging Applications: Analysis, Design, and Markov Model Use for Reliability Estimation
Abstract
:1. Introduction
2. Description, Operating Principle, and Modes of Operation of the QRC
Mode | Power Flow | Constraints |
---|---|---|
Mode 1 | Figure 5a. Grid to load battery | Grid power is sufficient (Pgrid > Pbat) |
Mode 2 | Figure 5b. PV panel to load battery | PV power is sufficient (PPV > Pbat) |
Mode 3 | Figure 5c. Grid and PV to load battery | PV and grid are sufficient (Pgrid + PPv) > Pbat) |
2.1. Operating Principle
2.2. Modes of Operation
3. Parametric Design of the Proposed QRC
3.1. Choice of Switches and Diode
3.2. Inductor
3.3. Capacitor
4. Code Generation Using Xilinx ISE (VHDL)
Coding
5. Analysis and Comparison of the QRC
Power Loss
6. Comparative Analysis of Converters
7. Markov Model for the QRC
8. Result Analysis for the QRC
8.1. Simulation Results
8.2. Experiment Results
9. Conclusions
- Development of an optimized control strategy (CC-CV) for monitoring EV battery charging;
- Determination of component failure and reliability of the QRC using the MIL-HDBK-217F military handbook.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Singh, P.P.; Wen, F.; Palu, I.; Sachan, S.; Deb, S. Electric Vehicles Charging Infrastructure Demand and Deployment: Challenges and Solutions. Energies 2023, 16, 7. [Google Scholar] [CrossRef]
- Ihekwaba, A.; Kim, C. Analysis of electric vehicle charging impact on grid voltage regulation. In Proceedings of the 2017 North American Power Symposium (NAPS), Morgantown, WV, USA, 17–19 September 2017. [Google Scholar]
- Rong, X.; Wang, B.; Shao, C.; Yu, G.; Sun, Q.; Bie, Z. Coordinated charging strategy of electric vehicle charging station based on combination of linear power flow and genetic algorithm. In Proceedings of the 2016 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), Xi’an, China, 25–28 October 2016; pp. 1772–1776. [Google Scholar]
- Yilmaz, M.; Krein, P.T. Review of battery charger topologies, charging power levels, and infrastructure for plug-in electric and hybrid vehicles. IEEE Trans. Power Electron. 2013, 28, 2151–2169. [Google Scholar] [CrossRef]
- Taghizadeh, S.; Hossain, M.J.; Lu, J.; Water, W. A unified multi-functional on-board EV charger for power-quality control in household networks. Appl. Energy 2018, 215, 186–201. [Google Scholar] [CrossRef]
- Taghizadeh, S. A Multifunctional Single-Phase EV On-Board Charger with a New V2V Charging Assistance Capability. IEEE Access 2020, 8, 116812–116823. [Google Scholar] [CrossRef]
- Dubey, A.; Santoso, S. Electric Vehicle Charging on Residential Distribution Systems: Impacts and Mitigations. IEEE Access 2015, 3, 1871–1893. [Google Scholar] [CrossRef]
- Celli, G.; Soma, G.G.; Pilo, F.; Lacu, F.; Mocci, S.; Natale, N. Aggregated electric vehicles load profiles with fast charging stations. In Proceedings of the 2014 Power Systems Computation Conference, Wroclaw, Poland, 18–22 August 2014; pp. 1–7. [Google Scholar]
- Burnham, A.; Dufek, E.J.; Stephens, T.; Francfort, J.; Michelbacher, C.; Carlson, R.B.; Zhang, J.; Vijayagopal, R.; Dias, F.; Mohanpurkar, M.; et al. Enabling fast charging—Infrastructure and economic considerations. J. Power Sources 2017, 367, 237–249. [Google Scholar] [CrossRef]
- Forouzesh, M.; Siwakoti, Y.P.; Gorji, S.A.; Blaabjerg, F.; Lehman, B. Step-Up DC-DC converters: A comprehensive review of voltage-boosting techniques, topologies, and applications. IEEE Trans. Power Electron. 2017, 32, 9143–9178. [Google Scholar] [CrossRef]
- Lin, C.C.; Yang, L.S.; Wu, G.W. Study of a non-isolated bidirectional DC-DC converter. IET Power Electron. 2013, 6, 30–37. [Google Scholar] [CrossRef]
- Meinagh, F.A.A.; Babaei, E.; Tarzamni, H.; Kolahian, P. Isolated high step-up switched-boost DC/DC converter with modified control method. IET Power Electron. 2019, 12, 3635–3645. [Google Scholar] [CrossRef]
- Bao, D.; Kumar, A.; Pan, X.; Xiong, X.; Beig, A.R.; Singh, S.K. Switched Inductor Double Switch High Gain DC-DC Converter for Renewable Applications. IEEE Access 2021, 9, 14259–14270. [Google Scholar] [CrossRef]
- Karthikeyan, V.; Sundaramoorthy, K.; Kumar, G.G.; Babaei, E. Regenerative switched-inductor/capacitor type DC-DC converter with large voltage gain for PV applications. IET Power Electron. 2020, 13, 68–77. [Google Scholar] [CrossRef]
- Kawa, A.; Stala, R.; Mondzik, A.; Pirog, S.; Penczek, A. High-Power Thyristor-Based DC-DC Switched-Capacitor Voltage Multipliers: Basic Concept and Novel Derived Topology with Reduced Number of Switches. IEEE Trans. Power Electron. 2016, 31, 6797–6813. [Google Scholar] [CrossRef]
- Esteki, M.; Poorali, B.; Adib, E.; Farzanehfard, H. Interleaved Buck Converter with Continuous Input Current, Extremely Low Output Current Ripple, Low Switching Losses, and Improved Step-Down Conversion Ratio. IEEE Trans. Ind. Electron. 2015, 62, 4769–4776. [Google Scholar] [CrossRef]
- Shereef, N.K.; Mani, N.; John, N. A Novel DC-DC Boost Converter Based on Voltage-Lift Technique. Int. J. Innov. Eng. Technol. 2018, 11, 61–68. [Google Scholar]
- Harini, S.; Chellammal, N. A Novel High Gain Dual Input Single Output Z-Quasi Resonant (ZQR) DC/DC Converter for Off-Board EV Charging. IEEE Access 2022, 10, 83350–83367. [Google Scholar] [CrossRef]
- Das, M.; Agarwal, V. Generalized Small Signal Modeling of coupled-inductor-based high-gain high-efficiency DC–DC converters. IEEE Trans. Ind. Appl. 2017, 53, 2257–2270. [Google Scholar] [CrossRef]
- Yuan, B.; Liao, L.; Ning, G.; Xiong, W.; Su, M. An Expandable High Voltage-Gain Resonant DC-DC Converter with Low Semiconductor Voltage Stress. IEEE Trans. Circuits Syst. II Express Briefs 2022, 69, 3844–3848. [Google Scholar] [CrossRef]
- Karthikeyan, V.; Kumaravel, S.; Guru Kumar, G. High Step-Up Gain DC-DC Converter with Switched Capacitor and Regenerative Boost Configuration for Solar PV Applications. IEEE Trans. Circuits Syst. II Express Briefs 2019, 66, 2022–2026. [Google Scholar] [CrossRef]
- Tang, Y.; Fu, D.; Wang, T.; Xu, Z. Hybrid switched-inductor converters for high step-up conversion. IEEE Trans. Ind. Electron. 2015, 62, 1480–1490. [Google Scholar] [CrossRef]
- Samiullah, M.; Iqbal, A.; Ashraf, I.; Maroti, P.K. Voltage Lift Switched Inductor Double Leg Converter with Extended Duty Ratio for DC Microgrid Application. IEEE Access 2021, 9, 85310–85325. [Google Scholar] [CrossRef]
- Tarzamni, H.; Babaei, E.; Gharehkoushan, A.Z.; Sabahi, M. Interleaved full ZVZCS DC-DC boost converter: Analysis, design, reliability evaluations and experimental results. IET Power Electron. 2017, 10, 835–845. [Google Scholar] [CrossRef]
- Yao, B.; Chen, H.; He, X.Q.; Xiao, Q.Z.; Kuang, X.J. Reliability and failure analysis of DC/DC converter and case studies. In Proceedings of the 2013 International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering (QR2MSE), Chengdu, China, 15–18 July 2013; pp. 1133–1135. [Google Scholar]
- Alam, M.K.; Khan, F.H. Reliability analysis and performance degradation of a boost converter. IEEE Trans. Ind. Appl. 2014, 50, 3986–3994. [Google Scholar] [CrossRef]
- Tarzamni, H.; Tahami, F.; Fotuhi-Firuzabad, M.; Blaabjerg, F. Improved Markov Model for Reliability Assessment of Isolated Multiple-Switch PWM DC-DC Converters. IEEE Access 2021, 9, 33666–33674. [Google Scholar] [CrossRef]
- Boudjellal, B.; Benslimane, T. Open-switch fault-tolerant control of power converters in a grid-connected photovoltaic system. Int. J. Power Electron. Drive Syst. 2016, 7, 1294–1308. [Google Scholar] [CrossRef]
- Tarzamni, H.; Esmaeelnia, F.P.; Tahami, F.; Fotuhi-Firuzabad, M.; Dehghanian, P.; Lehtonen, M.; Blaabjerg, F. Reliability Assessment of Conventional Isolated PWM DC-DC Converters. IEEE Access 2021, 9, 46191–46200. [Google Scholar] [CrossRef]
- Hamoud, G.A.; Yiu, C. One Markov Model for Spare Analysis of Distribution Power Transformers. IEEE Trans. Power Syst. 2016, 31, 1643–1648. [Google Scholar] [CrossRef]
- Jahan, H.K.; Panahandeh, F.; Abapour, M.; Tohidi, S. Reconfigurable Multilevel Inverter with Fault-Tolerant Ability. IEEE Trans. Power Electron. 2018, 33, 7880–7893. [Google Scholar] [CrossRef]
- Tarzamni, H.; Babaei, E.; Esmaeelnia, F.P.; Dehghanian, P.; Tohidi, S.; Sharifian, M.B.B. Analysis and Reliability Evaluation of a High Step-Up Soft Switching Push-Pull DC-DC Converter. IEEE Trans. Reliab. 2020, 69, 1376–1386. [Google Scholar] [CrossRef]
Converter Topology | Component Count | Specification | Expected Cost | |
---|---|---|---|---|
Frequency | Transformer | Low | ||
BoC [21] | 4 | 10 kHz | No | Moderate |
IL [24] | 10 | 20 kHz | No | Low |
IL [16] | 10 | 20 kHz | No | Moderate |
Suggested QRC | 10 | 20 kHz | No | Moderate |
Parameter Used | Input Voltage Vin | Inductors LS = LBF = LL | Capacitor C1BF, C2BF, CL | Rating of Load (Battery) | Switching Frequency (fsw) |
---|---|---|---|---|---|
Simulation | Mode 1—12 V (Vin1) Mode 2—12 V (Vin2) Mode 3—10 V (Vin1) and 10 V (Vin2) | 100 µH | 10 µF | 24.8 V, 8 Ah | 20 kHz |
Experimental | Mode 1—12 V (Vin1) Mode 2—12 V (Vin2) Mode 3—10 V (Vin1) and 10 V (Vin2) | 122 µH | 12 µF | 24.8 V, 8 Ah | 20 kHz |
Duty (δ) | Gain | Operating Time | Power Loss |
---|---|---|---|
0.1 | 1.125 | 0.5 × 10−5 | 0.0066 |
0.2 | 1.33 | 1 × 10−5 | 0.0342 |
0.3 | 1.75 | 1.5 × 10−5 | 0.944 |
0.4 | 3 | 2 × 10−5 | 1.022 |
0.45 | 5.5 | 2.25 × 10−5 | 2.712 |
Ref [12] | Ref [21] | Ref [24] | QRC | |
---|---|---|---|---|
Gain (Voltage) | ||||
Voltage stress on MOSFET | Vo | |||
Stress on diode voltage | Vo | |||
Stress on MOSFET current | ||||
Stress on diode current | ||||
Isolation | Yes | No | No | No |
Converter | Failure Rate | Equation | Transition |
---|---|---|---|
QRC | λS12 | State 1 to 2 | |
λS13 | State 1 to 3 | ||
λS14 | State 1 to 4 | ||
λS24 | State 2 to 4 | ||
λS34 | + | State 3 to 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sampath, H.; Nallaperumal, C.; Hossain, M.J. Quasi-Resonant Converter for Electric Vehicle Charging Applications: Analysis, Design, and Markov Model Use for Reliability Estimation. Energies 2024, 17, 815. https://doi.org/10.3390/en17040815
Sampath H, Nallaperumal C, Hossain MJ. Quasi-Resonant Converter for Electric Vehicle Charging Applications: Analysis, Design, and Markov Model Use for Reliability Estimation. Energies. 2024; 17(4):815. https://doi.org/10.3390/en17040815
Chicago/Turabian StyleSampath, Harini, Chellammal Nallaperumal, and Md. Jahangir Hossain. 2024. "Quasi-Resonant Converter for Electric Vehicle Charging Applications: Analysis, Design, and Markov Model Use for Reliability Estimation" Energies 17, no. 4: 815. https://doi.org/10.3390/en17040815
APA StyleSampath, H., Nallaperumal, C., & Hossain, M. J. (2024). Quasi-Resonant Converter for Electric Vehicle Charging Applications: Analysis, Design, and Markov Model Use for Reliability Estimation. Energies, 17(4), 815. https://doi.org/10.3390/en17040815