Multi-Factor Controlling Diversity of the Ordovician Hydrocarbon Phase in the Tazhong I Block, Tarim Basin, NW China
Abstract
:1. Introduction
2. Geological Setting
3. Sampling and Methods
3.1. Sample Collection
3.2. Stable Carbon Isotope Measurements of Natural Gases
4. Characteristics and Distribution of the Ordovician Hydrocarbon
4.1. GOR
4.2. Oil Properties
4.3. Gas Compositions
4.4. Hydrocarbon Phases
5. Factors Controlling the Diversity of the Ordovician Hydrocarbon Phase
5.1. Origin of Hydrocarbon
5.2. Multi-Stage Filling of Hydrocarbon
5.3. Hydrocarbon Biodegradation
5.4. Crude Oil Cracking
5.5. Gas Invasion
6. Formation of the Ordovician Hydrocarbon Reservoirs with Multi-Phases
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lan, X.D.; Lv, X.X.; Zhu, Y.M. The geometry and origin of strike–slip faults cutting the Tazhong low rise megaanticline (central uplift, Tarim Basin, China) and their control on hydrocarbon distribution in carbonate reservoirs. J. Nat. Gas Sci. Eng. 2015, 22, 633–645. [Google Scholar] [CrossRef]
- Zhu, G.Y.; Yang, H.J.; Su, J.; He, K.; Han, J.F.; Gu, L.J.; Zhu, Y.F.; Zhang, B.T. True exploration potential of marine oils in the Tarim basin. Acta Petrol. Sin. 2012, 28, 1333–1347. (In Chinese) [Google Scholar]
- Zhang, Z.Y.; Zhu, G.Y.; Zhang, Y.J.; Han, J.F.; Li, T.T.; Wang, E.Z. The origin and accumulation of multi–phase reservoirs in the east Tabei uplift, Tarim Basin, China. Mar. Pet. Geol. 2018, 98, 533–553. [Google Scholar] [CrossRef]
- Chung, H.M.; Gormly, J.R.; Squires, R.M. Origin of gaseous hydrocarbons in subsurface environments: Theoretical considerations of carbon isotope distribution. Chem. Geol. 1988, 71, 97–103. [Google Scholar] [CrossRef]
- Dai, J.X.; Qi, H.F.; Song, Y.; Guang, D.S. Gas compositions from coal measure, types of carbon isotopes and their formation and implication. Sci. China Ser. B 1986, 16, 1317–1326. [Google Scholar]
- Guo, L.; Xiao, X.; Tian, H.; Song, Z. Distinguishing gases derived from oil cracking and kerogen maturation: Insights from laboratory pyrolysis experiments. Org. Geochem. 2009, 40, 1074–1084. [Google Scholar]
- Prinzhofer, A.; Huc, A.Y. Genetic and post–genetic molecular and isotopic fractionations in natural gases. Chem. Geol. 1995, 126, 281–290. [Google Scholar] [CrossRef]
- Scott, A.R.; Kaiser, W.R.; Ayers, W.B.J. Thermogenic and secondary biogenic gases, San Juan Basin, Colorado and New Mexico implications for coal bed gas producibility. AAPG Bull. 1994, 78, 1186–1209. [Google Scholar]
- Schoell, M. Genetic characterization of natural gases. AAPG Bull. 1983, 67, 2225–2238. [Google Scholar]
- Huang, D.F.; Liu, B.Q.; Wang, T.D. Genetic type and maturity of Lower Paleozoic marine hydrocarbon gases in the eastern Tarim Basin. Chem. Geol. 1999, 162, 65–77. [Google Scholar] [CrossRef]
- Masterson, W.D.; Dzou, L.I.P.; Holba, A.G.; Fincannon, A.L.; Ellis, L. Evidence for biodegradation and evaporative fractionation in West Sak, Kuparuk and Prudhoe Bay field areas, North Slope, Alaska. Org. Geochem. 2001, 32, 411–442. [Google Scholar] [CrossRef]
- Matyasik, I.; Steczko, A.; Philp, R.P. Biodegradation and migrational fractionation of oil from the Eastern Carpathians, Poland. Org. Geochem. 2000, 31, 1509–1523. [Google Scholar] [CrossRef]
- Thompson, K.F.M. Gas–condensate migration and oil fractionation in deltaic systems. Mar. Pet. Geol. 1988, 5, 237–246. [Google Scholar] [CrossRef]
- Losh, L.; Cathles, L.; Meulbroek, P. Gas–washing of oil along a regional transect, offshore Louisiana. Org. Geochem. 2002, 33, 655–664. [Google Scholar] [CrossRef]
- Zhu, G.Y.; Zhang, B.T.; Yang, H.J. Secondary alteration to ancient oil reservoirs by late gas filling in the Tazhong area, Tarim Basin. J. Pet. Sci. Eng. 2014, 122, 240–256. [Google Scholar] [CrossRef]
- Wei, Z.B.; Mankiewicz, P.J. Natural Occurrence of Higher Thiadiamondoids and Diamondoidthiols in a Deep Petroleum Reservoirin the Mobile Bay Gas Field. Org. Geochem. 2011, 42, 121–133. [Google Scholar] [CrossRef]
- Pan, C.C.; Jiang, L.L.; Liu, J.Z. The effects of calcite and montmorillonite on oil cracking in confined pyrolysis experiments. Org. Geochem. 2010, 41, 611–626. [Google Scholar] [CrossRef]
- Pan, C.C.; Jiang, L.L.; Liu, J.Z. The effects of pyrobitumen on oil cracking in confined pyrolysis experiments. Org. Geochem. 2012, 45, 29–47. [Google Scholar] [CrossRef]
- Price, L.C. Thermal stability of hydrocarbons in nature: Limits, evidence, characteristics, and possible controls. Geochim. Cosmochim. Acta 1993, 57, 3261–3280. [Google Scholar] [CrossRef]
- Tsuzuki, N.; Takeda, N.; Suzuki, M. The kinetic modeling of oil cracking by hydrothermal pyrolysis experiments. Int. J. Coal Geol. 1999, 39, 227–250. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Chen, J.F.; Pang, X.Q.; Zhang, B.S.; Chen, Z.Y.; Zhang, G.Q.; Luo, G.P.; He, L.W. Origin of deep sour natural gas in the Ordovician carbonate reservoir of the Tazhong Uplift, Tarim Basin, northwest China: Insights from gas geochemistry and formation water. Mar. Pet. Geol. 2018, 91, 532–549. [Google Scholar] [CrossRef]
- Shen, W.B.; Chen, J.F.; Wang, Y.Y.; Zhang, K.; Chen, Z.Y.; Luo, G.P.; Fu, X. The origin, migration and accumulation of the Ordovician gas in the Tazhong III region, Tarim Basin, NW China. Mar. Pet. Geol. 2019, 101, 55–77. [Google Scholar] [CrossRef]
- Li, S.M.; Amrani, A.; Pang, X.Q. Origin and quantitative source assessment of deep oils in the Tazhong Uplift, Tarim Basin. Org. Geochem. 2015, 78, 1–22. [Google Scholar] [CrossRef]
- Zhu, G.Y.; Zhang, Z.Y.; Zhou, X.X. The Complexity, Secondary Geochemical Process, Genetic Mechanism and Distribution Prediction of Deep marine Oil and Gas in the Tarim Basin, China. Earth-Sci. Rev. 2019, 198, 102930. [Google Scholar] [CrossRef]
- Xiao, X.L.; Sun, Y.G.; Mao, S.Y. Geochemical characterization of light hydrocarbons and its controlling factors in Carboniferous crude oils from the TZ4 Oilfield, Tarim Basin, NW China. Acta Pet. Sin. 2011, 32, 206–211. (In Chinese) [Google Scholar]
- Jiang, Z.X.; Yang, J.; Pang, X.Q. Property differences and genetic mechanisms of hydrocarbon in each oil unit of the Carboniferous in Tazhong–4 oilfield. Oil Gas Geol. 2008, 29, 159–166. (In Chinese) [Google Scholar]
- Zhu, G.Y.; Li, J.F.; Zhang, Z.Y. Origin of deep oil and gas phase state diversity and evaluation of secondary geochemical intensity—A case study of marine oil and gas in Tarim Basin. Earth Sci. 2021. Available online: https://kns.cnki.net/kcms/detail/42.1874.P.20211108.1622.004.html (accessed on 9 November 2021). (In Chinese).
- Wu, F.F.; Zhu, G.Y.; Zhang, S.C.; Jin, Q.; Han, J.F.; Chen, Z.W.; Meng, S.C. Ordovician Hydrocarbon Accumulation and Main Controlling Factors in the Western Margin of Tazhong No.1 Slope 2 Break Zone, Tarim Basin. Geol. Rev. 2010, 56, 339–348. (In Chinese) [Google Scholar]
- Wu, G.H.; Cheng, L.F.; Liu, Y.K.; Wang, H.; Qu, T.L.; Gao, L. Strike–slip fault systems of the Cambrian–Ordovician and its oil–controlling effect in Tarim Basin. Xinjiang Pet. Geol. 2011, 32, 239–243. (In Chinese) [Google Scholar]
- Li, C.X.; Wang, X.F.; Li, B.L. Paleozoic fault systems of the Tazhong Uplift, Tarim Basin, China. Mar. Pet. Geol. 2013, 39, 48–58. [Google Scholar] [CrossRef]
- Han, J.F.; Zhang, H.Z.; Yu, H.F.; Ji, Y.G.; Sun, C.G.; Han, J.; Dong, R.X. Hydrocarbon accumulation characteristic and exploration on large marine carbonate condensate field in Tazhong Uplift. Acta Petrol. Sin. 2012, 28, 769–782. (In Chinese) [Google Scholar]
- Zhang, Z.P.; Wang, Y.; Yun, J.B.; Zhou, B.; Zhao, Z.H.; Zheng, M.L. Control of faults at different evolution stages on hydrocarbon accumulation in Tazhong Uplift, the Tarim Basin. Oil Gas Geol. 2009, 30, 316–323. (In Chinese) [Google Scholar]
- Han, J.F.; Mei, L.F.; Yang, H.J.; Wu, G.H.; Xu, Z.M.; Zhu, G.Y. The study of hydrocarbon origin, transport and accumulation in Tazhong uplift, Tarim basin. Nat. Gas Geosci. 2007, 18, 426–435. (In Chinese) [Google Scholar]
- Huang, H.P.; Zhang, S.C.; Su, J. Palaeozoic oil–source correlation in the Tarim Basin, NW China: A review. Org. Geochem. 2016, 94, 32–46. [Google Scholar] [CrossRef]
- Liang, D.G.; Zhang, S.C.; Zhang, B.M. Marine oil generation in China from the perspective of Tarim Basin. Earth Sci. Front. 2000, 7, 534–547. [Google Scholar]
- Tian, H.; Xiao, X.M.; Wilkins, R.W.T. An experimental comparison of gas generation from three oil fractions: Implications for the chemical and stable carbon isotopic signatures of oil cracking gas. Org. Geochem. 2012, 46, 96–112. [Google Scholar] [CrossRef]
- Zhu, G.Y.; Yang, H.J.; Zhu, Y.F. Study on petroleum geological characteristics and accumulation of carbonate reservoirs in Halahatang Area, Tarim Basin. Acta Petrol. Sin. 2011, 27, 827–844. [Google Scholar]
- He, D.X.; Li, B.C.; Hu, J.J. Geochemical characteristics of H2S–bearing natural gas from Halahatang sag. J. China Univ. Pet. (Ed. Nat. Sci.) 2022, 46, 44–52. [Google Scholar]
- Fang, R.H.; Wang, T.G.; Li, M.J.; Xiao, Z.Y.; Zhang, B.S.; Huang, S.Y.; Shi, S.B.; Wang, D.W.; Deng, W.L. Dibenzothiophenes and benzo[b] naphthothiophenes, molecular markers for tracing oil filling pathways in the carbonate reservoir of the Tarim Basin, NW China. Org. Geochem. 2016, 91, 68–80. [Google Scholar] [CrossRef]
- Sun, Y.G.; Xu, S.P.; Lu, H. Source facies of the Paleozoic petroleum systems in the Tabei uplift, Tarim Basin, NW China, implications from aryl isoprenoids in crude oils. Org. Geochem. 2003, 34, 629–634. [Google Scholar] [CrossRef]
- Wang, T.G.; Song, D.F.; Li, M.J. Natural gas source and deep gas exploration potential of the Ordovician Yingshan Formation in the Shunnan–Gucheng region, Tarim Basin. Oil Gas Geol. 2014, 35, 753–762. [Google Scholar]
- Cai, C.F.; Zhang, C.M.; Worden, R.H. Application of sulfur and carbon isotopes to oil–source rock correlation: A case study from the Tazhong area, Tarim Basin, China. Org. Geochem. 2015, 83–84, 140–152. [Google Scholar] [CrossRef]
- Zhu, G.Y.; Chen, F.R.; Wang, M. Discovery of the lower Cambrian high–quality source rocks and deep oil and gas exploration potential in the Tarim Basin, China. AAPG Bull. 2018, 102, 2123–2151. [Google Scholar] [CrossRef]
- Li, F.; Zhu, G.Y.; Lv, X.X.; Zhang, Z.Y.; Wu, Z.H.; Xue, N.; He, T.; Wang, R. The disputes on the source of Paleozoic marine oil and the determination of the Cambrian system as the main source rocks in Tarim Basin. Acta Pet. Sin. 2021, 42, 1417–1436. [Google Scholar]
- Chen, J.F.; Xu, Y.C.; Huang, D.F. Geochemical characteristics and origin of natural gas in the Eastern Tarim Basin (I). Acta Sedimentol. Sin. 2000, 18, 606–610. [Google Scholar]
- Pang, X.Q.; Jiang, Z.X.; Li, J.Q.; Zhou, R.N. Geological thresholds in the process of forming oil and gas reservoir and their functions of controlling petroleum. J. Univ. Pet. China (Ed. Nat. Sci.) 2000, 24, 53–57. [Google Scholar]
- Pang, X.Q. Quantitative Simulation of the Geological Process; Petroleum Industry Press: Beijing, China, 2003; pp. 286–321. [Google Scholar]
- Hanson, A.D.; Zhang, S.; Moldowan, J.M. Molecular organic geochemistry of the Tarim Basin, northwest China. Am. Assoc. Pet. Geol. Bull. 2000, 84, 1109–1128. [Google Scholar]
- Li, P.C.; Chen, G.H.Q.; Meng, R.Y.; Tan, M.; Hao, J.L.; Tang, C.Y.; Long, L.P.; Zhang, Y. Geochemistry of Ordovician natural gas and its origin and distribution in central Tarim basin, China. Nat. Gas Geosci. 2010, 21, 321–330. (In Chinese) [Google Scholar]
- Li, S.M.; Pang, X.Q.; Yang, H.J.; Gu, Q.Y.; Han, J.F.; Li, M. Analysis of characterize and type of the crude oil. Earth Sci. (J. China Univ. Geosci.) 2008, 5, 635–642. [Google Scholar]
- Li, S.M.; Zhang, B.S.; Zhang, H.Z.; Sheng, S.Z.; Zhao, M. Geochemical Characteristics and Affecting Factors of the Unusually High Dibenzothiophenes Oils in the Tazhong Uplift. Geoscience 2011, 25, 1108–1120. [Google Scholar]
- Behar, F.; Ungerer, P.; Kressmann, S. Thermal evolution of crude oils in sedimentary basins, Experimental simulation in a confined system and kinetic modeling. Rev. L’inst. Fr. Pet. 1991, 46, 151–181. [Google Scholar] [CrossRef]
- Dahl, J.E.; Moldowan, J.M.; Peters, K.E.; Claypool, G.E.; Rooney, M.A.; Michael, G.E.; Mello, M.R.; Kohnen, M.L. Diamondoid hydrocarbon as indicators of natural oil cracking. Nature 1999, 399, 54–57. [Google Scholar] [CrossRef]
- Chen, J.H.; Fu, J.M.; Sheng, G.Y.; Liu, D.H.; Zhang, J.J. Diamondoid hydrocarbon ratios: Novel maturity indices for highly mature oils. Org. Geochem. 1996, 3/4, 179–190. [Google Scholar] [CrossRef]
- Cai, C.F.; Li, K.K.; Ma, A.L.; Zhang, C.M.; Xu, Z.M.; Worden, R.H.; Wu, G.H.; Zhang, B.S.; Chen, L.X. Distinguishing Cambrian from Upper Ordovician source rocks: Evidence from sulfur isotopes and biomarkers in the Tarim Basin. Org. Geochem. 2009, 40, 755–768. [Google Scholar] [CrossRef]
- Cai, C.F.; Zhang, C.M.; Cai, L.L.; Wu, G.H.; Jiang, L.; Xu, Z.M.; Li, K.K.; Ma, A.L.; Chen, L.X. Origins of Palaeozoic oils in the Tarim Basin: Evidence from sulfur isotopes and biomarkers. Chem. Geol. 2009, 268, 197–210. [Google Scholar] [CrossRef]
- Hill, R.J.; Tang, Y.C.; Kaplan, I.R. Insights into oil cracking based on laboratory experiments. Org. Geochem. 2003, 34, 1651–1672. [Google Scholar] [CrossRef]
- Cross, M.M.; Manning, D.A.C.; Bottrell, S.H. Thermochemical sulphate reduction (TSR): Experimental determination of reaction kinetics and implications of the observed reaction rates for petroleum reservoirs. Org. Geochem. 2004, 35, 393–404. [Google Scholar] [CrossRef]
- Zhao, W.Z.; Wang, Z.Y.; Zhang, S.C.; Wang, H.J.; Wang, Y.P. Oil cracking gas is an important pathway for efficient gas generation in marine gas source stoves. Chin. Sci. Bull. 2006, 51, 589–595. [Google Scholar]
- Smith, J.E.; Erdman, J.G.; Morris, D.A. Migration, accumulation and retention of petroleum in the earth. In Proceedings of the 8th World Petroluem Congress, Moscow, Russia, 13–19 June 1971; pp. 13–26. [Google Scholar]
- Kolaczkowska, E.; Slougui, N.E.; Watt, D.S. Thermodynamic stability of vorious alkylated, dealkylated, and rearranged 17α- and 17β- hopnae isomers using molecular mechanics calculations. Org. Geochem. 1990, 4, 1033–1038. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Shen, W.; Li, J.; Zhang, C.; Xie, H.; Chen, S.; Baima, Q.; Wang, C. Multi-Factor Controlling Diversity of the Ordovician Hydrocarbon Phase in the Tazhong I Block, Tarim Basin, NW China. Energies 2024, 17, 723. https://doi.org/10.3390/en17030723
Wang Y, Shen W, Li J, Zhang C, Xie H, Chen S, Baima Q, Wang C. Multi-Factor Controlling Diversity of the Ordovician Hydrocarbon Phase in the Tazhong I Block, Tarim Basin, NW China. Energies. 2024; 17(3):723. https://doi.org/10.3390/en17030723
Chicago/Turabian StyleWang, Yifeng, Weibing Shen, Jian Li, Chen Zhang, Hongzhe Xie, Shuo Chen, Quzong Baima, and Chunhong Wang. 2024. "Multi-Factor Controlling Diversity of the Ordovician Hydrocarbon Phase in the Tazhong I Block, Tarim Basin, NW China" Energies 17, no. 3: 723. https://doi.org/10.3390/en17030723
APA StyleWang, Y., Shen, W., Li, J., Zhang, C., Xie, H., Chen, S., Baima, Q., & Wang, C. (2024). Multi-Factor Controlling Diversity of the Ordovician Hydrocarbon Phase in the Tazhong I Block, Tarim Basin, NW China. Energies, 17(3), 723. https://doi.org/10.3390/en17030723