Magnesium Hydride: Investigating Its Capability to Maintain Stable Vapor Film
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Thermogravimetric Method (Method 1)
2.3. Research of Critical Temperature Investigations for Vapor Film Formation (Method 2)
2.4. Optical Microscopy Examination of the Surface of Samples (Method 3)
3. Results
3.1. Thermogravimetric Method
3.2. Research of Critical Temperature Investigations for Vapor Film Formation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Eyring, V.; Köhler, H.W.; van Aardenne, J.; Lauer, A. Emissions from international shipping: 1. The last 50 years. J. Geophys.Res. Atmos. 2005, 110. [Google Scholar] [CrossRef]
- Liu, J.-Z.; Zou, Z.-J.; Guo, H.-P.; Chen, C.-Z. A study on the interaction among hull, engine and propeller during self-propulsion of a ship. Ocean. Eng. 2023, 286, 115702. [Google Scholar] [CrossRef]
- Schrader, L.-U. Passive Drag Reduction via Bionic Hull Coatings. J. Ship Res. 2019, 63, 206–218. [Google Scholar] [CrossRef]
- Jiang, B.; Ma, Y.; Wang, L.; Guo, Z.; Zhong, X.; Wu, T.; Liu, Y.; Wu, H. Thermal decomposition mechanism investigation of hyperbranched polyglycerols by TGA-FTIR-GC/MS techniques and ReaxFF reactive molecular dynamics simulations. Biomass Bioenergy 2023, 168, 106675. [Google Scholar] [CrossRef]
- Dong, H.; Cheng, M.; Zhang, Y.; Wei, H.; Shi, F. Extraordinary drag-reducing effect of a superhydrophobic coating on a macroscopic model ship at high speed. J. Mater. Chem. A 2013, 1, 5886–5891. [Google Scholar] [CrossRef]
- Hwang, G.B.; Patir, A.; Page, K.; Lu, Y.; Allan, E.; Parkin, I.P. Buoyancy increase and drag-reduction through a simple superhydrophobic coating. Nanoscale 2017, 9, 7588–7594. [Google Scholar] [CrossRef] [PubMed]
- Jiang, M.; Wang, Y.; Liu, F.; Du, H.; Li, Y.; Zhang, H.; To, S.; Wang, S.; Pan, C.; Yu, J.; et al. Inhibiting the Leidenfrost effect above 1000 °C for sustained thermal cooling. Nature 2022, 601, 568–572. [Google Scholar] [CrossRef] [PubMed]
- Vakarelski, I.U.; Marston, J.O.; Chan, D.Y.C.; Thoroddsen, S.T. Drag Reduction by Leidenfrost Vapor Layers. Phys. Rev. Lett. 2011, 106, 214501. [Google Scholar] [CrossRef] [PubMed]
- Marengo, M.; De Coninck, J. (Eds.) The Surface Wettability Effect on Phase Change; Springer International Publishing: Cham, Switzerland, 2022. [Google Scholar] [CrossRef]
- Suárez-Alcántara, K.; Tena-Garcia, J.R.; Guerrero-Ortiz, R. Alanates, a Comprehensive Review. Materials 2019, 12, 2724. [Google Scholar] [CrossRef] [PubMed]
- Narayan, N.M.; Gopalkrishna, S.B.; Mehdi, B.; Ryll, S.; Specht, E.; Fritsching, U. Multiphase numerical modeling of boiling flow and heat transfer for liquid jet quenching of a moving metal plate. Int. J. Therm. Sci. 2023, 194, 108587. [Google Scholar] [CrossRef]
- Cai, C.; Mudawar, I. Review of the dynamic Leidenfrost point temperature for droplet impact on a heated solid surface. Int. J. Heat Mass Transf. 2023, 217, 124639. [Google Scholar] [CrossRef]
- Rathi, B.; Agarwal, S.; Shrivastava, K.; Miyaoka, H.; Ichikawa, T.; Kumar, M.; Jain, A. An insight into the catalytic mechanism of perovskite ternary oxide for enhancing the hydrogen sorption kinetics of MgH2. J. Alloys Compd. 2024, 970, 172616. [Google Scholar] [CrossRef]
- Delhomme, B.; de Rango, P.; Marty, P.; Bacia, M.; Zawilski, B.; Raufast, C.; Miraglia, S.; Fruchart, D. Large scale magnesium hydride tank coupled with an external heat source. Int. J. Hydrogen Energy 2012, 37, 9103–9111. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, J.; Sun, P.; Zhou, C.; Liu, Y.; Fang, Z.Z. Effect of oxygen on the hydrogen storage properties of TiFe alloys. J. Energy Storage 2022, 55, 105543. [Google Scholar] [CrossRef]
- Tan, Q.; Atrens, A.; Mo, N.; Zhang, M.-X. Oxidation of magnesium alloys at elevated temperatures in air: A review. Corros. Sci. 2016, 112, 734–759. [Google Scholar] [CrossRef]
- Boussemghoune, M.; Chikhi, M.; Ozay, Y.; Guler, P.; Unal, B.O.; Dizge, N. The Investigation of Organic Binder Effect on Morphological Structure of Ceramic Membrane Support. Symmetry 2020, 12, 770. [Google Scholar] [CrossRef]
Materials | Specimen Temperature | ||||||||
---|---|---|---|---|---|---|---|---|---|
200 °C | 300 °C | 450 °C | |||||||
Water Temperature | Water Temperature | Water Temperature | |||||||
20 °C | 40 °C | 60 °C | 20 °C | 40 °C | 60 °C | 20 °C | 40 °C | 60 °C | |
Al | NO | NO | NO | NO | 291.2 | 267.3 | NO | 374.8 | 331.9 |
MgH2 | NO | NO | NO | NO | NO | NO | NO | NO | 384.5 |
MgO | 197.9 | 195.2 | 196.4 | 188.9 | 221.5 | 211.9 | 439.4 | 441.1 | 373.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skvorčinskienė, R.; Eimontas, J.; Bašinskas, M.; Vorotinskienė, L.; Urbonavičius, M.; Kiminaitė, I.; Maziukienė, M.; Striūgas, N.; Zakarauskas, K.; Makarevičius, V. Magnesium Hydride: Investigating Its Capability to Maintain Stable Vapor Film. Energies 2024, 17, 661. https://doi.org/10.3390/en17030661
Skvorčinskienė R, Eimontas J, Bašinskas M, Vorotinskienė L, Urbonavičius M, Kiminaitė I, Maziukienė M, Striūgas N, Zakarauskas K, Makarevičius V. Magnesium Hydride: Investigating Its Capability to Maintain Stable Vapor Film. Energies. 2024; 17(3):661. https://doi.org/10.3390/en17030661
Chicago/Turabian StyleSkvorčinskienė, Raminta, Justas Eimontas, Matas Bašinskas, Lina Vorotinskienė, Marius Urbonavičius, Ieva Kiminaitė, Monika Maziukienė, Nerijus Striūgas, Kęstutis Zakarauskas, and Vidas Makarevičius. 2024. "Magnesium Hydride: Investigating Its Capability to Maintain Stable Vapor Film" Energies 17, no. 3: 661. https://doi.org/10.3390/en17030661
APA StyleSkvorčinskienė, R., Eimontas, J., Bašinskas, M., Vorotinskienė, L., Urbonavičius, M., Kiminaitė, I., Maziukienė, M., Striūgas, N., Zakarauskas, K., & Makarevičius, V. (2024). Magnesium Hydride: Investigating Its Capability to Maintain Stable Vapor Film. Energies, 17(3), 661. https://doi.org/10.3390/en17030661