Costs of Coal Abatement for Residential Heating to Reduce Urban Air Pollution in Asian Russia: Evidence from Krasnoyarsk
Abstract
:1. Introduction
- national emission standardization and the certification of heating equipment;
- information and education activities aimed at informing the public about the state of the environment, the risk factors of using solid fuel and (or) inefficient equipment, new fuels and heating technologies, and government policies;
- direct bans on the use of certain fuels and (or) heating equipment;
- financial incentives to switch to more environmentally friendly fuels and replace the heating equipment. Usually, subsidies that fully or partially cover the costs of purchasing and installing new equipment, preferential tariffs for the use of new fuels, or tax incentives are applied. Such measures are the most widespread; equipment replacement programs exist almost in every European country and in some states of the USA, China, and Latin America.
2. Materials and Methods
3. Results
3.1. Coal Phase-Out Projects in the Private Sector in Krasnoyarsk
3.2. Pellet Market
3.3. Possibilities of Pellet Use in Krasnoyarsk
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zavoruev, V.V.; Sokolova, O.V.; Zavorueva, E.N.; Yakubailik, O.E. Concentration of PM2.5 in the surface atmosphere over the territory of Krasnoyarsk and the water area of the non-freezing Yenisei River. Opt. Atmos. Okeana 2023, 36, 462–468. [Google Scholar] [CrossRef]
- Pyzhev, A.I.; Sharafutdinov, R.A.; Zander, E.V. Environmental Consequences of Economic Development of Large Industrial Cities in Resource Regions (A Case study of Krasnoyarsk, Russia). ECO 2021, 7, 4–55. [Google Scholar] [CrossRef]
- Romanov, A.A.; Gusev, B.A.; Leonenko, E.V.; Tamarovskaya, A.N.; Vasiliev, A.S.; Zaytcev, N.E.; Philippov, I.K. Graz Lagrangian Model (GRAL) for Pollutants Tracking and Estimating Sources Partial Contributions to Atmospheric Pollution in Highly Urbanized Areas. Atmosphere 2020, 11, 1375. [Google Scholar] [CrossRef]
- Tokarev, A.V.; Shaparev, N.Y.; Yakubailik, O.E. The role of weather and terrain in air pollution of Krasnoyarsk (Russia). In Enviromis 2020: Izbrannye Trudy Mezhdunarodnoi Konferentsii i Shkoly Molodykh Uchenykh po Izmereniyam, Modelirovaniyu i Informatsionnym Sistemam Dlya Izucheniya Okruzhayushchei Sredy; Tomskiy CNTI: Tomsk, Russia, 2020; pp. 261–264. [Google Scholar]
- Periods of NMU. Available online: http://www.krasecology.ru/Nmu (accessed on 28 November 2023).
- Heat Supply Schemes of Krasnoyarsk. Available online: http://www.admkrsk.ru/citytoday/municipal/energy/sezon1/pages/default.aspx (accessed on 18 October 2023).
- State Report On the State and Protection of the Environment in the Krasnoyarsk Krai in 2021. Available online: http://www.mpr.krskstate.ru/envir/page5849/0/id/57481 (accessed on 18 October 2023).
- In Krasnoyarsk, Private Sector Residents Will Be Able to Switch from Coal-Fired Heating to a More Environmentally Friendly Heating System. Available online: http://www.krskstate.ru/press/news/government/0/news/101173 (accessed on 20 April 2023).
- Achakulwisut, P.; Erickson, P.; Guivarch, C.; Schaeffer, R.; Brutschin, E.; Pye, S. Global fossil fuel reduction pathways under different climate mitigation strategies and ambitions. Nat. Commun. 2023, 14, 5425. [Google Scholar] [CrossRef]
- Muttitt, G.; Price, J.; Pye, S.; Welsby, D. Socio-political feasibility of coal power phase-out and its role in mitigation pathways. Nat. Clim. Chang. 2023, 13, 140–147. [Google Scholar] [CrossRef]
- Zeng, J.; Bao, R.; McFarland, M. Clean energy substitution: The effect of transitioning from coal to gas on air pollution. Energy Econ. 2022, 107, 105816. [Google Scholar] [CrossRef]
- Wang, Z.; Li, H.; Zhang, B.; Wang, B.; Li, H.; Tian, X.; Lin, J.; Feng, W. Unequal residential heating burden caused by combined heat and power phase-out under climate goals. Nat. Energy 2023, 8, 881–890. [Google Scholar] [CrossRef]
- Slameršak, A.; Kallis, G.; O’Neill, D.W. Energy requirements and carbon emissions for a low-carbon energy transition. Nat. Commun. 2022, 13, 6932. [Google Scholar] [CrossRef]
- Kryukov, V.A.; Suslov, N.I.; Kryukov, Y.V. Asian Russia’s Energy Complex in Changing World. World Econ. Int. Relat. 2021, 65, 101–128. [Google Scholar] [CrossRef]
- Veselov, F.V.; Erokhina, I.V.; Makarova, A.S.; Solyanik, A.I.; Urvantseva, L.V. Scales and Consequences of Deep Decarbonization of the Russian Electric Power Industry. Teploenergetika 2022, 10, 32–44. [Google Scholar] [CrossRef]
- Porfiryev, B.N. Effective Action Strategy to Cope with Climate Change and Its Impact on Russia’s Economy. Stud. Russ. Econ. Dev. 2019, 30, 3–16. [Google Scholar] [CrossRef]
- Porfiryev, B.; Shirov, A.; Kolpakov, K. Low-Carbon Strategy: Prospects for the Russian Economy. World Econ. Int. Relat. 2020, 9, 15–25. [Google Scholar] [CrossRef]
- Borodino Brown Coal: Why Do Krasnoyarsk TPP Run on This Particular Fuel. Available online: https://sibgenco.online/news/element/borodinsky-brown-why-krasnoyarsk-chp-plants-working-on-this-fuel/ (accessed on 20 April 2023).
- Gorbacheva, N.V. Siberia Energy Choice: Cost-Benefit Analysis; Institute of Economics and Industrial Engineering, SB RAS: Novosibirsk, Russia, 2020.
- Eight Ready, Three in Operation and Three More in the Plan: How the Installation of Electrostatic Precipitators at Krasnoyarskaya TPP-1 Is Going—SGK Online. Available online: https://sibgenco.online/news/element/vosem-gotovo-tri-v-rabote-tri-v-plane-kak-idet-montazh-elektrofiltrov-na-krasnoyarskoy-tets-1/ (accessed on 10 December 2023).
- Special Report “How to Make Krasnoyarsk Heat Supply More Environmentally Friendly?”. Available online: https://kislorod.life/krskteplo2020/oglavlenie (accessed on 22 April 2023).
- Karagulian, F.; Belis, C.A.; Dora, C.F.C.; Prüss-Ustün, A.M.; Bonjour, S.; Adair-Rohani, H.; Amann, M. Contributions to Cities’ Ambient Particulate Matter (PM): A Systematic Review of Local Source Contributions at Global Level. Atmos. Environ. 2015, 120, 475–483. [Google Scholar] [CrossRef]
- Åström, S.; Källmark, L.; Yaramenka, K.; Grennfelt, P. Report C598—European and Central Asian Actions on Air Quality—A Regional Summary of Emission Trends, Policies, and Programs to Reduce Air Pollution 2021. Available online: https://www.ivl.se/english/ivl/publications/publications/european-and-central-asian-actions-on-air-quality.html (accessed on 22 April 2023).
- Flaga-Maryańczyk, A.; Baran-Gurgul, K. The Impact of Local Anti-Smog Resolution in Cracow (Poland) on the Concentrations of PM10 and BaP Based on the Results of Measurements of the State Environmental Monitoring. Energies 2022, 15, 56. [Google Scholar] [CrossRef]
- Lopez-Aparicio, S.; Grythe, H. Evaluating the Effectiveness of a Stove Exchange Programme on PM2.5 Emission Reduction. Atmos. Environ. 2020, 231, 117529. [Google Scholar] [CrossRef]
- Mardones, C. Ex-Post Evaluation and Cost-Benefit Analysis of a Heater Replacement Program Implemented in Southern Chile. Energy 2021, 227, 120484. [Google Scholar] [CrossRef]
- Wu, S.; Zheng, X.; Khanna, N.; Feng, W. Fighting Coal—Effectiveness of Coal-Replacement Programs for Residential Heating in China: Empirical Findings from a Household Survey. Energy Sustain. Dev. 2020, 55, 170–180. [Google Scholar] [CrossRef]
- Semikashev, V.V.; Gaivoronskaya, M.S. Analysis of the Present and Prospects of Gasification in Russia for the Period up to 2030. Stud. Russ. Econ. Dev. 2022, 33, 91–100. [Google Scholar] [CrossRef]
- Verkhoturov, A.V.; Pyzhev, A.I. Options for Gasification in Krasnoyarsk Krai: The Search for Environmental and Economic Balance. ECO 2023, 53, 43–63. [Google Scholar] [CrossRef]
- Putin Orders to Fulfil Measures on Gasification of Krasnoyarsk by 2028. Available online: https://tass.ru/ekonomika/18996763 (accessed on 10 December 2023).
- Romanov, A.A.; Oettl, D.; Gusev, B.A.; Tamarovskaya, A.N.; Lopez-Cepero, J.M.; Leonenko, E.V.; Vasiliev, A.S.; Krikunov, E.E.; Chato-Astrain, J.; Romanov, A.P.; et al. Environmental Efficiency of the Fossil Fuels to Electricity Transition in Eastern Siberia Cities. Atmos. Pollut. Res. 2023, 14, 101672. [Google Scholar] [CrossRef]
- Stepanov, S.G.; Mikhalev, I.O.; Evtushenko, E.M.; Loginov, D.A.; Demenchuk, S.V. Smokeless domestic fuel: Krasnoyarsk experience. Ugol’—Russ. Coal J. 2020, 12, 56–62. [Google Scholar] [CrossRef]
- EMEP/EEA Air Pollutant Emission Inventory Guidebook 2019—European Environment Agency. Available online: https://www.eea.europa.eu/publications/emep-eea-guidebook-2019 (accessed on 19 October 2023).
- SGK: “Conversion of Private Houses in Krasnoyarsk to Electric Heating Will Be Much Cheaper than Gasification”. Available online: https://newslab.ru/news/1086737 (accessed on 19 October 2023).
- Siberian Briquette. Available online: https://sib-briket.suek.ru/ (accessed on 20 April 2023).
- The Ministry of Ecology of Krasnoyarsk Krai Reported on the Results of the Environmental Project in Krasnoyarsk. Available online: http://www.krskstate.ru/press/news/0/news/91866 (accessed on 20 April 2023).
- Alexander Uss Discussed with the New Director of the “Krasnoyarskenergo” Branch the Conversion of the Private Sector to Electric Heating. Available online: http://www.krskstate.ru/press/news/promtorg/0/news/102332 (accessed on 20 April 2023).
- Government Resolution of the Russian Federation of 5 December 2019 No. 1600. Available online: https://www.consultant.ru/document/cons_doc_LAW_339732/ (accessed on 27 September 2023).
- “Electric Boiler Costs Only 5–7 Thousand a Month”: How the Most Ordinary Family from Krasnoyarsk Pokrovka Switched to Environmentally Friendly Heating. Available online: https://newslab.ru/article/1052214 (accessed on 27 June 2023).
- In Krasnoyarsk, 23 Private Houses Were Switched from Coal Heating to Gas. Available online: https://newslab.ru/news/1149069 (accessed on 27 June 2023).
- Kubica, K.; Paradiz, B.; Dilara, P. Small Combustion Installations: Techniques, Emissions and Measures for Its Reduction. Available online: https://publications.jrc.ec.europa.eu/repository/handle/JRC42208 (accessed on 19 October 2023).
- Renewable Global Status Report. Available online: https://www.ren21.net/reports/global-status-report/ (accessed on 19 July 2023).
- Pyzhev, A.I. Russian pulp and paper industry: In search of new points of growth. Econ. Manag. 2023, 29, 917–926. [Google Scholar] [CrossRef]
- Ryazanov, V.A. Japan and South Korea as Markets for Russian Exporters of Wood Pellets. Bull. Inst. Econ. Russ. Acad. Sci. 2023, 1, 130–142. [Google Scholar] [CrossRef]
- Gordeev, R.V.; Pyzhev, A.I. The Crossroads of the Russian Timber Industry. ECO 2023, 53, 169–191. [Google Scholar] [CrossRef]
- Putin Instructed to Allocate 15 Billion Rubles for the Conversion of Boiler Houses to Pellets. Vedomosti. 2023. Available online: https://www.vedomosti.ru/business/articles/2023/02/10/962593-15-mlrd-pelleti (accessed on 19 July 2023).
- Vukovich, N.A.; Mehrentsev, A.V. The State and Development Prospects of the Wood Pellet Market in Russia. ECO 2023, 53, 122–136. [Google Scholar] [CrossRef]
- Vitale, I.; Dondo, R.G.; González, M.; Cóccola, M.E. Modelling and Optimization of Material Flows in the Wood Pellet Supply Chain. Appl. Energy 2022, 313, 118776. [Google Scholar] [CrossRef]
- Kudryavtseva, O.; Yakovleva, E.; Golovin, M. Features and Prospects of the Russian Biofuel Market against the Global Trends Backdrop. MUEB 2016, 6, 22–38. (In Russian) [Google Scholar] [CrossRef]
- Bobylev, S.N. Regional Priorities of Green Economy. Econ. Reg. EoR 2015, 2, 148–160. [Google Scholar] [CrossRef]
- Namsaraev, Z.B.; Gotovtsev, P.M.; Komova, A.V.; Vasilov, R.G. Current Status and Potential of Bioenergy in the Russian Federation. Renew. Sustain. Energy Rev. 2018, 81, 625–634. [Google Scholar] [CrossRef]
- Thomson, H.; Liddell, C. The Suitability of Wood Pellet Heating for Domestic Households: A Review of Literature. Renew. Sustain. Energy Rev. 2015, 42, 1362–1369. [Google Scholar] [CrossRef]
- Bahn, M.; Skjoldjensen, A.R. Vil man forstå, hvordan vi endte med at fælde skove i klimaets navn, skal man tilbage til 1997. Information. 2021. Available online: https://www.information.dk/mofo/dag-faelder-skove-klimaets-navn-forklaringen-1997-finde (accessed on 23 May 2023).
- Sheffield, H. “Carbon-Neutrality Is a Fairy Tale”: How the Race for Renewables Is Burning Europe’s Forests. The Guardian. 2021. Available online: https://www.theguardian.com/world/2021/jan/14/carbon-neutrality-is-a-fairy-tale-how-the-race-for-renewables-is-burning-europes-forests (accessed on 5 June 2023).
- Maysyk, E.; Gubiy, E. Efficiency of the Use of Wood Fuel on the Lake Baikal. ECO 2023, 53, 110–123. [Google Scholar] [CrossRef]
- Ivantsova, E.D.; Kozyaeva, D.A. Prospects for the Use of Wood Fuel in the Context of Low-carbon Energy Development. Energy Syst. Res. 2023, 6, 67–70. [Google Scholar]
- Dzikuć, M.; Łasiński, K. Technical and Economic Aspects of Low Emission Reduction in Poland. Int. J. Appl. Mech. Eng. 2017, 22, 1107–1112. [Google Scholar] [CrossRef]
- Aleksiejczuk, A.; Teleszewski, T.J. Estimation of Sulfur Dioxide Emissions in an Automatic Boiler with a Retort Burner for Coal and Biomass in a Single-Family House Based on the Measurement of the Heat Consumed. Environ. Sci. Proc. 2022, 18, 10. [Google Scholar] [CrossRef]
- Wang, K.; Zhang, Y.; Sekelj, G.; Hopke, P.K. Economic Analysis of a Field Monitored Residential Wood Pellet Boiler Heating System in New York State. Renew. Energy 2019, 133, 500–511. [Google Scholar] [CrossRef]
- Stolarski, M.J.; Warmiński, K.; Krzyżaniak, M.; Olba–Zięty, E.; Stachowicz, P. Energy Consumption and Heating Costs for a Detached House over a 12-Year Period—Renewable Fuels versus Fossil Fuels. Energy 2020, 204, 117952. [Google Scholar] [CrossRef]
- Schreiberová, M.; Vlasáková, L.; Vlček, O.; Šmejdířová, J.; Horálek, J.; Bieser, J. Benzo[a]Pyrene in the Ambient Air in the Czech Republic: Emission Sources, Current and Long-Term Monitoring Analysis and Human Exposure. Atmosphere 2020, 11, 955. [Google Scholar] [CrossRef]
- Nunes, L.J.R.; Matias, J.C.O.; Catalão, J.P.S. Wood Pellets as a Sustainable Energy Alternative in Portugal. Renew. Energy 2016, 85, 1011–1016. [Google Scholar] [CrossRef]
- Jåstad, E.O.; Bolkesjø, T.F.; Trømborg, E.; Rørstad, P.K. The Role of Woody Biomass for Reduction of Fossil GHG Emissions in the Future North European Energy Sector. Appl. Energy 2020, 274, 115360. [Google Scholar] [CrossRef]
- Saosee, P.; Sajjakulnukit, B.; Gheewala, S.H. Environmental Externalities of Wood Pellets from Fast-Growing and Para-Rubber Trees for Sustainable Energy Production: A Case in Thailand. Energy Convers. Manag. X 2022, 14, 100183. [Google Scholar] [CrossRef]
- Rimantho, D.; Hidayah, N.Y.; Pratomo, V.A.; Saputra, A.; Akbar, I.; Sundari, A.S. The Strategy for Developing Wood Pellets as Sustainable Renewable Energy in Indonesia. Heliyon 2023, 9, e14217. [Google Scholar] [CrossRef] [PubMed]
- Agar, D.; Gil, J.; Sanchez, D.; Echeverria, I.; Wihersaari, M. Torrefied versus Conventional Pellet Production—A Comparative Study on Energy and Emission Balance Based on Pilot-Plant Data and EU Sustainability Criteria. Appl. Energy 2015, 138, 621–630. [Google Scholar] [CrossRef]
- Yun, H.; Wang, H.; Clift, R.; Bi, X. The Role of Torrefied Wood Pellets in the Bio-Economy: A Case Study from Western Canada. Biomass Bioenergy 2022, 163, 106523. [Google Scholar] [CrossRef]
- Sonarkar, P.R.; Chaurasia, A.S. Thermal Performance of Three Improved Biomass-Fired Cookstoves Using Fuel Wood, Wood Pellets and Coconut Shell. Environ. Dev. Sustain. 2019, 21, 1429–1449. [Google Scholar] [CrossRef]
- Xian, H.; Colson, G.; Mei, B.; Wetzstein, M.E. Co-Firing Coal with Wood Pellets for U.S. Electricity Generation: A Real Options Analysis. Energy Policy 2015, 81, 106–116. [Google Scholar] [CrossRef]
- Mei, B.; Wetzstein, M. Burning Wood Pellets for US Electricity Generation? A Regime Switching Analysis. Energy Econ. 2017, 65, 434–441. [Google Scholar] [CrossRef]
- Johnston, C.M.T.; Van Kooten, G.C. Economics of Co-Firing Coal and Biomass: An Application to Western Canada. Energy Econ. 2015, 48, 7–17. [Google Scholar] [CrossRef]
- Woodworking Company “Enisey”. Available online: https://dok-enisey.ru/ (accessed on 19 July 2023).
- Order of the Ministry of Industry, Energy and Housing and Communal Services of Krasnoyarsk Krai No. 14-36n of 4 December 2020. Available online: http://zakon.krskstate.ru/0/doc/71337 (accessed on 27 September 2023).
Heating Type | Budget Funding | Expected Heating Cost for a House with the Area of 100 sq. m per Month, Thousand Rubles | Additional Costs for the Homeowner |
---|---|---|---|
District heating | Construction and reconstruction of heat supply facilities, including heat pipelines, centralized hot water supply systems, individual facilities of such systems (up to the boundaries of the land plot of the homeowner) | 4–5 | Connection to the district heating system—from 500,000 to 900,000 rubles |
Heating with liquefied petroleum gas | Purchase and installation of in-house gas equipment, metering devices, heating systems | 8–10 | None |
Electric heating | Purchase, installation of in-house electrical equipment, heating systems | 8–10 | None |
Coal heating | Purchase, installation of an automatic solid fuel boiler | 2–3 | None |
Pollutant | Emission Factor, g/GJ | Emission Reduction when Switching from Coal to Pellets, Tons (% of Total Pollutant Emissions in Krasnoyarsk) | |||
---|---|---|---|---|---|
Brown Coal | Wood Pellets | 1000 Houses | 3000 Houses | 6500 Houses | |
Nitrogen oxides (NOx) | 110 | 80 | 4.8 (0.03) | 14.5 (0.09) | 31.5 (0.2) |
Carbon monoxide (CO) | 4600 | 300 | 695.1 (1.3) | 2085.4 (3.9) | 4518.4 (8.5) |
Sulfur oxides (SOx) | 900 | 11 | 143.7 (0.7) | 431.1 (2.0) | 934.2 (4.4) |
Total suspended particles (TSP) | 444 | 62 | 61.8 (0.4) | 185.3 (1.2) | 401.4 (2.7) |
Calorific Value, MW per Ton | Average Price, Thousand Rubles per Ton | Heating Demand for a House of 100 Square Meters per Month, MW | Estimated Cost of Heating a House of 100 Square Meters per Month, Thousand Rubles | Cost of Automatic Pellet Boiler, Thousand Rubles |
---|---|---|---|---|
4.6–5.2 | 6 | 4.98 | 5.8–6.5 | 180–205 |
Projection of Budget Expenditure, Million Rubles | 1000 Houses | 3000 Houses | 6500 Houses |
---|---|---|---|
Subsidies to the pellet producer | 33.3 | 99.9 | 216.5 |
Additional budget expenditure for purchase of new heating equipment (automatic pellet boilers) | 205 | 615 | 1332.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Syrtsova, E.A.; Ivantsova, E.D.; Miskiv, A.S.; Zander, E.V.; Pyzhev, A.I. Costs of Coal Abatement for Residential Heating to Reduce Urban Air Pollution in Asian Russia: Evidence from Krasnoyarsk. Energies 2024, 17, 640. https://doi.org/10.3390/en17030640
Syrtsova EA, Ivantsova ED, Miskiv AS, Zander EV, Pyzhev AI. Costs of Coal Abatement for Residential Heating to Reduce Urban Air Pollution in Asian Russia: Evidence from Krasnoyarsk. Energies. 2024; 17(3):640. https://doi.org/10.3390/en17030640
Chicago/Turabian StyleSyrtsova, Ekaterina A., Ekaterina D. Ivantsova, Alexandra S. Miskiv, Evgeniya V. Zander, and Anton I. Pyzhev. 2024. "Costs of Coal Abatement for Residential Heating to Reduce Urban Air Pollution in Asian Russia: Evidence from Krasnoyarsk" Energies 17, no. 3: 640. https://doi.org/10.3390/en17030640
APA StyleSyrtsova, E. A., Ivantsova, E. D., Miskiv, A. S., Zander, E. V., & Pyzhev, A. I. (2024). Costs of Coal Abatement for Residential Heating to Reduce Urban Air Pollution in Asian Russia: Evidence from Krasnoyarsk. Energies, 17(3), 640. https://doi.org/10.3390/en17030640