Petrophysical and Geochemical Investigation-Based Methodology for Analysis of the Multilithology of the Permian Longtan Formation in Southeastern Sichuan Basin, SW China
Abstract
:1. Introduction
2. Geological Background
3. Sampling and Analytical Methods
4. Results
4.1. Petrological Characteristics of the Reservoir
4.2. Organic Geochemical Characteristics
4.2.1. Organic Matter Abundance
4.2.2. Organic Matter Type
4.2.3. Organic Matter Maturity
4.3. Pore Structure Characteristics
4.4. Content of Coal Measure Gas
5. Discussion
5.1. Main Controlling Factors of Coalbed Methane
- (1)
- Gas content
- (2)
- Porosity
5.2. Main Controlling Factors of Shale Gas
- (1)
- Total Organic Carbon (TOC)
- (2)
- Brittle Mineral Content
- (3)
- Thermal Maturity
- (4)
- Fracture Density
5.3. Main Controlling Factors of Gas in Tight Sandstone
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dai, L.; Lei, H.; Cheng, X.; Li, R. Prediction of coal seam gas content based on the correlation between gas basic parameters and coal quality indexes. Front. Energy Res. 2023, 10, 35–55. [Google Scholar] [CrossRef]
- Kang, H.; Gao, F.; Xu, G.; Ren, H. Mechanical behaviors of coal measures and ground control technologies for China’s deep coal mines—A review. J. Rock Mech. Geotech. Eng. 2023, 15, 37–65. [Google Scholar] [CrossRef]
- Liu, J.; Bai, X.; Elsworth, D. Evolution of pore systems in low-maturity oil shales during thermal upgrading—Quantified by dynamic SEM and machine learning. Pet. Sci. 2024. [Google Scholar] [CrossRef]
- Wang, Y.; Qin, Y.; Yang, L.; Liu, S.; Elsworth, D.; Zhang, R. Organic Geochemical and Petrographic Characteristics of the Coal Measure Source Rocks of Pinghu Formation in the Xihu Sag of the East China Sea Shelf Basin: Implications for Coal Measure Gas Potential. Acta Geol. Sin. 2020, 94, 364–375. [Google Scholar] [CrossRef]
- Wang, X.; Zou, C.; Li, J.; Wei, G.; Chen, J.; Xie, Z.; Li, Z.; Guo, J.; Lin, S.; Pan, S.; et al. Comparison on Rare Gas Geochemical Characteristics and Gas Originations of Kuche and Southwestern Depressions in Tarim Basin, China. Geofluids 2019, 20, 36–86. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhong, H.; Zhang, J.; Nielsen, C.P. Evaluating the effects of China’s pollution controls on inter-annual trends and uncertainties of atmospheric mercury emissions. Atmos. Chem. Phys. Discuss. 2015, 15, 4317–4337. [Google Scholar] [CrossRef]
- Hu, Z.; Klitzsch, N.; Jin, Y.; Li, C.; Gong, L.; Li, D.; Wang, S.; Yin, X. Assessment of Shale Gas Potential of Marine-Continental Transitional Longtan Formation from Southwestern Guizhou Province, China. Energy Fuels 2023, 38, 387–401. [Google Scholar] [CrossRef]
- Zhao, W.; Zhang, H.; Shi, Y.; Fu, X.; Hui, J.; Jing, X. Geological characteristics and exploration potential of the coal measure gas from Shan 2 of the Shanxi formation in the eastern Ordos Basin. Front. Earth Sci. 2023, 11, 35–96. [Google Scholar] [CrossRef]
- Tian, W.; Zhao, S.; Tian, F.; Li, X.; Huo, W.; Zhong, G.; Li, S. Symbiotic Combination and Accumulation of Coal Measure Gas in the Daning-Jixian Block, Eastern Margin of Ordos Basin, China. Energies 2023, 16, 1737. [Google Scholar] [CrossRef]
- Fan, C.; Xu, L.; Elsworth, D.; Luo, M.; Liu, T.; Li, S.; Zhou, L.; Su, W. Spatial-Temporal Evolution and Countermeasures for Coal and Gas Outbursts Represented as a Dynamic System. Rock Mech. Rock Eng. 2023, 60, 37–56. [Google Scholar] [CrossRef]
- Boggs, S.J. Petrology of Sedimentary Rocks; Cambridge University Press: New York, NY, USA, 2009. [Google Scholar]
- Li, P.; Zhang, X.; Li, J.; Zhao, J.; Huang, J.; Zhang, S.; Zhou, S. Analysis of the Key Factors Affecting the Productivity of Coalbed Methane Wells: A Case Study of a High-Rank Coal Reservoir in the Central and Southern Qinshui Basin, China. ACS Omega 2020, 5, 28012–28026. [Google Scholar] [CrossRef] [PubMed]
- Xiao, P.; Liu, X.; Zhao, B. Experimental study on gas adsorption characteristics of coals under different Protodyakonov’s coefficient. Energy Rep. 2022, 8, 10614–10623. [Google Scholar] [CrossRef]
- Yan, M.; Bai, Y.; Li, S.; Lin, H.; Yan, D.; Shu, C. Factors influencing the gas adsorption thermodynamic characteristics of low-rank coal. Fuel 2019, 248, 117–126. [Google Scholar] [CrossRef]
- Zhang, Y.; He, Z.; Jiang, S.; Lu, S.; Xiao, D.; Chen, G.; Zhao, J. Factors Affecting Shale Gas Accumulation in Overmature Shales Case Study from Lower Cambrian Shale in Western Sichuan Basin, South China. Energy Fuels 2018, 32, 3003–3012. [Google Scholar] [CrossRef]
- Zou, Z.; Liu, D.; Cai, Y.; Wang, Y.; Li, J. Geological Factors and Reservoir Properties Affecting the Gas Content of Coal Seams in the Gujiao Area, Northwest Qinshui Basin, China. Energies 2018, 11, 1044. [Google Scholar] [CrossRef]
- Fan, C.; Yang, L.; Sun, H.; Luo, M.; Zhou, L.; Yang, Z.; Li, S. Recent Advances and Perspectives of CO2-Enhanced Coalbed Methane: Experimental, Modeling, and Technological Development. Energy Fuels 2023, 37, 3371–3412. [Google Scholar] [CrossRef]
- Wang, M.; Lun, Z.; Zhao, C.; Wang, H.; Luo, C.; Fu, X.; Li, C.; Zhang, D. Influences of Primary Moisture on Methane Adsorption within Lower Silurian Longmaxi Shales in the Sichuan Basin, China. Energy Fuels 2020, 34, 10810–10824. [Google Scholar] [CrossRef]
- Min, L.; Huaichang, W.; Yan, L.; Weibo, Z.; Huijuan, G.; Hui, Z.; Yunpeng, W. Hydrocarbon generation from confined pyrolysis of Xujiahe Formation coal in the northwest Sichuan Basin, China. IOP Conf. Ser. Earth Environ. Sci. 2020, 600, 2011–2021. [Google Scholar]
- Zhang, H.; Hu, Z.; Xu, Y.; Fu, X.; Li, W.; Zhang, D. Impacts of Long-Term Exposure to Supercritical Carbon Dioxide on Physicochemical Properties and Adsorption and Desorption Capabilities of Moisture-Equilibrated Coals. Energy Fuels 2021, 35, 12270–12287. [Google Scholar] [CrossRef]
- Bian, C.; Zhao, W.; Wang, H.; Chen, Z.; Wang, Z.; Liu, G.; Zhao, C.; Wang, Y.; Xu, Z.; Li, Y.; et al. Contribution of moderate overall coal-bearing basin uplift to tight sand gas accumulation: Case study of the Xujiahe Formation in the Sichuan Basin and the Upper Paleozoic in the Ordos Basin, China. Pet. Sci. 2015, 12, 218–231. [Google Scholar] [CrossRef]
- Dai, J.; Gong, D.; Ni, Y.; Huang, S.; Wu, W. Stable carbon isotopes of coal-derived gases sourced from the Mesozoic coal measures in China. Org. Geochem. 2014, 74, 123–142. [Google Scholar] [CrossRef]
- Yang, Y.; Li, Y.; Zhang, W.; Li, Q.; Long, H. The timing of gas accumulation in the Xujiahe Formation of western Luzhou, Sichuan Basin. Nat. Gas Ind. 2010, 30, 19–22. [Google Scholar]
- Peng, Y.; Guo, S.; Ma, X. Evaluation on the Paralic Shale Gas of Longtan Formation in Guizhou. Spec. Oil Gas Reserv. 2018, 25, 7–11. [Google Scholar]
- Luo, Q.; Xiao, Z.; Dong, C.; Ye, X.; Li, H.; Zhang, Y.; Ma, Y.; Ma, L.; Xu, Y. The geochemical characteristics and gas potential of the Longtan formation in the eastern Sichuan Basin, China. Pet. Sci. Technol. 2019, 179, 1102–1113. [Google Scholar] [CrossRef]
- Fu, H.; Zha, H.; Zeng, L.; Gao, Q. Disintegration behavior and mechanism of carbonaceous mudstone under acidic corrosion and wetting-drying cycles. Bull. Eng. Geol. Environ. 2023, 82, 35–96. [Google Scholar] [CrossRef]
- Narita, A.; Yamada, T.; Matsumoto, M. Platanoid leaves from Cenomanian to Turonian Mikasa Formation, northern Japan and their mode of occurrence. Paleontol. Res. 2008, 12, 81–88. [Google Scholar] [CrossRef]
- Kheir, S.A.; Bamford, B.; Brogiato, A.; Carli, G.D.; Lambrughi, A. Assessment of the creep behavior of siltstone for the Snowy 2.0 hydropower station using multistage uniaxial creep tests. IOP Conf. Ser. Earth Environ. Sci. 2023, 1124, 012003. [Google Scholar] [CrossRef]
- Yang, P.; Miao, S.; Wang, H.; Li, C.; Shang, X.; Xia, D. Comparison of deformation behavior between creep and fatigue on siltstone and its modified damage model. Int. J. Fatigue 2023, 46, 3815–3828. [Google Scholar] [CrossRef]
- Wang, E.; Guo, T.; Li, M.; Xiong, L.; Dong, X.; Zhang, N.; Wang, T. Depositional Environment Variation and Organic Matter Accumulation Mechanism of Marine-Continental Transitional Shale in the Upper Permian Longtan Formation, Sichuan Basin, SW China. ACS Earth Space Chem. 2022, 6, 2199–2214. [Google Scholar] [CrossRef]
- Yu, T.; Huang, Q.; Kang, X.; Liu, X.; Xie, Q. On seismic response of loess-mudstone slope with underlying anti-dip fault zone: Laboratory investigation using shaking table test. Bull. Eng. Geol. Environ. 2023, 82, 38–43. [Google Scholar] [CrossRef]
- Chen, L.; Wang, Z.; Xie, Y.; Huang, W. Organic matter types of the Early Paleogene from the Sanshui Basin and its response to paleoclimate. In Proceedings of the 1st International Conference on Energy and Environmental Protection (ICEEP 2012), Hohhot, China, 23–24 June 2012; pp. 5809–5812. [Google Scholar]
- Jia, Y.; Han, D.; Wang, C.; Zhang, J.; Su, M. Organic Matter Type Judging Method, Involves Obtaining Content Percentage of Organic Micro-Component, and Judging Organic Matter Type of Sample According to Content Percentage of Organic Micro-Component; University Yangtze: Jingzhou City, China, 2013; pp. 35–75. [Google Scholar]
- Kang, S.; Shao, L.; Qin, L.; Li, S.; Liu, J.; Shen, W.; Chen, X.; Eriksson, K.A.; Zhou, Q. Hydrocarbon Generation Potential and Depositional Setting of Eocene Oil-Prone Coaly Source Rocks in the Xihu Sag, East China Sea Shelf Basin. Acs Omega 2020, 5, 32267–32285. [Google Scholar] [CrossRef]
- Huang, F.; Xin, M.A. Geochemical Evaluation Method of Nonmarine Source Rocks; China National Petroleum Corporation: Beijing, China, 1995; pp. 1–10. [Google Scholar]
- Qi, L.; Tang, X.; Wang, Z.; Peng, X. Pore characterization of different types of coal from coal and gas outburst disaster sites using low temperature nitrogen adsorption approach. Int. J. Min. Sci. Technol. 2017, 27, 371–377. [Google Scholar] [CrossRef]
- Ni, G.; Li, S.; Rahman, S.; Xun, M.; Wang, H.; Xu, Y.; Xie, H. Effect of nitric acid on the pore structure and fractal characteristics of coal based on the low-temperature nitrogen adsorption method. Powder Technol. 2020, 367, 506–516. [Google Scholar] [CrossRef]
- Ren, Z.; Jia, B.; Zhang, G.; Fu, X.; Wang, Z.; Wang, P.; Lv, L. Study on adsorption of ammonia nitrogen by iron-loaded activated carbon from low temperature wastewater. Chemosphere 2021, 262, 12–95. [Google Scholar] [CrossRef] [PubMed]
- Tao, S.; Pan, Z.J.; Tang, S.L.; Chen, S.D. Current status and geological conditions for the applicability of CBM drilling technologies in China: A review. Int. J. Coal Geol. 2019, 202, 95–108. [Google Scholar] [CrossRef]
- Pan, J.N.; Ge, T.Y.; Liu, W.Q.; Wang, K.; Wang, X.L.; Mou, P.W.; Wu, W.; Niu, Y.B. Organic matter provenance and accumulation of transitional facies coal and mudstone in Yangquan, China: Insights from petrology and geochemistry. J. Nat. Gas Sci. Eng. 2021, 94, 24–36. [Google Scholar] [CrossRef]
- Ye, J.C.; Tao, S.; Zhao, S.P.; Li, S.; Chen, S.D.; Cui, Y. Characteristics of methane adsorption/desorption heat and energy with respect to coal rank. J. Nat. Gas Sci. Eng. 2022, 99, 23–41. [Google Scholar] [CrossRef]
- Ge, T.Y.; Pan, J.N.; Wang, K.; Liu, W.Q.; Mou, P.W.; Wang, X.L. Heterogeneity of pore structure of late Paleozoic transitional facies coal-bearing shale in the Southern North China and its main controlling factors. Mar. Pet. Geol. 2020, 122, 66–85. [Google Scholar] [CrossRef]
- Li, M.; Li, M.J.; Pan, J.N.; Gao, D.; Cao, Y.X. Coalbed methane accumulation, in-situ stress, and permeability of coal reservoirs in a complex structural region (Fukang area) of the southern Junggar Basin, China. Front. Earth Sci. 2023, 10, 45–96. [Google Scholar] [CrossRef]
- Men, X.Y.; Tao, S.; Liu, Z.X.; Tian, W.G.; Chen, S.D. Experimental study on gas mass transfer process in a heterogeneous coal reservoir. Front. Earth Sci. 2021, 216, 75–96. [Google Scholar] [CrossRef]
- Tao, S.; Chen, S.D.; Pan, Z.J. Current status, challenges, and policy suggestions for coalbed methane industry development in China: A review. Energy Sci. Eng. 2019, 7, 1059–1074. [Google Scholar] [CrossRef]
- Fu, X.; Qin, Y.; Wang, G.G.X.; Rudolph, V. Evaluation of gas content of coalbed methane reservoirs with the aid of geophysical logging technology. Fuel 2009, 88, 2269–2277. [Google Scholar] [CrossRef]
- Cook, H.E. Method of sample prepare and X-ray diffraction data analysis. Natl. Conf. 1984, 28, 41–411. [Google Scholar]
- Otia, C. Vitrinite reflectance as maturity parameter. ACS Sym. 1996, 62, 63–85. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Liu, J.; Li, L.; Kassabi, N.; Hamdi, E. Petrophysical and Geochemical Investigation-Based Methodology for Analysis of the Multilithology of the Permian Longtan Formation in Southeastern Sichuan Basin, SW China. Energies 2024, 17, 766. https://doi.org/10.3390/en17040766
Zhang S, Liu J, Li L, Kassabi N, Hamdi E. Petrophysical and Geochemical Investigation-Based Methodology for Analysis of the Multilithology of the Permian Longtan Formation in Southeastern Sichuan Basin, SW China. Energies. 2024; 17(4):766. https://doi.org/10.3390/en17040766
Chicago/Turabian StyleZhang, Shengqi, Jun Liu, Li Li, Nadhem Kassabi, and Essaieb Hamdi. 2024. "Petrophysical and Geochemical Investigation-Based Methodology for Analysis of the Multilithology of the Permian Longtan Formation in Southeastern Sichuan Basin, SW China" Energies 17, no. 4: 766. https://doi.org/10.3390/en17040766
APA StyleZhang, S., Liu, J., Li, L., Kassabi, N., & Hamdi, E. (2024). Petrophysical and Geochemical Investigation-Based Methodology for Analysis of the Multilithology of the Permian Longtan Formation in Southeastern Sichuan Basin, SW China. Energies, 17(4), 766. https://doi.org/10.3390/en17040766