Digitization Meets Energy Transition: Shaping the Future of Environmental Sustainability
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
3.1. Materials
3.2. Econometric Methods
4. Results and Discussion
4.1. The Effect of Energy Transition on Environmental Sustainability
4.2. Heterogeneity Test Regarding the Effect of Energy Transition on Environmental Sustainability
4.3. Environmental Sustainability Implications of the Digitization-Led Energy Transition
4.4. Heterogeneity Test in Terms of the Environmental Sustainability Implications of the Digitization-Led Energy Transition
4.5. The Nonlinear Effect of Energy Transition on Environmental Sustainability
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Guo, W.; Yang, B.; Ji, J.; Liu, X. Green Finance Development Drives Renewable Energy Development: Mechanism Analysis and Empirical Research. Renew. Energy 2023, 215, 118982. [Google Scholar] [CrossRef]
- Razzaq, A.; Sharif, A.; Ozturk, I.; Skare, M. Asymmetric Influence of Digital Finance, and Renewable Energy Technology Innovation on Green Growth in China. Renew. Energy 2023, 202, 310–319. [Google Scholar] [CrossRef]
- Woon, K.S.; Phuang, Z.X.; Taler, J.; Varbanov, P.S.; Chong, C.T.; Klemeš, J.J.; Lee, C.T. Recent Advances in Urban Green Energy Development towards Carbon Emissions Neutrality. Energy 2023, 267, 126502. [Google Scholar] [CrossRef]
- Cai, J.; Zheng, H.; Vardanyan, M.; Shen, Z. Achieving Carbon Neutrality through Green Technological Progress: Evidence from China. Energy Policy 2023, 173, 113397. [Google Scholar] [CrossRef]
- Jiang, Y.; Khan, H. The Relationship between Renewable Energy Consumption, Technological Innovations, and Carbon Dioxide Emission: Evidence from Two-Step System GMM. Environ. Sci. Pollut. Res. 2023, 30, 4187–4202. [Google Scholar] [CrossRef]
- Chai, S.; Liu, Q.; Yang, J. Renewable Power Generation Policies in China: Policy Instrument Choices and Influencing Factors from the Central and Local Government Perspectives. Renew. Sustain. Energy Rev. 2023, 174, 113126. [Google Scholar] [CrossRef]
- Yu, B.; Fang, D.; Xiao, K.; Pan, Y. Drivers of Renewable Energy Penetration and Its Role in Power Sector’s Deep Decarbonization towards Carbon Peak. Renew. Sustain. Energy Rev. 2023, 178, 113247. [Google Scholar] [CrossRef]
- Feng, C.-Y.; Yang, X.; Afshan, S.; Irfan, M. Can Renewable Energy Technology Innovation Promote Mineral Resources’ Green Utilization Efficiency? Novel Insights from Regional Development Inequality. Resour. Policy 2023, 82, 103449. [Google Scholar] [CrossRef]
- Cheng, Z.; Kai, Z.; Zhu, S. Does Green Finance Regulation Improve Renewable Energy Utilization? Evidence from Energy Consumption Efficiency. Renew. Energy 2023, 208, 63–75. [Google Scholar] [CrossRef]
- Fang, G.; Gao, Z.; Sun, C. How the New Energy Industry Contributes to Carbon Reduction?—Evidence from China. J. Environ. Manag. 2023, 329, 117066. [Google Scholar] [CrossRef]
- Lin, B.; Huang, C. Promoting Variable Renewable Energy Integration: The Moderating Effect of Digitalization. Appl. Energy 2023, 337, 120891. [Google Scholar] [CrossRef]
- Du, J.; Shen, Z.; Song, M.; Zhang, L. Nexus between Digital Transformation and Energy Technology Innovation: An Empirical Test of A-Share Listed Enterprises. Energy Econ. 2023, 120, 106572. [Google Scholar] [CrossRef]
- Dong, Z.; Ullah, S. Towards a Green Economy in China? Examining the Impact of the Internet of Things and Environmental Regulation on Green Growth. Sustainability 2023, 15, 12528. [Google Scholar] [CrossRef]
- Tan, L.; Yang, Z.; Irfan, M.; Ding, C.J.; Hu, M.; Hu, J. Toward Low-carbon Sustainable Development: Exploring the Impact of Digital Economy Development and Industrial Restructuring. Bus. Strategy Environ. 2023, bse.3584. [Google Scholar] [CrossRef]
- Li, W.; Cao, N.; Xiang, Z. Drivers of Renewable Energy Transition: The Role of ICT, Human Development, Financialization, and R&D Investment in China. Renew. Energy 2023, 206, 441–450. [Google Scholar]
- Sajjad, M.; Hu, A.; Waqar, A.; Falqi, I.I.; Alsulamy, S.H.; Bageis, A.S.; Alshehri, A.M. Evaluation of the Success of Industry 4.0 Digitalization Practices for Sustainable Construction Management: Chinese Construction Industry. Buildings 2023, 13, 1668. [Google Scholar] [CrossRef]
- Yang, S.; Yang, D.; Shi, W.; Deng, C.; Chen, C.; Feng, S. Global Evaluation of Carbon Neutrality and Peak Carbon Dioxide Emissions: Current Challenges and Future Outlook. Environ. Sci. Pollut. Res. 2022, 30, 81725–81744. [Google Scholar] [CrossRef] [PubMed]
- Zheng, S.; Zhou, X.; Tan, Z.; Liu, C.; Hu, H.; Yuan, H.; Peng, S.; Cai, X. Assessment of the Global Energy Transition: Based on Trade Embodied Energy Analysis. Energy 2023, 273, 127274. [Google Scholar] [CrossRef]
- Wang, H.; Yu, X. Carbon Dioxide Emission Typology and Policy Implications: Evidence from Machine Learning. China Econ. Rev. 2023, 78, 101941. [Google Scholar] [CrossRef]
- Zhao, S.; Peng, D.; Wen, H.; Wu, Y. Nonlinear and Spatial Spillover Effects of the Digital Economy on Green Total Factor Energy Efficiency: Evidence from 281 Cities in China. Environ. Sci. Pollut. Res. 2022, 30, 81896–81916. [Google Scholar] [CrossRef]
- Wu, H.; Xue, Y.; Hao, Y.; Ren, S. How Does Internet Development Affect Energy-Saving and Emission Reduction? Evidence from China. Energy Econ. 2021, 103, 105577. [Google Scholar] [CrossRef]
- Ren, S.; Hao, Y.; Xu, L.; Wu, H.; Ba, N. Digitalization and Energy: How Does Internet Development Affect China’s Energy Consumption? Energy Econ. 2021, 98, 105220. [Google Scholar] [CrossRef]
- Dong, F.; Li, Y.; Gao, Y.; Zhu, J.; Qin, C.; Zhang, X. Energy Transition and Carbon Neutrality: Exploring the Non-Linear Impact of Renewable Energy Development on Carbon Emission Efficiency in Developed Countries. Resour. Conserv. Recycl. 2022, 177, 106002. [Google Scholar] [CrossRef]
- Gu, W.; Zhao, X.; Yan, X.; Wang, C.; Li, Q. Energy Technological Progress, Energy Consumption, and CO2 Emissions: Empirical Evidence from China. J. Clean. Prod. 2019, 236, 117666. [Google Scholar] [CrossRef]
- Wang, X.-P.; Zhang, Z.-M.; Guo, Z.-H.; Su, C.; Sun, L.-H. Energy Structure Transformation in the Context of Carbon Neutralization: Evolutionary Game Analysis Based on Inclusive Development of Coal and Clean Energy. J. Clean. Prod. 2023, 398, 136626. [Google Scholar] [CrossRef]
- Mostafaeipour, A.; Bidokhti, A.; Fakhrzad, M.-B.; Sadegheih, A.; Mehrjerdi, Y.Z. A New Model for the Use of Renewable Electricity to Reduce Carbon Dioxide Emissions. Energy 2022, 238, 121602. [Google Scholar] [CrossRef]
- Raihan, A.; Pavel, M.I.; Muhtasim, D.A.; Farhana, S.; Faruk, O.; Paul, A. The Role of Renewable Energy Use, Technological Innovation, and Forest Cover toward Green Development: Evidence from Indonesia. Innov. Green Dev. 2023, 2, 100035. [Google Scholar] [CrossRef]
- Adams, S.; Nsiah, C. Reducing Carbon Dioxide Emissions; Does Renewable Energy Matter? Sci. Total Environ. 2019, 693, 133288. [Google Scholar] [CrossRef]
- Saidi, K.; Omri, A. The Impact of Renewable Energy on Carbon Emissions and Economic Growth in 15 Major Renewable Energy-Consuming Countries. Environ. Res. 2020, 186, 109567. [Google Scholar] [CrossRef]
- Sovacool, B.K.; Schmid, P.; Stirling, A.; Walter, G.; MacKerron, G. Differences in Carbon Emissions Reduction between Countries Pursuing Renewable Electricity versus Nuclear Power. Nat. Energy 2020, 5, 928–935. [Google Scholar] [CrossRef]
- Hoicka, C.E.; Conroy, J.; Berka, A.L. Reconfiguring Actors and Infrastructure in City Renewable Energy Transitions: A Regional Perspective. Energy Policy 2021, 158, 112544. [Google Scholar] [CrossRef]
- Cantarero, M.M.V. Of Renewable Energy, Energy Democracy, and Sustainable Development: A Roadmap to Accelerate the Energy Transition in Developing Countries. Energy Res. Soc. Sci. 2020, 70, 101716. [Google Scholar] [CrossRef]
- Sillak, S.; Borch, K.; Sperling, K. Assessing Co-Creation in Strategic Planning for Urban Energy Transitions. Energy Res. Soc. Sci. 2021, 74, 101952. [Google Scholar] [CrossRef]
- Levenda, A.M.; Behrsin, I.; Disano, F. Renewable Energy for Whom? A Global Systematic Review of the Environmental Justice Implications of Renewable Energy Technologies. Energy Res. Soc. Sci. 2021, 71, 101837. [Google Scholar] [CrossRef]
- Ansari, D.; Holz, F. Between Stranded Assets and Green Transformation: Fossil-Fuel-Producing Developing Countries towards 2055. World Dev. 2020, 130, 104947. [Google Scholar] [CrossRef]
- Bridge, G.; Gailing, L. New Energy Spaces: Towards a Geographical Political Economy of Energy Transition. Environ. Plan. A 2020, 52, 1037–1050. [Google Scholar] [CrossRef]
- Adewuyi, O.B.; Kiptoo, M.K.; Afolayan, A.F.; Amara, T.; Alawode, O.I.; Senjyu, T. Challenges and Prospects of Nigeria’s Sustainable Energy Transition with Lessons from Other Countries’ Experiences. Energy Rep. 2020, 6, 993–1009. [Google Scholar] [CrossRef]
- Erat, S.; Telli, A.; Ozkendir, O.M.; Demir, B. Turkey’s Energy Transition from Fossil-Based to Renewable up to 2030: Milestones, Challenges and Opportunities. Clean Technol. Environ. Policy 2021, 23, 401–412. [Google Scholar] [CrossRef]
- Gürsan, C.; de Gooyert, V. The Systemic Impact of a Transition Fuel: Does Natural Gas Help or Hinder the Energy Transition? Renew. Sustain. Energy Rev. 2021, 138, 110552. [Google Scholar] [CrossRef]
- Shaqsi, A.Z.A.; Sopian, K.; Al-Hinai, A. Review of Energy Storage Services, Applications, Limitations, and Benefits. Energy Rep. 2020, 6, 288–306. [Google Scholar] [CrossRef]
- Trahey, L.; Brushett, F.R.; Balsara, N.P.; Ceder, G.; Cheng, L.; Chiang, Y.-M.; Hahn, N.T.; Ingram, B.J.; Minteer, S.D.; Moore, J.S.; et al. Energy Storage Emerging: A Perspective from the Joint Center for Energy Storage Research. Proc. Natl. Acad. Sci. USA 2020, 117, 12550–12557. [Google Scholar] [CrossRef]
- Olabi, A.G.; Onumaegbu, C.; Wilberforce, T.; Ramadan, M.; Abdelkareem, M.A.; Al–Alami, A.H. Critical Review of Energy Storage Systems. Energy 2021, 214, 118987. [Google Scholar] [CrossRef]
- Hassan, Q.; Sameen, A.Z.; Salman, H.M.; Jaszczur, M.; Al-Jiboory, A.K. Hydrogen Energy Future: Advancements in Storage Technologies and Implications for Sustainability. J. Energy Storage 2023, 72, 108404. [Google Scholar] [CrossRef]
- Hainsch, K.; Löffler, K.; Burandt, T.; Auer, H.; del Granado, P.C.; Pisciella, P.; Zwickl-Bernhard, S. Energy Transition Scenarios: What Policies, Societal Attitudes, and Technology Developments Will Realize the EU Green Deal? Energy 2022, 239, 122067. [Google Scholar] [CrossRef]
- Mason-D’Croz, D.; Bogard, J.R.; Sulser, T.B.; Cenacchi, N.; Dunston, S.; Herrero, M.; Wiebe, K. Gaps between Fruit and Vegetable Production, Demand, and Recommended Consumption at Global and National Levels: An Integrated Modelling Study. Lancet Planet. Health 2019, 3, e318–e329. [Google Scholar] [CrossRef]
- Perri, C.; Giglio, C.; Corvello, V. Smart Users for Smart Technologies: Investigating the Intention to Adopt Smart Energy Consumption Behaviors. Technol. Forecast. Soc. Chang. 2020, 155, 119991. [Google Scholar] [CrossRef]
- Malinauskaite, J.; Jouhara, H.; Ahmad, L.; Milani, M.; Montorsi, L.; Venturelli, M. Energy Efficiency in Industry: EU and National Policies in Italy and the UK. Energy 2019, 172, 255–269. [Google Scholar] [CrossRef]
- Economidou, M.; Todeschi, V.; Bertoldi, P.; D’Agostino, D.; Zangheri, P.; Castellazzi, L. Review of 50 Years of EU Energy Efficiency Policies for Buildings. Energy Build. 2020, 225, 110322. [Google Scholar] [CrossRef]
- Thomas, S.; Rosenow, J. Drivers of Increasing Energy Consumption in Europe and Policy Implications. Energy Policy 2020, 137, 111108. [Google Scholar] [CrossRef]
- Balta-Ozkan, N.; Yildirim, J.; Connor, P.M.; Truckell, I.; Hart, P. Energy Transition at Local Level: Analyzing the Role of Peer Effects and Socio-Economic Factors on UK Solar Photovoltaic Deployment. Energy Policy 2021, 148, 112004. [Google Scholar] [CrossRef]
- Swilling, M.; Nygaard, I.; Kruger, W.; Wlokas, H.; Jhetam, T.; Davies, M.; Jacob, M.; Morris, M.; Robbins, G.; Funder, M. Linking the Energy Transition and Economic Development: A Framework for Analysis of Energy Transitions in the Global South. Energy Res. Soc. Sci. 2022, 90, 102567. [Google Scholar] [CrossRef]
- Edomah, N.; Bazilian, M.; Sovacool, B.K. Sociotechnical Typologies for National Energy Transitions. Environ. Res. Lett. 2020, 15, 111001. [Google Scholar] [CrossRef]
- Pregger, T.; Naegler, T.; Weimer-Jehle, W.; Prehofer, S.; Hauser, W. Moving towards Socio-Technical Scenarios of the German Energy Transition—Lessons Learned from Integrated Energy Scenario Building. Clim. Chang. 2020, 162, 1743–1762. [Google Scholar] [CrossRef]
- Carley, S.; Konisky, D.M. The Justice and Equity Implications of the Clean Energy Transition. Nat. Energy 2020, 5, 569–577. [Google Scholar] [CrossRef]
- Sayed, E.T.; Wilberforce, T.; Elsaid, K.; Rabaia, M.K.H.; Abdelkareem, M.A.; Chae, K.-J.; Olabi, A.G. A Critical Review on Environmental Impacts of Renewable Energy Systems and Mitigation Strategies: Wind, Hydro, Biomass and Geothermal. Sci. Total Environ. 2021, 766, 144505. [Google Scholar] [CrossRef] [PubMed]
- Höysniemi, S. Reimagining Energy Futures: Global Energy Transition and Dependence on Russian Energy as Issues in the Sociotechnical Imaginaries of Energy Security in Finland. Energy Res. Soc. Sci. 2022, 93, 102840. [Google Scholar] [CrossRef]
- Svobodova, K.; Owen, J.R.; Harris, J.; Worden, S. Complexities and Contradictions in the Global Energy Transition: A Re-Evaluation of Country-Level Factors and Dependencies. Appl. Energy 2020, 265, 114778. [Google Scholar] [CrossRef]
- Ankrah, I.; Dogah, K.; Twumasi-Ankrah, S.; Sackey, F.G.; Asravor, R.; Donkor, D.O.; Lamptey, C.; Arthur, L. Is Energy Transition Possible for Oil-Producing Nations? Probing the Case of a Developing Economy. Clean. Prod. Lett. 2023, 4, 100031. [Google Scholar] [CrossRef]
- Lamnatou, C.; Chemisana, D.; Cristofari, C. Smart Grids and Smart Technologies in Relation to Photovoltaics, Storage Systems, Buildings and the Environment. Renew. Energy 2022, 185, 1376–1391. [Google Scholar] [CrossRef]
- Giannelos, S.; Borozan, S.; Aunedi, M.; Zhang, X.; Ameli, H.; Pudjianto, D.; Konstantelos, I.; Strbac, G. Modelling Smart Grid Technologies in Optimisation Problems for Electricity Grids. Energies 2023, 16, 5088. [Google Scholar] [CrossRef]
- Dileep, G. A Survey on Smart Grid Technologies and Applications. Renew. Energy 2020, 146, 2589–2625. [Google Scholar] [CrossRef]
- Ivanova, I.A.; Pulyaeva, V.N.; Vlasenko, L.V.; Gibadullin, A.A.; Sadriddinov, M.I. Digitalization of Organizations: Current Issues, Managerial Challenges and Socio-Economic Risks. In Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2019; Volume 1399, p. 033038. [Google Scholar]
- Borle, P.; Boerner-Zobel, F.; Voelter-Mahlknecht, S.; Hasselhorn, H.M.; Ebener, M. The Social and Health Implications of Digital Work Intensification. Associations between Exposure to Information and Communication Technologies, Health and Work Ability in Different Socio-Economic Strata. Int. Arch. Occup. Environ. Health 2021, 94, 377–390. [Google Scholar] [CrossRef]
- Rolandi, S.; Brunori, G.; Bacco, M.; Scotti, I. The Digitalization of Agriculture and Rural Areas: Towards a Taxonomy of the Impacts. Sustainability 2021, 13, 5172. [Google Scholar] [CrossRef]
- Qadir, S.A.; Al-Motairi, H.; Tahir, F.; Al-Fagih, L. Incentives and Strategies for Financing the Renewable Energy Transition: A Review. Energy Rep. 2021, 7, 3590–3606. [Google Scholar] [CrossRef]
- Capellán-Pérez, I.; De Castro, C.; González, L.J.M. Dynamic Energy Return on Energy Investment (EROI) and Material Requirements in Scenarios of Global Transition to Renewable Energies. Energy Strategy Rev. 2019, 26, 100399. [Google Scholar] [CrossRef]
- Tagliapietra, S.; Zachmann, G.; Edenhofer, O.; Glachant, J.-M.; Linares, P.; Loeschel, A. The European Union Energy Transition: Key Priorities for the next Five Years. Energy Policy 2019, 132, 950–954. [Google Scholar] [CrossRef]
- Shahbaz, M.; Wang, J.; Dong, K.; Zhao, J. The Impact of Digital Economy on Energy Transition across the Globe: The Mediating Role of Government Governance. Renew. Sustain. Energy Rev. 2022, 166, 112620. [Google Scholar] [CrossRef]
- Ma, J.; Yang, L.; Wang, D.; Li, Y.; Xie, Z.; Lv, H.; Woo, D. Digitalization in Response to Carbon Neutrality: Mechanisms, Effects and Prospects. Renew. Sustain. Energy Rev. 2024, 191, 114138. [Google Scholar] [CrossRef]
- Kwilinski, A.; Lyulyov, O.; Pimonenko, T. The Impact of Digital Business on Energy Efficiency in EU Countries. Information 2023, 14, 480. [Google Scholar] [CrossRef]
- Wu, J.; Lin, K.; Sun, J. Improving Urban Energy Efficiency: What Role Does the Digital Economy Play? J. Clean. Prod. 2023, 418, 138104. [Google Scholar] [CrossRef]
- Ferrari, A.; Bacco, M.; Gaber, K.; Jedlitschka, A.; Hess, S.; Kaipainen, J.; Koltsida, P.; Toli, E.; Brunori, G. Drivers, Barriers and Impacts of Digitalisation in Rural Areas from the Viewpoint of Experts. Inf. Softw. Technol. 2022, 145, 106816. [Google Scholar] [CrossRef]
- Małkowska, A.; Urbaniec, M.; Kosała, M. The Impact of Digital Transformation on European Countries: Insights from a Comparative Analysis. Equilib. Q. J. Econ. Econ. Policy 2021, 16, 325–355. [Google Scholar] [CrossRef]
- Wang, D.; Zhou, T.; Lan, F.; Wang, M. ICT and Socio-Economic Development: Evidence from a Spatial Panel Data Analysis in China. Telecommun. Policy 2021, 45, 102173. [Google Scholar] [CrossRef]
- Wang, S.; Sun, L.; Iqbal, S. Green Financing Role on Renewable Energy Dependence and Energy Transition in E7 Economies. Renew. Energy 2022, 200, 1561–1572. [Google Scholar] [CrossRef]
- Pingkuo, L.; Huan, P. What Drives the Green and Low-Carbon Energy Transition in China?: An Empirical Analysis Based on a Novel Framework. Energy 2022, 239, 122450. [Google Scholar] [CrossRef]
- Krumm, A.; Süsser, D.; Blechinger, P. Modelling Social Aspects of the Energy Transition: What Is the Current Representation of Social Factors in Energy Models? Energy 2022, 239, 121706. [Google Scholar] [CrossRef]
- Nielsen, K.S.; Nicholas, K.A.; Creutzig, F.; Dietz, T.; Stern, P.C. The Role of High-Socioeconomic-Status People in Locking in or Rapidly Reducing Energy-Driven Greenhouse Gas Emissions. Nat. Energy 2021, 6, 1011–1016. [Google Scholar] [CrossRef]
- Kaffashi, S.; Shamsudin, M.N. Transforming to a Low Carbon Society; an Extended Theory of Planned Behaviour of Malaysian Citizens. J. Clean. Prod. 2019, 235, 1255–1264. [Google Scholar] [CrossRef]
- Beauchampet, I.; Walsh, B. Energy Citizenship in the Netherlands: The Complexities of Public Engagement in a Large-Scale Energy Transition. Energy Res. Soc. Sci. 2021, 76, 102056. [Google Scholar] [CrossRef]
- Newell, P.J.; Geels, F.W.; Sovacool, B.K. Navigating Tensions between Rapid and Just Low-Carbon Transitions. Environ. Res. Lett. 2022, 17, 041006. [Google Scholar] [CrossRef]
- Chilvers, J.; Bellamy, R.; Pallett, H.; Hargreaves, T. A Systemic Approach to Mapping Participation with Low-Carbon Energy Transitions. Nat. Energy 2021, 6, 250–259. [Google Scholar] [CrossRef]
- Cambini, C.; Congiu, R.; Jamasb, T.; Llorca, M.; Soroush, G. Energy Systems Integration: Implications for Public Policy. Energy Policy 2020, 143, 111609. [Google Scholar] [CrossRef]
- Andersen, A.D.; Markard, J.; Bauknecht, D.; Korpås, M. Architectural Change in Accelerating Transitions: Actor Preferences, System Architectures, and Flexibility Technologies in the German Energy Transition. Energy Res. Soc. Sci. 2023, 97, 102945. [Google Scholar] [CrossRef]
- Munro, F.R.; Cairney, P. A Systematic Review of Energy Systems: The Role of Policymaking in Sustainable Transitions. Renew. Sustain. Energy Rev. 2020, 119, 109598. [Google Scholar] [CrossRef]
- Gatto, A.; Drago, C.; Panarello, D.; Aldieri, L. Energy Transition in China: Assessing Progress in Sustainable Development and Resilience Directions. Int. Econ. 2023, 176, 100450. [Google Scholar] [CrossRef]
- Chen, B.; Xiong, R.; Li, H.; Sun, Q.; Yang, J. Pathways for Sustainable Energy Transition. J. Clean. Prod. 2019, 228, 1564–1571. [Google Scholar] [CrossRef]
- Erin Bass, A.; Grøgaard, B. The Long-Term Energy Transition: Drivers, Outcomes, and the Role of the Multinational Enterprise. J. Int. Bus. Stud. 2021, 52, 807–823. [Google Scholar] [CrossRef]
- Isoaho, K.; Karhunmaa, K. A Critical Review of Discursive Approaches in Energy Transitions. Energy Policy 2019, 128, 930–942. [Google Scholar] [CrossRef]
- Campos, I.; Marín-González, E. People in Transitions: Energy Citizenship, Prosumerism and Social Movements in Europe. Energy Res. Soc. Sci. 2020, 69, 101718. [Google Scholar] [CrossRef]
- Kabeyi, M.J.B.; Olanrewaju, O.A. Sustainable Energy Transition for Renewable and Low Carbon Grid Electricity Generation and Supply. Front. Energy Res. 2022, 9, 1032. [Google Scholar] [CrossRef]
- Blondeel, M.; Bradshaw, M.J.; Bridge, G.; Kuzemko, C. The Geopolitics of Energy System Transformation: A Review. Geogr. Compass 2021, 15, e12580. [Google Scholar] [CrossRef]
- Scholten, D.; Bazilian, M.; Overland, I.; Westphal, K. The Geopolitics of Renewables: New Board, New Game. Energy Policy 2020, 138, 111059. [Google Scholar] [CrossRef]
- Bricout, A.; Slade, R.; Staffell, I.; Halttunen, K. From the Geopolitics of Oil and Gas to the Geopolitics of the Energy Transition: Is There a Role for European Supermajors? Energy Res. Soc. Sci. 2022, 88, 102634. [Google Scholar] [CrossRef]
- Khan, I.; Hou, F.; Zakari, A.; Tawiah, V.K. The Dynamic Links among Energy Transitions, Energy Consumption, and Sustainable Economic Growth: A Novel Framework for IEA Countries. Energy 2021, 222, 119935. [Google Scholar] [CrossRef]
- York, R.; Bell, S.E. Energy Transitions or Additions?: Why a Transition from Fossil Fuels Requires More than the Growth of Renewable Energy. Energy Res. Soc. Sci. 2019, 51, 40–43. [Google Scholar] [CrossRef]
- Neofytou, H.; Nikas, A.; Doukas, H. Sustainable Energy Transition Readiness: A Multicriteria Assessment Index. Renew. Sustain. Energy Rev. 2020, 131, 109988. [Google Scholar] [CrossRef]
- Smith, W.A.; Burdyny, T.; Vermaas, D.A.; Geerlings, H. Pathways to Industrial-Scale Fuel out of Thin Air from CO2 Electrolysis. Joule 2019, 3, 1822–1834. [Google Scholar] [CrossRef]
- Jebli, M.B.; Farhani, S.; Guesmi, K. Renewable Energy, CO2 Emissions and Value Added: Empirical Evidence from Countries with Different Income Levels. Struct. Chang. Econ. Dyn. 2020, 53, 402–410. [Google Scholar] [CrossRef]
- Shan, S.; Genç, S.Y.; Kamran, H.W.; Dinca, G. Role of Green Technology Innovation and Renewable Energy in Carbon Neutrality: A Sustainable Investigation from Turkey. J. Environ. Manag. 2021, 294, 113004. [Google Scholar] [CrossRef] [PubMed]
- Razmjoo, A.; Kaigutha, L.G.; Rad, M.V.; Marzband, M.; Davarpanah, A.; Denai, M. A Technical Analysis Investigating Energy Sustainability Utilizing Reliable Renewable Energy Sources to Reduce CO2 Emissions in a High Potential Area. Renew. Energy 2021, 164, 46–57. [Google Scholar] [CrossRef]
- Flores-Granobles, M.; Saeys, M. Minimizing CO2 Emissions with Renewable Energy: A Comparative Study of Emerging Technologies in the Steel Industry. Energy Environ. Sci. 2020, 13, 1923–1932. [Google Scholar] [CrossRef]
- Chien, F.; Ajaz, T.; Andlib, Z.; Chau, K.Y.; Ahmad, P.; Sharif, A. The Role of Technology Innovation, Renewable Energy and Globalization in Reducing Environmental Degradation in Pakistan: A Step towards Sustainable Environment. Renew. Energy 2021, 177, 308–317. [Google Scholar] [CrossRef]
- Godil, D.I.; Yu, Z.; Sharif, A.; Usman, R.; Khan, S.A.R. Investigate the Role of Technology Innovation and Renewable Energy in Reducing Transport Sector CO2 Emission in China: A Path toward Sustainable Development. Sustain. Dev. 2021, 29, 694–707. [Google Scholar] [CrossRef]
- Khattak, S.I.; Ahmad, M.; Khan, Z.U.; Khan, A. Exploring the Impact of Innovation, Renewable Energy Consumption, and Income on CO2 Emissions: New Evidence from the BRICS Economies. Environ. Sci. Pollut. Res. 2020, 27, 13866–13881. [Google Scholar] [CrossRef] [PubMed]
- Green, F.; Gambhir, A. Transitional Assistance Policies for Just, Equitable and Smooth Low-Carbon Transitions: Who, What and How? Clim. Policy 2020, 20, 902–921. [Google Scholar] [CrossRef]
- Johnson, O.W.; Han, J.Y.-C.; Knight, A.-L.; Mortensen, S.; Aung, M.T.; Boyland, M.; Resurrección, B.P. Intersectionality and Energy Transitions: A Review of Gender, Social Equity and Low-Carbon Energy. Energy Res. Soc. Sci. 2020, 70, 101774. [Google Scholar] [CrossRef]
- Bolwig, S.; Bazbauers, G.; Klitkou, A.; Lund, P.D.; Blumberga, A.; Gravelsins, A.; Blumberga, D. Review of Modelling Energy Transitions Pathways with Application to Energy System Flexibility. Renew. Sustain. Energy Rev. 2019, 101, 440–452. [Google Scholar] [CrossRef]
- Meadowcroft, J.; Rosenbloom, D. Governing the Net-Zero Transition: Strategy, Policy, and Politics. Proc. Natl. Acad. Sci. USA 2023, 120, e2207727120. [Google Scholar] [CrossRef]
- Ran, Q.; Liu, L.; Razzaq, A.; Meng, Y.; Yang, X. Does Green Finance Improve Carbon Emission Efficiency? Experimental Evidence from China. Environ. Sci. Pollut. Res. 2023, 30, 48288–48299. [Google Scholar] [CrossRef]
- Xiao, J. A Hybrid Model Analysis of Digitalization Energy System: Evidence from China’s Green Energy Analysis. Environ. Sci. Pollut. Res. 2023, 30, 58986–58997. [Google Scholar] [CrossRef]
- Teng, Z.; He, Y.; Qiao, Z. Exploring the Synergistic Effects of Digitalization and Economic Uncertainty on Environmental Sustainability: An Investigation from China. Sustainability 2023, 15, 11997. [Google Scholar] [CrossRef]
- Wen, H.; Jiang, L. The Challenges of Maturity Mismatch in Investment and Financing for Sustainable Development of Carbon-Intensive Enterprises. Environ. Sci. Pollut. Res. 2023, 30, 99541–99560. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Du, L.; Wei, C. Equity-Efficiency Trade-off in China’s Energy Capping Policy. Energy Policy 2019, 126, 57–65. [Google Scholar] [CrossRef]
- Nie, C.; Li, R.; Feng, Y.; Chen, Z. The Impact of China’s Energy Saving and Emission Reduction Demonstration City Policy on Urban Green Technology Innovation. Sci. Rep. 2023, 13, 15168. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Tang, Y.; Liu, Y. How Does Environmental Tax Influence the Scale and Efficiency of Green Investment among China’s Heavily Polluting Enterprises? Sustainability 2023, 15, 15021. [Google Scholar] [CrossRef]
- Zhang, W.; Zhao, S.; Wan, X.; Yao, Y. Study on the Effect of Digital Economy on High-Quality Economic Development in China. PLoS ONE 2021, 16, e0257365. [Google Scholar] [CrossRef] [PubMed]
- Su, J.; Su, K.; Wang, S. Does the Digital Economy Promote Industrial Structural Upgrading?—A Test of Mediating Effects Based on Heterogeneous Technological Innovation. Sustainability 2021, 13, 10105. [Google Scholar] [CrossRef]
- He, Y.; Li, K.; Wang, Y. Crossing the Digital Divide: The Impact of the Digital Economy on Elderly Individuals’ Consumption Upgrade in China. Technol. Soc. 2022, 71, 102141. [Google Scholar] [CrossRef]
- Fu, S.; Liu, J.; Tian, J.; Peng, J.; Wu, C. Impact of Digital Economy on Energy Supply Chain Efficiency: Evidence from Chinese Energy Enterprises. Energies 2023, 16, 568. [Google Scholar] [CrossRef]
- Wang, P.; Cen, C. Does Digital Economy Development Promote Innovation Efficiency? A Spatial Econometric Approach for Chinese Regions. Technol. Anal. Strateg. Manag. 2022, 1–15. [Google Scholar] [CrossRef]
- Liu, X.; Fan, S.; Cao, F.; Peng, S.; Huang, H. Study on the Drivers of Inclusive Green Growth in China Based on the Digital Economy Represented by the Internet of Things (IoT). Comput. Intell. Neurosci. 2022, 2022, 8340371. [Google Scholar] [CrossRef]
- Wang, X.; Li, J. Heterogeneous Effect of Digital Economy on Carbon Emission Reduction. J. Clean. Prod. 2023, 429, 139560. [Google Scholar] [CrossRef]
- Zhao, J.; Sinha, A.; Inuwa, N.; Wang, Y.; Murshed, M.; Abbasi, K.R. Does Structural Transformation in Economy Impact Inequality in Renewable Energy Productivity? Implications for Sustainable Development. Renew. Energy 2022, 189, 853–864. [Google Scholar] [CrossRef]
- Chen, M.; Sinha, A.; Hu, K.; Shah, M.I. Impact of Technological Innovation on Energy Efficiency in Industry 4.0 Era: Moderation of Shadow Economy in Sustainable Development. Technol. Forecast. Soc. Chang. 2021, 164, 120521. [Google Scholar] [CrossRef]
- Zhu, Y.; Taylor, D.; Wang, Z. The Role of Renewable Energy in Reducing Residential Fossil Energy-Related CO2 Emissions: Evidence from Rural China. J. Clean. Prod. 2022, 366, 132891. [Google Scholar] [CrossRef]
- Huang, S.-Z. The Effect of Natural Resources and Economic Factors on Energy Transition: New Evidence from China. Resour. Policy 2022, 76, 102620. [Google Scholar] [CrossRef]
- Dong, K.; Jiang, Q.; Shahbaz, M.; Zhao, J. Does Low-Carbon Energy Transition Mitigate Energy Poverty? The Case of Natural Gas for China. Energy Econ. 2021, 99, 105324. [Google Scholar] [CrossRef]
- Sun, G.; Li, G.; Dilanchiev, A.; Kazimova, A. Promotion of Green Financing: Role of Renewable Energy and Energy Transition in China. Renew. Energy 2023, 210, 769–775. [Google Scholar] [CrossRef]
- Llorca, M.; Meunié, A. SO2 Emissions and the Environmental Kuznets Curve: The Case of Chinese Provinces. J. Chin. Econ. Bus. Stud. 2009, 7, 1–16. [Google Scholar] [CrossRef]
- Hung, N.T. Effect of Economic Indicators, Biomass Energy on Human Development in China. Energy Environ. 2022, 33, 829–852. [Google Scholar] [CrossRef]
- Adebayo, T.S.; Awosusi, A.A.; Uhunamure, S.E.; Shale, K. Race to Achieving Sustainable Environment in China: Can Financial Globalization and Renewable Energy Consumption Help Meet This Stride? Sci. Prog. 2022, 105, 00368504221138715. [Google Scholar] [CrossRef]
- Hao, Y.; Peng, H. On the Convergence in China’s Provincial per Capita Energy Consumption: New Evidence from a Spatial Econometric Analysis. Energy Econ. 2017, 68, 31–43. [Google Scholar] [CrossRef]
- Li, K.; Zhou, Y.; Xiao, H.; Li, Z.; Shan, Y. Decoupling of Economic Growth from CO2 Emissions in Yangtze River Economic Belt Cities. Sci. Total Environ. 2021, 775, 145927. [Google Scholar] [CrossRef]
- Pata, U.K.; Caglar, A.E. Investigating the EKC Hypothesis with Renewable Energy Consumption, Human Capital, Globalization and Trade Openness for China: Evidence from Augmented ARDL Approach with a Structural Break. Energy 2021, 216, 119220. [Google Scholar] [CrossRef]
- Ang, J.B. CO2 Emissions, Research and Technology Transfer in China. Ecol. Econ. 2009, 68, 2658–2665. [Google Scholar] [CrossRef]
- Liu, X.; Bae, J. Urbanization and Industrialization Impact of CO2 Emissions in China. J. Clean. Prod. 2018, 172, 178–186. [Google Scholar] [CrossRef]
- Xu, B.; Lin, B. How Industrialization and Urbanization Process Impacts on CO2 Emissions in China: Evidence from Nonparametric Additive Regression Models. Energy Econ. 2015, 48, 188–202. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, W.; Huo, T.; Streets, D.G.; Wang, C. Investigating the Spatio-Temporal Influences of Urbanization and Other Socioeconomic Factors on City-Level Industrial NOx Emissions: A Case Study in China. Environ. Impact Assess. Rev. 2023, 99, 106998. [Google Scholar] [CrossRef]
- Cheng, Z.; Hu, X. The Effects of Urbanization and Urban Sprawl on CO2 Emissions in China. Environ. Dev. Sustain. 2023, 25, 1792–1808. [Google Scholar] [CrossRef]
- Qi, X.; Han, Y.; Kou, P. Population Urbanization, Trade Openness and Carbon Emissions: An Empirical Analysis Based on China. Air Qual. Atmos. Health 2020, 13, 519–528. [Google Scholar] [CrossRef]
- Hou, F.; Su, H.; Li, Y.; Qian, W.; Xiao, J.; Guo, S. The Impact of Foreign Direct Investment on China’s Carbon Emissions. Sustainability 2021, 13, 11911. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, H.; Wang, S. Trade Openness, Economic Growth, and Energy Intensity in China. Technol. Forecast. Soc. Chang. 2022, 179, 121608. [Google Scholar] [CrossRef]
- Tan, F.; Wan, H.; Jiang, X.; Niu, Z. The Impact of Outward Foreign Direct Investment on Carbon Emission toward China’s Sustainable Development. Sustainability 2021, 13, 11605. [Google Scholar] [CrossRef]
- Han, J.; Zeeshan, M.; Ullah, I.; Rehman, A.; Afridi, F.E.A. Trade Openness and Urbanization Impact on Renewable and Non-Renewable Energy Consumption in China. Environ. Sci. Pollut. Res. 2022, 29, 41653–41668. [Google Scholar] [CrossRef]
- Zhou, Y.; Fu, J.; Kong, Y.; Wu, R. How Foreign Direct Investment Influences Carbon Emissions, Based on the Empirical Analysis of Chinese Urban Data. Sustainability 2018, 10, 2163. [Google Scholar] [CrossRef]
- Zhu, Z.; Liu, B.; Yu, Z.; Cao, J. Effects of the Digital Economy on Carbon Emissions: Evidence from China. Int. J. Environ. Res. Public Health 2022, 19, 9450. [Google Scholar] [CrossRef]
- Zheng, H.; Li, X. The Impact of Digital Financial Inclusion on Carbon Dioxide Emissions: Empirical Evidence from Chinese Provinces Data. Energy Rep. 2022, 8, 9431–9440. [Google Scholar] [CrossRef]
- Meng, X.; Xu, S.; Zhang, J. How Does Industrial Intelligence Affect Carbon Intensity in China? Empirical Analysis Based on Chinese Provincial Panel Data. J. Clean. Prod. 2022, 376, 134273. [Google Scholar] [CrossRef]
- Fan, L.; Zhang, Y.; Jin, M.; Ma, Q.; Zhao, J. Does New Digital Infrastructure Promote the Transformation of the Energy Structure? The Perspective of China’s Energy Industry Chain. Energies 2022, 15, 8784. [Google Scholar] [CrossRef]
- Yu, D.; Yang, L.; Xu, Y. The Impact of the Digital Economy on High-Quality Development: An Analysis Based on the National Big Data Comprehensive Test Area. Sustainability 2022, 14, 14468. [Google Scholar] [CrossRef]
- Tang, M.; Liu, Y.; Hu, F.; Wu, B. Effect of Digital Transformation on Enterprises’ Green Innovation: Empirical Evidence from Listed Companies in China. Energy Econ. 2023, 128, 107135. [Google Scholar] [CrossRef]
- He, J.; Su, H. Digital Transformation and Green Innovation of Chinese Firms: The Moderating Role of Regulatory Pressure and International Opportunities. Int. J. Environ. Res. Public Health 2022, 19, 13321. [Google Scholar] [CrossRef]
- Hsiao, C. Analysis of Panel Data; Cambridge University Press: Cambridge, UK, 2022. [Google Scholar]
- Wang, Z.; Li, X.; Xue, X.; Liu, Y. More Government Subsidies, More Green Innovation? The Evidence from Chinese New Energy Vehicle Enterprises. Renew. Energy 2022, 197, 11–21. [Google Scholar] [CrossRef]
- Sung, B. Do Government Subsidies Promote Firm-Level Innovation? Evidence from the Korean Renewable Energy Technology Industry. Energy Policy 2019, 132, 1333–1344. [Google Scholar] [CrossRef]
- Xu, R.; Shen, Y.; Liu, M.; Li, L.; Xia, X.; Luo, K. Can Government Subsidies Improve Innovation Performance? Evidence from Chinese Listed Companies. Econ. Model. 2023, 120, 106151. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, R.; Tanaka, K.; Ciais, P.; Penuelas, J.; Balkanski, Y.; Sardans, J.; Hauglustaine, D.; Liu, W.; Xing, X. Accelerating the Energy Transition towards Photovoltaic and Wind in China. Nature 2023, 619, 761–767. [Google Scholar] [CrossRef] [PubMed]
- Qi, Y.; Liu, T.; Jing, L. China’s Energy Transition towards Carbon Neutrality with Minimum Cost. J. Clean. Prod. 2023, 388, 135904. [Google Scholar] [CrossRef]
- Shen, Y.; Shi, X.; Zhao, Z.; Sun, Y.; Shan, Y. Measuring the Low-Carbon Energy Transition in Chinese Cities. iScience 2023, 26, 105803. [Google Scholar] [CrossRef]
- Su, X.; Tan, J. Regional Energy Transition Path and the Role of Government Support and Resource Endowment in China. Renew. Sustain. Energy Rev. 2023, 174, 113150. [Google Scholar] [CrossRef]
- Wang, Y.; He, Y. Does Information and Communication Technology Trade Openness Matter for China’s Energy Transformation and Environmental Quality? Energies 2023, 16, 2016. [Google Scholar] [CrossRef]
- Li, L.; Taeihagh, A. An In-Depth Analysis of the Evolution of the Policy Mix for the Sustainable Energy Transition in China from 1981 to 2020. Appl. Energy 2020, 263, 114611. [Google Scholar] [CrossRef]
- Zhang, S.; Chen, W. Assessing the Energy Transition in China towards Carbon Neutrality with a Probabilistic Framework. Nat. Commun. 2022, 13, 87. [Google Scholar] [CrossRef]
- Shen, G.; Ru, M.; Du, W.; Zhu, X.; Zhong, Q.; Chen, Y.; Shen, H.; Yun, X.; Meng, W.; Liu, J. Impacts of Air Pollutants from Rural Chinese Households under the Rapid Residential Energy Transition. Nat. Commun. 2019, 10, 3405. [Google Scholar] [CrossRef]
- Cheng, S.; Shu, C.; Jin, M.; He, Y. Balancing Resources and Sustainability: Analyzing the Impact of Mineral Resources Utilization on Green Growth. Resour. Policy 2023, 86, 104143. [Google Scholar] [CrossRef]
- Ding, X.; Liu, X. Renewable Energy Development and Transportation Infrastructure Matters for Green Economic Growth? Empirical Evidence from China. Econ. Anal. Policy 2023, 79, 634–646. [Google Scholar] [CrossRef]
- Zhang, D.; Du, P. How China “Going Green” Impacts Corporate Performance? J. Clean. Prod. 2020, 258, 120604. [Google Scholar] [CrossRef]
- Wang, Q.; Su, M. The Effects of Urbanization and Industrialization on Decoupling Economic Growth from Carbon Emission–a Case Study of China. Sustain. Cities Soc. 2019, 51, 101758. [Google Scholar] [CrossRef]
- Li, B.; Haneklaus, N. The Role of Renewable Energy, Fossil Fuel Consumption, Urbanization and Economic Growth on CO2 Emissions in China. Energy Rep. 2021, 7, 783–791. [Google Scholar] [CrossRef]
- Sikder, M.; Wang, C.; Yao, X.; Huai, X.; Wu, L.; Kwame Yeboah, F.; Wood, J.; Zhao, Y.; Dou, X. The Integrated Impact of GDP Growth, Industrialization, Energy Use, and Urbanization on CO2 Emissions in Developing Countries: Evidence from the Panel ARDL Approach. Sci. Total Environ. 2022, 837, 155795. [Google Scholar] [CrossRef]
- Bai, Y.; Deng, X.; Gibson, J.; Zhao, Z.; Xu, H. How Does Urbanization Affect Residential CO2 Emissions? An Analysis on Urban Agglomerations of China. J. Clean. Prod. 2019, 209, 876–885. [Google Scholar] [CrossRef]
- Kongkuah, M.; Yao, H.; Yilanci, V. The Relationship between Energy Consumption, Economic Growth, and CO2 Emissions in China: The Role of Urbanisation and International Trade. Environ. Dev. Sustain. 2022, 24, 4684–4708. [Google Scholar] [CrossRef]
- Hassan, T.; Khan, Y.; Safi, A.; Chaolin, H.; Wahab, S.; Daud, A.; Tufail, M. Green Financing Strategy for Low-Carbon Economy: The Role of High-Technology Imports and Institutional Strengths in China. J. Clean. Prod. 2023, 415, 137859. [Google Scholar] [CrossRef]
- Liu, X.; Shen, B.; Price, L.; Hasanbeigi, A.; Lu, H.; Yu, C.; Fu, G. A Review of International Practices for Energy Efficiency and Carbon Emissions Reduction and Lessons Learned for China. WIREs Energy Environ. 2019, 8, e342. [Google Scholar] [CrossRef]
- Zhou, Q.; Wu, J.; Imran, M.; Nassani, A.A.; Binsaeed, R.H.; Zaman, K. Examining the Trade-Offs in Clean Energy Provision: Focusing on the Relationship between Technology Transfer, Renewable Energy, Industrial Growth, and Carbon Footprint Reduction. Heliyon 2023, 9, e20271. [Google Scholar] [CrossRef] [PubMed]
- Xie, R.; Teo, T.S. Green Technology Innovation, Environmental Externality, and the Cleaner Upgrading of Industrial Structure in China—Considering the Moderating Effect of Environmental Regulation. Technol. Forecast. Soc. Chang. 2022, 184, 122020. [Google Scholar] [CrossRef]
- Xie, L.; Mu, X.; Lu, K.; Hu, D.; Hu, G. The Time-Varying Relationship between CO2 Emissions, Heterogeneous Energy Consumption, and Economic Growth in China. Environ. Dev. Sustain. 2023, 25, 7769–7793. [Google Scholar] [CrossRef]
- Li, Y.; Zuo, Z.; Cheng, Y.; Cheng, J.; Xu, D. Towards a Decoupling between Regional Economic Growth and CO2 Emissions in China’s Mining Industry: A Comprehensive Decomposition Framework. Resour. Policy 2023, 80, 103271. [Google Scholar] [CrossRef]
- Zhang, Z.; Nuță, F.M.; Dimen, L.; Ullah, I.; Xuanye, S.; Junchen, Y.; Yihan, Z.; Yi, C. Relationship between FDI Inflow, CO2 Emissions, Renewable Energy Consumption, and Population Health Quality in China. Front. Environ. Sci. 2023, 11, 1120970. [Google Scholar] [CrossRef]
- Chi, F.; Meng, Z. The Effects of ICT and FDI on CO2 Emissions in China. Environ. Sci. Pollut. Res. 2023, 30, 3133–3145. [Google Scholar] [CrossRef]
- Boamah, V.; Tang, D.; Zhang, Q.; Zhang, J. Do FDI Inflows into African Countries Impact Their CO2 Emission Levels? Sustainability 2023, 15, 3131. [Google Scholar] [CrossRef]
- Feng, T.; Chen, X.; Ma, J.; Sun, Y.; Du, H.; Yao, Y.; Chen, Z.; Wang, S.; Mi, Z. Air Pollution Control or Economic Development? Empirical Evidence from Enterprises with Production Restrictions. J. Environ. Manag. 2023, 336, 117611. [Google Scholar] [CrossRef]
- Zou, W.; Pan, M. Does the Construction of Network Infrastructure Reduce Environmental Pollution?—Evidence from a Quasi-Natural Experiment in “Broadband China”. Environ. Sci. Pollut. Res. 2023, 30, 242–258. [Google Scholar] [CrossRef]
- Ren, S.; Hao, Y.; Wu, H. Digitalization and Environment Governance: Does Internet Development Reduce Environmental Pollution? J. Environ. Plan. Manag. 2023, 66, 1533–1562. [Google Scholar] [CrossRef]
- Wu, L.; Wan, X.; Jahanger, A.; Li, M.; Murshed, M.; Balsalobre-Lorente, D. Does the Digital Economy Reduce Air Pollution in China? A Perspective from Industrial Agglomeration. Energy Rep. 2023, 9, 3625–3641. [Google Scholar] [CrossRef]
- Fan, M.; Yang, P.; Li, Q. Impact of Environmental Regulation on Green Total Factor Productivity: A New Perspective of Green Technological Innovation. Environ. Sci. Pollut. Res. 2022, 29, 53785–53800. [Google Scholar] [CrossRef]
- Zhao, J.; Shen, J.; Yan, J.; Yang, X.; Hao, Y.; Ran, Q. Corruption, Market Segmentation and Haze Pollution: Empirical Evidence from China. J. Environ. Plan. Manag. 2023, 66, 642–664. [Google Scholar] [CrossRef]
- Xie, G.; Cui, Z.; Ren, S.; Li, K. Pathways to Carbon Neutrality: How Do Government Corruption and Resource Misallocation Affect Carbon Emissions? Environ. Sci. Pollut. Res. 2023, 30, 40283–40297. [Google Scholar] [CrossRef]
- Xu, X.; Yi, B. New Insights into the Impact of Local Corruption on China’s Regional Carbon Emissions Performance Based on the Spatial Spillover Effects. Sustainability 2022, 14, 15310. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, D.; Ji, Q.; Shi, X. Regional Renewable Energy Development in China: A Multidimensional Assessment. Renew. Sustain. Energy Rev. 2020, 124, 109797. [Google Scholar] [CrossRef]
- Xu, N.; Kasimov, I.; Wang, Y. Unlocking Private Investment as a New Determinant of Green Finance for Renewable Development in China. Renew. Energy 2022, 198, 1121–1130. [Google Scholar] [CrossRef]
- Qamruzzaman, M.; Karim, S. Does Public-Private Investment Augment Renewable Energy Consumption in BIMSTEC Nations? Evidence from Symmetric and Asymmetric Assessment. Energy Strategy Rev. 2023, 49, 101169. [Google Scholar] [CrossRef]
- Bai, C.; Feng, C.; Du, K.; Wang, Y.; Gong, Y. Understanding Spatial-Temporal Evolution of Renewable Energy Technology Innovation in China: Evidence from Convergence Analysis. Energy Policy 2020, 143, 111570. [Google Scholar] [CrossRef]
- Sun, Y. The Achievement, Significance and Future Prospect of China’s Renewable Energy Initiative. Int. J. Energy Res. 2020, 44, 12209–12244. [Google Scholar] [CrossRef]
- Yu, S.; Hu, X.; Li, L.; Chen, H. Does the Development of Renewable Energy Promote Carbon Reduction? Evidence from Chinese Provinces. J. Environ. Manag. 2020, 268, 110634. [Google Scholar] [CrossRef]
- Ahmad, M.; Işık, C.; Jabeen, G.; Ali, T.; Ozturk, I.; Atchike, D.W. Heterogeneous Links among Urban Concentration, Non-Renewable Energy Use Intensity, Economic Development, and Environmental Emissions across Regional Development Levels. Sci. Total Environ. 2021, 765, 144527. [Google Scholar] [CrossRef]
- Zhang, M.; Yang, Z.; Liu, L.; Zhou, D. Impact of Renewable Energy Investment on Carbon Emissions in China-An Empirical Study Using a Nonparametric Additive Regression Model. Sci. Total Environ. 2021, 785, 147109. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, Z.; Zhong, Z. CO2 Emissions, Economic Growth, Renewable and Non-Renewable Energy Production and Foreign Trade in China. Renew. Energy 2019, 131, 208–216. [Google Scholar] [CrossRef]
- Harlan, T. Low-Carbon Frontier: Renewable Energy and the New Resource Boom in Western China. China Q. 2023, 255, 591–610. [Google Scholar] [CrossRef]
- Wang, L.; You, J. An Integrated Perspective on the Spatial–Temporal Characteristics of China’s Manufacturing Carbon Emissions at the Regional and Industry Levels. Energy Rep. 2023, 10, 1688–1701. [Google Scholar] [CrossRef]
- Li, F.; Liu, H.; Ma, Y.; Xie, X.; Wang, Y.; Yang, Y. Low-Carbon Spatial Differences of Renewable Energy Technologies: Empirical Evidence from the Yangtze River Economic Belt. Technol. Forecast. Soc. Chang. 2022, 183, 121897. [Google Scholar] [CrossRef]
- Xu, C.; Xu, Y.; Chen, J.; Huang, S.; Zhou, B.; Song, M. Spatio-Temporal Efficiency of Fiscal Environmental Expenditure in Reducing CO2 Emissions in China’s Cities. J. Environ. Manag. 2023, 334, 117479. [Google Scholar] [CrossRef]
- Li, A.; Zhou, D.; Chen, G.; Liu, Y.; Long, Y. Multi-Region Comparisons of Energy-Related CO2 Emissions and Production Water Use during Energy Development in Northwestern China. Renew. Energy 2020, 153, 940–961. [Google Scholar] [CrossRef]
- Li, J.; Herdem, M.S.; Nathwani, J.; Wen, J.Z. Methods and Applications for Artificial Intelligence, Big Data, Internet of Things, and Blockchain in Smart Energy Management. Energy AI 2023, 11, 100208. [Google Scholar] [CrossRef]
- Lyu, W.; Liu, J. Artificial Intelligence and Emerging Digital Technologies in the Energy Sector. Appl. Energy 2021, 303, 117615. [Google Scholar] [CrossRef]
- Zhang, H.; Gao, S.; Zhou, P. Role of Digitalization in Energy Storage Technological Innovation: Evidence from China. Renew. Sustain. Energy Rev. 2023, 171, 113014. [Google Scholar] [CrossRef]
- Yi, M.; Liu, Y.; Sheng, M.S.; Wen, L. Effects of Digital Economy on Carbon Emission Reduction: New Evidence from China. Energy Policy 2022, 171, 113271. [Google Scholar] [CrossRef]
- Du, Y.; Zhou, J.; Bai, J.; Cao, Y. Breaking the Resource Curse: The Perspective of Improving Carbon Emission Efficiency Based on Digital Infrastructure Construction. Resour. Policy 2023, 85, 103842. [Google Scholar] [CrossRef]
- Wang, J.; Dong, K.; Dong, X.; Taghizadeh-Hesary, F. Assessing the Digital Economy and Its Carbon-Mitigation Effects: The Case of China. Energy Econ. 2022, 113, 106198. [Google Scholar] [CrossRef]
- Zhang, Y.; Su, L.; Jin, W.; Yang, Y. The Impact of Globalization on Renewable Energy Development in the Countries along the Belt and Road Based on the Moderating Effect of the Digital Economy. Sustainability 2022, 14, 6031. [Google Scholar] [CrossRef]
- Liu, H.; Wang, L.; Shen, Y. Can Digital Technology Reduce Carbon Emissions? Evidence from Chinese Cities. Front. Ecol. Evol. 2023, 11, 1205634. [Google Scholar] [CrossRef]
- Wang, C.; Zheng, C.; Hu, C.; Luo, Y.; Liang, M. Resources Sustainability and Energy Transition in China: Asymmetric Role of Digital Trade and Policy Uncertainty Using QARDL. Resour. Policy 2023, 85, 103845. [Google Scholar] [CrossRef]
- Ma, Q.; Tariq, M.; Mahmood, H.; Khan, Z. The Nexus between Digital Economy and Carbon Dioxide Emissions in China: The Moderating Role of Investments in Research and Development. Technol. Soc. 2022, 68, 101910. [Google Scholar] [CrossRef]
- Zhang, L.; Mu, R.; Zhan, Y.; Yu, J.; Liu, L.; Yu, Y.; Zhang, J. Digital Economy, Energy Efficiency, and Carbon Emissions: Evidence from Provincial Panel Data in China. Sci. Total Environ. 2022, 852, 158403. [Google Scholar] [CrossRef]
Variable | Form | Definition |
---|---|---|
Carbon dioxide emissions | Carbon dioxide emissions (kt) in log | |
Digitization | Fixed broadband subscriptions per 100 people in log | |
Energy transition | Proportion of renewable energy consumption within the overall energy mix | |
Gross domestic product | Gross domestic product in log | |
Technology development | Number of patents granted in log | |
Foreign direct investment | Net inflow of foreign direct investment (% GDP) | |
Trade openness | Ratio of total imports and exports to GDP | |
Urbanization | Share of the urban population in the total population | |
Industrialization | Ratio of industry to GDP |
Variable and Model | Model (1) | Model (2) | Model (3) |
---|---|---|---|
−0.204 *** (−5.523) | −0.117 *** (−5.907) | −0.176 *** (−5.019) | |
0.784 *** (3.423) | 0.847 *** (3.338) | ||
−0.018 * (−1.971) | −0.019 ** (−2.042) | ||
−0.068 ** (−2.065) | −0.073 ** (−2.119) | ||
−0.135 * (−1.639) | −0.122 * (−1.787) | ||
0.345 *** (2.552) | 0.311 ** (2.119) | ||
0.433 * (1.828) | 0.406 ** (2.044) | ||
0.094 *** (7.095) | |||
3.345 * (1.679) | 4.045 (1.268) | 5.608 (1.129) | |
Province-fixed effect | Yes | Yes | No |
Year-fixed effect | Yes | Yes | Yes |
F-test | 72.883 *** | 64.505 *** | |
AR(2) | 0.875 | ||
Hansen test | 12.711 | ||
0.314 | 0.312 |
Variable and Model | Model (4) | Model (5) | Model (6) |
---|---|---|---|
−0.198 *** (−4.453) | −0.139 *** (−4.825) | −0.096 *** (−4.756) | |
Yes | Yes | Yes | |
4.033 (1.444) | 4.536* (1.723) | 4.402 (1.036) | |
Province-fixed effect | Yes | Yes | Yes |
Year-fixed effect | Yes | Yes | Yes |
F-test | 88.725 *** | 83.848 *** | 78.045 *** |
0.326 | 0.339 | 0.299 | |
Eastern religion | Central religion | Western religion |
Variable and Model | Model (7) | Model (8) | Model (9) |
---|---|---|---|
−0.275 *** (−3.286) | −0.225 *** (−3.653) | −0.268 *** (−3.745) | |
0.032 (1.453) | 0.029 * (1.794) | 0.047 (1.302) | |
−0.102 *** (−2.534) | −0.113 *** (−2.808) | −0.108 *** (−2.618) | |
No | Yes | Yes | |
1.074 * (1.182) | 1.275 (1.494) | 1.659 (1.106) | |
F-test | 75.874 *** | 71.724 *** | |
AR(2) | 0.673 | ||
Hansen test | 13.363 | ||
0.213 | 0.331 | ||
Province-fixed effect | Yes | Yes | Yes |
Year-fixed effect | Yes | Yes | No |
Variable and Model | Model (10) | Model (11) | Model (12) |
---|---|---|---|
−2.897 *** (−5.341) | −2.275 *** (−4.461) | −2.009 *** (−4.707) | |
0.069 (1.397) | 0.038 (1.401) | 0.021 * (1.711) | |
−0.143 * (−1.716) | −0.128 (−1.184) | −0.107 (−1.734) | |
Yes | Yes | Yes | |
2.308 (1.502) | 2.181 (1.474) | 2.197 * (1.637) | |
Province-fixed effect | Yes | Yes | Yes |
Year-fixed effect | Yes | Yes | Yes |
F-test | 87.294 *** | 90.108 *** | 89.476 *** |
0.265 | 0.279 | 0.301 | |
Eastern religion | Central religion | Western religion |
Number of Thresholds | Threshold Value | F-Statistic Value |
---|---|---|
Single threshold | 0.302 | 83.456 *** |
Double threshold | 0.245 | 74.603 *** |
Triple threshold | 0.179 | 16.459 |
Variable and Model | Model (13) |
---|---|
−0.195 *** (−4.814) | |
−0.296 *** (−4.355) | |
−0.387 *** (−4.133) | |
Yes | |
1.228 * (1.646) | |
0.546 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; He, Y.; Wu, R. Digitization Meets Energy Transition: Shaping the Future of Environmental Sustainability. Energies 2024, 17, 767. https://doi.org/10.3390/en17040767
Wang L, He Y, Wu R. Digitization Meets Energy Transition: Shaping the Future of Environmental Sustainability. Energies. 2024; 17(4):767. https://doi.org/10.3390/en17040767
Chicago/Turabian StyleWang, Lin, Yugang He, and Renhong Wu. 2024. "Digitization Meets Energy Transition: Shaping the Future of Environmental Sustainability" Energies 17, no. 4: 767. https://doi.org/10.3390/en17040767
APA StyleWang, L., He, Y., & Wu, R. (2024). Digitization Meets Energy Transition: Shaping the Future of Environmental Sustainability. Energies, 17(4), 767. https://doi.org/10.3390/en17040767