Energetic Performance of Natural Building Materials: Numerical Simulation and Experimental Evaluation
Abstract
:1. Introduction
- the flow of matter, energy and information that is determined in that reality;
- the interdependence of the organisms that live in that reality;
- the effectiveness of material and intangible transfers that take place between the various levels of their organization.
2. Materials and Stratigraphies
2.1. Base Materials
- Cross Laminated Timber (CLT) panels of Sardinian Maritime Pine as load-bearing material;
- Sheep wool and Rammed Earth-based panels, with added natural fibers, as insulating materials;
- Lime-based plaster, also with added natural fibers, and Sardinian Maritime Pine boards, as finishing.
2.2. Stratigraphies
2.3. Numerical Simulation
3. Results and Discussion
4. Conclusions
- The surface mass of the building element and the position of the insulating layers within the wall play a crucial role in the energy performance of the wall.
- For the Mediterranean climate assumed in the simulations, a building solution based on the W04 typology best balances the needs of heating and cooling energy in a building used 365 days/year; the result could change if the building is used mainly in the winter or summer.
- In general, the performance of walls with innovative natural materials layers and that of walls with conventional materials layers does not vary appreciably in terms of the thermal energy required for heating or cooling.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cicconi, P. Eco-Design and Eco-Materials: An Interactive and Collaborative Approach. Sustain. Mater. Technol. 2020, 23, e00135. [Google Scholar] [CrossRef]
- Dahmani, N.; Benhida, K.; Belhadi, A.; Kamble, S.; Elfezazi, S.; Jauhar, S.K. Smart Circular Product Design Strategies towards Eco-Effective Production Systems: A Lean Eco-Design Industry 4.0 Framework. J. Clean. Prod. 2021, 320, 128847. [Google Scholar] [CrossRef]
- Lambrechts, W.; Gelderman, C.J.; Semeijn, J.; Verhoeven, E. The Role of Individual Sustainability Competences in Eco-Design Building Projects. J. Clean. Prod. 2019, 208, 1631–1641. [Google Scholar] [CrossRef]
- Yu, H.; Chang, X.; Liu, W. Cost-Based Subsidy and Performance-Based Subsidy in a Manufacturing-Recycling System Considering Product Eco-Design. J. Clean. Prod. 2021, 327, 129391. [Google Scholar] [CrossRef]
- Spreafico, C. Can TRIZ (Theory of Inventive Problem Solving) Strategies Improve Material Substitution in Eco-Design? Sustain. Prod. Consum. 2022, 30, 889–915. [Google Scholar] [CrossRef]
- Nowotna, A.; Pietruszka, B.; Lisowski, P. Eco-Friendly Building Materials. IOP Conf. Ser. Earth Environ. Sci. 2019, 290, 012024. [Google Scholar] [CrossRef]
- Kuzman, M.K.; Sandberg, D. A New Era for Multi-Storey Timber Buildings in Europe. In Proceedings of the 70th Forest Products Society International Convention, Portland, OR, USA, 26–29 June 2016; p. 7. [Google Scholar]
- Brandner, R.; Flatscher, G.; Ringhofer, A.; Schickhofer, G.; Thiel, A. Cross Laminated Timber (CLT): Overview and Development. Eur. J. Wood Prod. 2016, 74, 331–351. [Google Scholar] [CrossRef]
- Han, L.C.; Bin Mirasa, A.K.; Saad, I.; Bt. Bolong, N.; Bt. Asman, N.S.A.; Bte Asrah, H.; Bin Abdullah, E.S.R. Use of Compressed Earth Bricks/Blocks in Load-Bearing Masonry Structural Systems: A Review. Mater. Sci. Forum 2020, 997, 9–19. [Google Scholar] [CrossRef]
- Miccoli, L.; Müller, U.; Fontana, P. Mechanical Behaviour of Earthen Materials: A Comparison between Earth Block Masonry, Rammed Earth and Cob. Constr. Build. Mater. 2014, 61, 327–339. [Google Scholar] [CrossRef]
- Meybodian, H.; Eslami, A.; Morshed, R. Sustainable Lateral Strengthening of Traditional Adobe Walls Using Natural Reinforcements. Constr. Build. Mater. 2020, 260, 119892. [Google Scholar] [CrossRef]
- Valdes, M.; Giaccu, G.F.; Meloni, D.; Concu, G. Reinforcement of Maritime Pine Cross-Laminated Timber Panels by Means of Natural Flax Fibers. Constr. Build. Mater. 2020, 233, 117741. [Google Scholar] [CrossRef]
- Chen, C.; Yang, Y.; Zhou, Y.; Xue, C.; Chen, X.; Wu, H.; Sui, L.; Li, X. Comparative Analysis of Natural Fiber Reinforced Polymer and Carbon Fiber Reinforced Polymer in Strengthening of Reinforced Concrete Beams. J. Clean. Prod. 2020, 263, 121572. [Google Scholar] [CrossRef]
- Majumder, A.; Stochino, F.; Farina, I.; Valdes, M.; Fraternali, F.; Martinelli, E. Physical and Mechanical Characteristics of Raw Jute Fibers, Threads and Diatons. Constr. Build. Mater. 2022, 326, 126903. [Google Scholar] [CrossRef]
- Majumder, A.; Stochino, F.; Frattolillo, A.; Valdes, M.; Fraternali, F.; Martinelli, E. Sustainable Building Material: Recycled Jute Fiber Composite Mortar for Thermal and Structural Retrofitting. In Computational Science and Its Applications—ICCSA 2022 Workshops; Gervasi, O., Murgante, B., Misra, S., Rocha, A.M.A.C., Garau, C., Eds.; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2022; Volume 13379, pp. 657–669. ISBN 978-3-031-10544-9. [Google Scholar]
- Majumder, A.; Farina, I.; Stochino, F.; Fraternali, F.; Martinelli, E. Natural Fibers Reinforced Mortars: Composition and Mechanical Properties. Key Eng. Mater. 2022, 913, 149–153. [Google Scholar] [CrossRef]
- Majumder, A.; Stochino, F.; Frattolillo, A.; Valdes, M.; Mancusi, G.; Martinelli, E. Jute Fiber-Reinforced Mortars: Mechanical Response and Thermal Performance. J. Build. Eng. 2023, 66, 105888. [Google Scholar] [CrossRef]
- Shadheer Ahamed, M.; Ravichandran, P.; Krishnaraja, A.R. Natural Fibers in Concrete—A Review. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1055, 012038. [Google Scholar] [CrossRef]
- de Azevedo, A.R.G.; Cruz, A.S.A.; Marvila, M.T.; de Oliveira, L.B.; Monteiro, S.N.; Vieira, C.M.F.; Fediuk, R.; Timokhin, R.; Vatin, N.; Daironas, M. Natural Fibers as an Alternative to Synthetic Fibers in Reinforcement of Geopolymer Matrices: A Comparative Review. Polymers 2021, 13, 2493. [Google Scholar] [CrossRef] [PubMed]
- Vatani Oskouei, A.; Afzali, M.; Madadipour, M. Experimental Investigation on Mud Bricks Reinforced with Natural Additives under Compressive and Tensile Tests. Constr. Build. Mater. 2017, 142, 137–147. [Google Scholar] [CrossRef]
- Gil, L. Cork. In Materials for Construction and Civil Engineering; Gonçalves, M.C., Margarido, F., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 585–627. ISBN 978-3-319-08235-6. [Google Scholar]
- Zach, J.; Korjenic, A.; Petránek, V.; Hroudová, J.; Bednar, T. Performance Evaluation and Research of Alternative Thermal Insulations Based on Sheep Wool. Energy Build. 2012, 49, 246–253. [Google Scholar] [CrossRef]
- Czajkowski, Ł.; Olek, W.; Weres, J.; Guzenda, R. Thermal Properties of Wood-Based Panels: Specific Heat Determination. Wood Sci. Technol. 2016, 50, 537–545. [Google Scholar] [CrossRef]
- Cagnon, H.; Aubert, J.E.; Coutand, M.; Magniont, C. Hygrothermal Properties of Earth Bricks. Energy Build. 2014, 80, 208–217. [Google Scholar] [CrossRef]
- Renovation Wave: Doubling the Renovation Rate to Cut Emissions, Boost Recovery and Reduce Energy Poverty. Available online: https://ec.europa.eu/commission/presscorner/detail/en/ip_20_1835 (accessed on 31 January 2024).
- ANSI/ASHRAE Standard 140-2017 (Supersedes ANSI/ASHRAE Standard 140-2014) Includes ANSI/ASHRAE Addendum listed in Annex C; Standard Method of Test for the Evaluation of Building Energy Analysis Computer Programs. American Society of Heating, Refrigerating and Air-Conditioning Engineers: Atlanta, GA, USA, 2017.
- ANSI/ASHRAE Addendum a to ANSI/ASHRAE Standard 140-2017; Standard Method of Test for the Evaluation of Building Energy Analysis Computer Programs. American Society of Heating, Refrigerating and Air-Conditioning Engineers: Atlanta, GA, USA, 2020.
- ISO 14064-1; Greenhouse Gases—Part 1: Specification with Guidance at the Organization Level for Quantification and Reporting of Greenhouse Gas Emissions and Removals. International Organization for Standardization: Geneva, Switzerland, 2018.
- ISO 14064-2; Greenhouse Gases—Part 2: Specification with Guidance at the Project Level for Quantification, Monitoring and Reporting of Greenhouse Gas Emission Reductions or Removal Enhancements. International Organization for Standardization: Geneva, Switzerland, 2019.
- ISO 14064-3; Greenhouse Gases—Part 3: Specification with Guidance for the Verification and Validation of Greenhouse Gas Statements. International Organization for Standardization: Geneva, Switzerland, 2019.
- EEA European Environment Agency. Available online: https://www.eea.europa.eu/en (accessed on 27 January 2024).
- Hasan, S.; Khan, S.; Akhtar, I.; Kirmani, S. Study of Natural Insulation Materials and Compared It with No Insulation Building. Mater. Today Proc. 2021, 46, 10692–10697. [Google Scholar] [CrossRef]
- Basu, P.; Kumar, R.; Das, M. Natural and Manmade Fibers as Sustainable Building Materials. Mater. Today Proc. 2023, S2214785323040919. [Google Scholar] [CrossRef]
- Zhao, J.R.; Zheng, R.; Tang, J.; Sun, H.J.; Wang, J. A Mini-Review on Building Insulation Materials from Perspective of Plastic Pollution: Current Issues and Natural Fibres as a Possible Solution. J. Hazard. Mater. 2022, 438, 129449. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Trabelsi, A.; El Mankibi, M. Hygrothermal Properties of Insulation Materials from Rice Straw and Natural Binders for Buildings. Constr. Build. Mater. 2023, 372, 130770. [Google Scholar] [CrossRef]
- Sabbarese, C.; Ambrosino, F.; D’Onofrio, A.; Roca, V. Radiological Characterization of Natural Building Materials from the Campania Region (Southern Italy). Constr. Build. Mater. 2021, 268, 121087. [Google Scholar] [CrossRef]
- Directive 2002/91/EC of the European Parliament and of the Council 2002. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2003:001:0065:0071:en:PDF (accessed on 27 January 2024).
- Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the Energy Performance of Buildings. 23. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2010:153:0013:0035:EN:PDF (accessed on 27 January 2024).
- Directive (EU) 2018/844 of the European Parliament and of the Council of 30 May 2018 Amending Directive 2010/31/EU on the Energy Performance of Buildings and Directive 2012/27/EU on Energy Efficiency. 17. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv%3AOJ.L_.2018.156.01.0075.01.ENG (accessed on 27 January 2024).
- ISO 13790; Energy Performance of Buildings-Calculation of Energy Use for Space Heating and Cooling. International Organization for Standardization: Geneva, Switzerland, 2008.
- IFC BIM-Based Methodology for Semi-Automated Building Energy Performance Simulation; CIB W78 International Conference on Information Technology; Leonardo, R. (Ed.) Universidad de Talca, Departamento de Ingeniería y Gestión de la Construcción: Santiago, Chile, 2008. [Google Scholar]
- Gerrish, T.; Ruikar, K.; Cook, M.; Johnson, M.; Phillip, M.; Lowry, C. BIM Application to Building Energy Performance Visualisation and Management: Challenges and Potential. Energy Build. 2017, 144, 218–228. [Google Scholar] [CrossRef]
- Ivanova, I.; Kiesel, K.; Mahdavi, A. BIM-Generated Data Models for EnergyPlus: A Comparison of gbXML and IFC Formats; Free University of Bozen-Bolzano: Bozen-Bolzano, Italy, 4 February 2015; pp. 407–414. [Google Scholar]
- Pan, X.; Mateen Khan, A.; Eldin, S.M.; Aslam, F.; Kashif Ur Rehman, S.; Jameel, M. BIM Adoption in Sustainability, Energy Modelling and Implementing Using ISO 19650: A Review. Ain Shams Eng. J. 2023, 15, 102252. [Google Scholar] [CrossRef]
- Bruhn, S.; Sacchi, R.; Cimpan, C.; Birkved, M. Ten Questions Concerning Prospective LCA for Decision Support for the Built Environment. Build. Environ. 2023, 242, 110535. [Google Scholar] [CrossRef]
- Scherz, M.; Kreiner, H.; Passer, A. Sustainable Procurement for Carbon Neutrality of Buildings: A Life Cycle Assessment (LCA)-Based Bonus/Malus System to Consider External Cost in the Bid Price. Dev. Built Environ. 2023, 14, 100161. [Google Scholar] [CrossRef]
- Arvizu-Piña, V.A.; Armendáriz López, J.F.; García González, A.A.; Barrera Alarcón, I.G. An Open Access Online Tool for LCA in Building’s Early Design Stage in the Latin American Context. A Screening LCA Case Study for a Bioclimatic Building. Energy Build. 2023, 295, 113269. [Google Scholar] [CrossRef]
- Forth, K.; Hollberg, A.; Borrmann, A. BIM4EarlyLCA: An Interactive Visualization Approach for Early Design Support Based on Uncertain LCA Results Using Open BIM. Dev. Built Environ. 2023, 16, 100263. [Google Scholar] [CrossRef]
- Guignone, G.; Calmon, J.L.; Vieira, D.; Bravo, A. BIM and LCA Integration Methodologies: A Critical Analysis and Proposed Guidelines. J. Build. Eng. 2023, 73, 106780. [Google Scholar] [CrossRef]
- Tam, V.W.; Zhou, Y.; Shen, L.; Le, K.N. Optimal BIM and LCA Integration Approach for Embodied Environmental Impact Assessment. J. Clean. Prod. 2023, 385, 135605. [Google Scholar] [CrossRef]
- Boriskina, Y. BIM Technologies’ Effect on Transformation of a Property Life Cycle. E3S Web Conf. 2019, 91, 08030. [Google Scholar] [CrossRef]
- Ecoinvent-Not-for-Profit Association. 2024. Available online: https://Ecoinvent.Org/ (accessed on 27 January 2024).
- Concu, G.; Achenza, M.M.; Baccoli, R.; Frattolillo, A.; Innamorati, R.; Mastino, C.C.; Riu, R.; Valdes, M. Local Supply Chains and Circular Economy for Building Materials. The PLES Project in Sardinia. In Computational Science and Its Applications–ICCSA 2021; Gervasi, O., Murgante, B., Misra, S., Garau, C., Blečić, I., Taniar, D., Apduhan, B.O., Rocha, A.M.A.C., Tarantino, E., Torre, C.M., Eds.; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2021; Volume 12958, pp. 44–58. ISBN 978-3-030-87015-7. [Google Scholar]
- Asdrubali, F.; D’Alessandro, F.; Schiavoni, S. A Review of Unconventional Sustainable Building Insulation Materials. Sustain. Mater. Technol. 2015, 4, 1–17. [Google Scholar] [CrossRef]
- Majumder, A.; Canale, L.; Mastino, C.C.; Pacitto, A.; Frattolillo, A.; Dell’Isola, M. Thermal Characterization of Recycled Materials for Building Insulation. Energies 2021, 14, 3564. [Google Scholar] [CrossRef]
- Schiavoni, S.; D’Alessandro, F.; Bianchi, F.; Asdrubali, F. Insulation Materials for the Building Sector: A Review and Comparative Analysis. Renew. Sustain. Energy Rev. 2016, 62, 988–1011. [Google Scholar] [CrossRef]
- Majumder, A.; Achenza, M.; Mastino, C.C.; Baccoli, R.; Frattolillo, A. Thermo-Acoustic Building Insulation Materials Fabricated with Recycled Fibers—Jute, Wool and Loofah. Energy Build. 2023, 293, 113211. [Google Scholar] [CrossRef]
- UNI 10351:2021; Materiali e Prodotti per Edilizia-Proprietàtermoigrometriche-Procedura per la Scelta dei Valori di Progetto. UNI: Rome, Italy, 2021.
- UNI 10355:1994; Murature e Solai. Valori della Resistenza Termica e Metodo di Calcolo. UNI: Rome, Italy, 1994.
- EN 1745; Masonry and Masonry Products-Methods for Determining Thermal Properties. UNI: Rome, Italy, 2020.
- ISO 13788; Hygrothermal Performance of Building Components and Building Elements—Internal Surface Temperature to Avoid Critical Surface Humidity and Interstitial Condensation—Calculation Methods. International Organization for Standardization: Geneva, Switzerland, 2018.
- CEN/TC 124 EN 14081-1:2016+A1:2019; Timber Structures-Strength Graded Structural Timber with Rectangular Cross Section—Part 1: General Requirements. CEN: Brussels, Belgium, 2019.
- Karamanos, A.; Hadiarakou, S.; Papadopoulos, A.M. The Impact of Temperature and Moisture on the Thermal Performance of Stone Wool. Energy Build. 2008, 40, 1402–1411. [Google Scholar] [CrossRef]
- Bakhshoodeh, R.; Ocampo, C.; Oldham, C. Thermal Performance of Green Façades: Review and Analysis of Published Data. Renew. Sustain. Energy Rev. 2022, 155, 111744. [Google Scholar] [CrossRef]
- ISO 6946; Building Components and Building Elements—Thermal Resistance and Thermal Transmittance–Calculation Methods. International Organization for Standardization: Geneva, Switzerland, 2007.
- ISO 13786; Thermal Performance of Building Components—Dynamic Thermal Characteristics—Calculation Methods. International Organization for Standardization: Geneva, Switzerland, 2017.
- ISO 12354-1:2017; Building Acoustics—Estimation of Acoustic Performance of Buildings from the Performance of Elements—Part 1: Airborne Sound Insulation between Rooms. International Organization for Standardization: Geneva, Switzerland, 2017.
- UNI 10349-1:2016; Climatic Data—Part 1: Monthly Average for the Evaluation of the Thermo-Energy Performance of the Building and Methods to Start Solar Irradiance in the Direct and Widespread Fraction and to Calculate Solar Irradiance on an Inclined Surface. UNI: Rome, Italy, 2016.
- UNI/TR 10349-2:2016; Heating and Cooling of Buildings-Climate Data—Part 2: Project Data. UNI: Rome, Italy, 2016.
- UNI 10349-3:2016; Heating and Cooling of Buildings-Climate Data—Part 3: Differences in Cumulated Temperature (Day Degrees) and Other Synthetic Indices. UNI: Rome, Italy, 2016.
ID | Material | ρ * [kg/m3] | λ ** [W/m2K] | cp *** [J/kgK] | μ **** [-] | ||
---|---|---|---|---|---|---|---|
I.n.l.s. (Innovative natural locally sourced) | Load bearing | M01 | Sardinian Maritime Pine CLT—3 layer—60 mm thick Board class C16 ***** EI ****** = 138,667 MNmm2/m | 491.7 | 0.11 | 1600 | 40 |
M02 | Sardinian Maritime Pine CLT—3 layer—100 mm thick Board class C16 ***** EI ****** = 1,109,333 MNmm2/m | 491.7 | 0.11 | 1600 | 40 | ||
Insulating / finishing | M03 | Sheep wool mat (Sardinian) | 30.082 | 0.036 | 860 | 5 | |
M04 | Rammed Earth panel | 1054.43 | 0.153 | 860 | 10 | ||
M05 | Slaked lime + hemp fibers | 459.058 | 0.10939 | 940 | 40 | ||
M06 | Sardinian Maritime Pine board | 550 | 0.15 | 1600 | 40 | ||
Already available | Load bearing | M07 | Lightweight concrete half-solid block (450 × 295 × 195 mm) fbk ******* > 15 N/mm2 | 1166 | 0.507 | 920 | 9 |
M08 | Hollow brick block (300 × 250 × 250 mm) fbk ******* > 15 N/mm2 | 693 | 0.318 | 920 | 9 | ||
M09 | Hollow brick block (300 × 120 × 250 mm) fbk ******* > 5 N/mm2 | 717 | 0.3864 | 920 | 9 | ||
M10 | Hollow brick block (250 × 80 × 250 mm) fbk ******* > 2 N/mm2 | 775 | 0.4 | 920 | 9 | ||
Insulating / finishing | M11 | Sheep wool mat | 30 | 0.05625 | 860 | 10 | |
M12 | Expanded cork panels with binders | 130 | 0.045 | 2100 | 15 | ||
M13 | Plasterboard | 730 | 0.2 | 1000 | 10 | ||
M14 | Gypsum fiber board | 1018 | 0.25 | 1000 | 10 | ||
M15 | Wood fiber panel | 110 | 0.038 | 2100 | 40 | ||
M16 | OSB panel | 650 | 0.13 | 1699 | 30 | ||
M17 | Lime-based plaster | 1830 | 1.28 | 1000 | 15 | ||
M18 | Lightweight lime-based plaster | 1150 | 0.63 | 830 | 12.5 | ||
M19 | Lime + concrete mortar | 1800 | 0.9 | 1000 | 20 | ||
M20 | Air gap 20 mm—horizontal flow | 1.23 | 0.10912 | 1008 | 1 | ||
M21 | Air gap 50 mm—horizontal flow | 1.23 | 0.2728 | 1008 | 1 | ||
M22 | Air gap 60 mm—horizontal flow | 1.23 | 0.32736 | 1008 | 1 | ||
I.n.l.s. | Insulating / finishing | M23 | LC—Luffa Clay panel | 397.60 | 0.139 | 860 | 10 |
M24 | JC—Jute Clay block | 786.81 | 0.118 | 860 | 10 | ||
M25 | JCP Jute fiber + Clay plaster | 1054.43 | 0.153 | 860 | 10 | ||
M26 | JW—Jute and Wool fiber | 20.14 | 0.043 | 860 | 10 |
ID Wall | Layer 1 | Layer 2 | Layer 3 | Layer 4 | Layer 5 | Layer 6 | Layer 7 | ||
---|---|---|---|---|---|---|---|---|---|
W01 | external | M13 1 cm | M12 10 cm | M07 30 cm | M14 2 cm | internal | |||
W02 | M17 1 cm | M12 10 cm | M08 30 cm | M19 2 cm | |||||
W03 | M17 1 cm | M12 6 cm | M07 30 cm | M12 4 cm | M19 2 cm | ||||
W04 | M17 1 cm | M12 6 cm | M08 30 cm | M12 4 cm | M19 2 cm | ||||
W05 | M19 1 cm | M12 10 cm | M19 1.5 cm | M09 12 cm | M21 5 cm | M10 8 cm | M19 1.5 cm | ||
W06 | M19 1 cm | M03 10 cm | M19 1.5 cm | M09 12 cm | M21 5 cm | M10 8 cm | M19 1.5 cm | ||
W07 | M19 1 cm | M09 12 cm | M12 10 cm | M10 8 cm | M19 1.5 cm | ||||
W08 | M19 1 cm | M09 12 cm | M11 10 cm | M10 8 cm | M19 1.5 cm | ||||
W09 | M19 1 cm | M12 10 cm | M01 6 cm | M11 8 cm | M15 1.25 cm | M15 1.25 cm | |||
W10 | M19 1 cm | M12 10 cm | M01 6 cm | M04 8 cm | M19 1.5 cm | ||||
W11 | M17 0.3 cm | M13 1 cm | M05 10 cm | M02 10 cm | M18 6 cm | M15 1.25 cm | M15 1.25 cm | ||
W12 | M22 1.5 cm | M14 2 cm | M02 10 cm | M11 10 cm | M15 1.25 cm | M15 1.25 cm | |||
W13 | M19 1.5 cm | M12 10 cm | M02 10 cm | M11 8 cm | M15 1.25 cm | M15 1.25 cm | |||
W14 | M22 1.5 cm | M14 2 cm | M02 10 cm | M11 10 cm | M16 2.4 cm | ||||
W15 | M19 1.5 cm | M09 12 cm | M23 10 cm | M10 8 cm | M19 1.5 cm | ||||
W16 | M19 1.5 cm | M09 12 cm | M24 10 cm | M10 8 cm | M19 1.5 cm | ||||
W17 | M19 1.5 cm | M09 12 cm | M25 10 cm | M10 8 cm | M19 1.5 cm | ||||
W18 | M19 1.5 cm | M09 12 cm | M26 10 cm | M10 8 cm | M19 1.5 cm | ||||
W19 | M19 1.5 cm | M12 10 cm | M01 6 cm | M26 10 cm | M15 1.25 cm | M15 1.25 cm | |||
W20 | M19 1.5 cm | M12 10 cm | M02 10 cm | M26 10 cm | M15 1.25 cm | M15 1.25 cm |
ID | Ms [kg/m2] | U [W/(m2K)] | YIE [W/(m2K)] | Rw [dB] | Π [kg/(sm2Pa)] E-11 | k1 [kJ/m2K] |
---|---|---|---|---|---|---|
W1 | 417.10 | 0.33 | 0.03 | 52 | 4.21 | 58.44 |
W2 | 275.20 | 0.30 | 0.03 | 48 | 4.21 | 51.32 |
W3 | 417.10 | 0.33 | 0.01 | 52 | 4.21 | 35.78 |
W4 | 275.20 | 0.30 | 0.02 | 48 | 4.21 | 36.38 |
W5 | 233.10 | 0.32 | 0.05 | 47 | 4.82 | 51.10 |
W6 | 223.11 | 0.27 | 0.05 | 46 | 6.35 | 51.30 |
W7 | 215.04 | 0.34 | 0.13 | 46 | 5.13 | 56.56 |
W8 | 205.04 | 0.40 | 0.21 | 46 | 5.88 | 57.35 |
W9 | 90.15 | 0.20 | 0.03 | 65 | 3.81 | 18.83 |
W10 | 133.23 | 0.25 | 0.05 | 42 | 2.60 | 37.95 |
W11 | 96.13 | 0.26 | 0.06 | 39 | 2.43 | 30.27 |
W12 | 82.80 | 0.24 | 0.06 | 38 | 3.40 | 22.68 |
W13 | 109.82 | 0.20 | 0.02 | 40 | 2.92 | 18.49 |
W14 | 76.04 | 0.24 | 0.05 | 37 | 3.15 | 25.20 |
W15 | 241.8 | 0.70 | 0.30 | 48 | 5.88 | 57.36 |
W16 | 280.7 | 0.640 | 0.203 | 49 | 5.88 | 55.50 |
W17 | 307.5 | 0.731 | 0.209 | 50 | 5.88 | 54.81 |
W18 | 204.1 | 0.329 | 0.165 | 46 | 5.88 | 57.28 |
W19 | 89.8 | 0.182 | 0.027 | 65 | 18.37 | 18.37 |
W20 | 109.4 | 0.171 | 0.014 | 41 | 2.83 | 18.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mastino, C.C.; Concu, G.; Frattolillo, A. Energetic Performance of Natural Building Materials: Numerical Simulation and Experimental Evaluation. Energies 2024, 17, 768. https://doi.org/10.3390/en17040768
Mastino CC, Concu G, Frattolillo A. Energetic Performance of Natural Building Materials: Numerical Simulation and Experimental Evaluation. Energies. 2024; 17(4):768. https://doi.org/10.3390/en17040768
Chicago/Turabian StyleMastino, Costantino Carlo, Giovanna Concu, and Andrea Frattolillo. 2024. "Energetic Performance of Natural Building Materials: Numerical Simulation and Experimental Evaluation" Energies 17, no. 4: 768. https://doi.org/10.3390/en17040768
APA StyleMastino, C. C., Concu, G., & Frattolillo, A. (2024). Energetic Performance of Natural Building Materials: Numerical Simulation and Experimental Evaluation. Energies, 17(4), 768. https://doi.org/10.3390/en17040768