Optimization of Organic Rankine Cycle for Hot Dry Rock Power System: A Stackelberg Game Approach
Abstract
:1. Introduction
2. Stackelberg Game Pattern of ORC Optimization
2.1. System Components and Thermal Processes
2.2. Framework of the Stackelberg Game Pattern
3. Thermodynamic Model of ORC
- The ORC system is always in a steady state;
- We neglect the evaporator and condenser pressure drop losses, piping resistance losses, and heat losses;
- The isentropic efficiency of both the pump and the turbine is 0.85;
- We assume that the pinch point temperature is 10 °C and the condensate inlet temperature is 20 °C;
- We assume that the atmospheric pressure is 0.1 MPa.
3.1. Geometric Design of Shell and Tube Heat Exchangers
3.2. Models of Evaporator Area
3.2.1. Models of Tube-Side Heat Transfer Coefficient
3.2.2. Models of Shell-Side Heat Transfer Coefficient
3.3. Models of Condenser Area
3.3.1. Models of Condenser Tube-Side Heat Transfer Coefficient
3.3.2. Models of Condenser Shell-Cide Heat Transfer Coefficient
3.4. Models of Turbine
3.5. Models of Pump
3.6. Net Circulating Work and Thermal Efficiency
4. A Bi-Level Stackelberg Game Approach for ORC System Optimization
4.1. Game Model of Leader
4.2. Game Model of Follower
4.3. Constraints and Solving Method
5. Case Study
5.1. Parameters of Case
5.2. ORC Optimization Results
5.3. Parametric Analysis
6. Conclusions
- The ORC optimization method based on the Stackelberg game can balance the net system work and heat transfer area during optimization;
- The organic working fluid R600 is the best ORC performance working fluid;
- The total heat transfer area is minimized when the evaporator and condenser tube bundle angles are 60°; Heat transfer area of 4466 m2;
- At R600 of 50 kg/s, the net system cycle work is 4186 kW, the generation efficiency is 14.52%, and the levelized cost of energy is 0.0176 USD/kWh.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhao, X.-G.; Wan, G. Current situation and prospect of China’s geothermal resources. Renew. Sustain. Energy Rev. 2014, 32, 651–661. [Google Scholar] [CrossRef]
- Zhu, G.; Zhang, L.; Deng, Z.; Feng, Q.; Niu, Z.; Xu, W. Three-Dimensional Geological Modeling and Resource Estimation of Hot Dry Rock in the Gonghe Basin, Qinghai Province. Energies 2023, 16, 5871. [Google Scholar] [CrossRef]
- Lu, S.-M. A global review of enhanced geothermal system (EGS). Renew. Sustain. Energy Rev. 2018, 81, 2902–2921. [Google Scholar] [CrossRef]
- Zhang, Y.-J.; Li, Z.-W.; Guo, L.-L.; Gao, P.; Jin, X.-P.; Xu, T.-F. Electricity generation from enhanced geothermal systems by oilfield produced water circulating through reservoir stimulated by staged fracturing technology for horizontal wells: A case study in Xujiaweizi area in Daqing Oilfield, China. Energy 2014, 78, 788–805. [Google Scholar] [CrossRef]
- Brown, D.; DuTeaux, R.; Kruger, P.; Swenson, D.; Yamaguchi, T. Fluid circulation and heat extraction from engineered geothermal reservoirs. Geothermics 1999, 28, 553–572. [Google Scholar] [CrossRef]
- Quick, H.; Michael, J.; Huber, H.; Arslan, U. History of international geothermal power plants and geothermal projects in Germany. In Proceedings of the World Geothermal Congress, Bali, Indonesia, 25–30 April 2010; pp. 25–29. [Google Scholar]
- Varma, G.P.; Srinivas, T. Power generation from low temperature heat recovery. Renew. Sustain. Energy Rev. 2017, 75, 402–414. [Google Scholar] [CrossRef]
- Rodríguez, C.E.C.; Palacio, J.C.E.; Venturini, O.J.; Lora, E.E.S.; Cobas, V.M.; Dos Santos, D.M.; Dotto, F.R.L.; Gialluca, V. Exergetic and economic comparison of ORC and Kalina cycle for low temperature enhanced geothermal system in Brazil. Appl. Therm. Eng. 2013, 52, 109–119. [Google Scholar] [CrossRef]
- Yu, S.C.; Chen, L.; Zhao, Y.; Li, H.X.; Zhang, X.R. Thermodynamic analysis of representative power generation cycles for low-to-medium temperature applications. Int. J. Energy Res. 2015, 39, 84–97. [Google Scholar] [CrossRef]
- Loni, R.; Najafi, G.; Bellos, E.; Rajaee, F.; Said, Z.; Mazlan, M. A review of industrial waste heat recovery system for power generation with Organic Rankine Cycle: Recent challenges and future outlook. J. Clean. Prod. 2021, 287, 125070. [Google Scholar] [CrossRef]
- Al-Rawashdeh, H.A.; Gomaa, M.R.; Mustafa, R.J.; Hasan, A.O. Efficiency and exergy enhancement of ORC powered by recovering flue gases-heat system in cement industrials: A case study. Int. Rev. Mech. Eng 2019, 13, 185–197. [Google Scholar] [CrossRef]
- Hu, S.; Yang, Z.; Li, J.; Duan, Y. A review of multi-objective optimization in organic Rankine cycle (ORC) system design. Energies 2021, 14, 6492. [Google Scholar] [CrossRef]
- Gomaa, M.; Mustafa, R.; Al-Dhaifallah, M.; Rezk, H. A low-grade heat organic rankine cycle driven by hybrid solar collectors and a waste heat recovery system. Energy Rep. 2020, 6, 3425–3445. [Google Scholar] [CrossRef]
- Pan, W.; Li, J.; Zhang, G.; Zhou, L.; Tu, M. Multi-Objective Optimization of Organic Rankine Cycle (ORC) for Tractor Waste Heat Recovery Based on Particle Swarm Optimization. Energies 2022, 15, 6720. [Google Scholar] [CrossRef]
- Wang, J.; Yan, Z.; Wang, M.; Li, M.; Dai, Y. Multi-objective optimization of an organic Rankine cycle (ORC) for low grade waste heat recovery using evolutionary algorithm. Energy Convers. Manag. 2013, 71, 146–158. [Google Scholar] [CrossRef]
- Imran, M.; Park, B.S.; Kim, H.J.; Lee, D.H.; Usman, M.; Heo, M. Thermo-economic optimization of Regenerative Organic Rankine Cycle for waste heat recovery applications. Energy Convers. Manag. 2014, 87, 107–118. [Google Scholar] [CrossRef]
- Gimelli, A.; Luongo, A.; Muccillo, M. Efficiency and cost optimization of a regenerative Organic Rankine Cycle power plant through the multi-objective approach. Appl. Therm. Eng. 2017, 114, 601–610. [Google Scholar] [CrossRef]
- Jiménez-García, J.C.; Ruiz, A.; Pacheco-Reyes, A.; Rivera, W. A comprehensive review of organic rankine cycles. Processes 2023, 11, 1982. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, C.; Wang, S.; Xu, X.; Li, Q. Thermo-economic comparison of subcritical organic Rankine cycle based on different heat exchanger configurations. Energy 2017, 123, 728–741. [Google Scholar] [CrossRef]
- Hu, S.; Li, J.; Yang, F.; Yang, Z.; Duan, Y. Multi-objective optimization of organic Rankine cycle using hydrofluorolefins (HFOs) based on different target preferences. Energy 2020, 203, 117848. [Google Scholar] [CrossRef]
- Petukhov, B.S.; Popov, V.N. Theoretical calculation of heat exchange and frictional resistance in turbulent flow in tubes of an incompressible fluid with thermophysical properties. Teplofizika Vysokikh Temperatur 1963, 1, 69–83. [Google Scholar]
- Walraven, D.; Laenen, B.; D’haeseleer, W. Optimum configuration of shell-and-tube heat exchangers for the use in low-temperature organic Rankine cycles. Energy Convers. Manag. 2014, 83, 177–187. [Google Scholar] [CrossRef]
- Rohsenow, W.M.; Hartnett, J.P.; Cho, Y.I. Handbook of Heat Transfer; Mcgraw-Hill: New York, NY, USA, 1998; Volume 3. [Google Scholar]
- Hettkamp, T.; Teza, D.; Baumgaertner, J.; Gerard, A.; Baria, R. The European Hot Dry Rock research project at Soultz-sous-Forets; Stand des europaeischen Hot Dry Rock-Forschungsprojektes Soultz-sous-Forets. In Geothermische Fachtagung: 20 Jahre Tiefe Geothermie in Deutschland; HydroTherm Consult GmbH: Walldorf, Germany, 2002; pp. 48–55. [Google Scholar]
- Feng, Y.; Zhang, Y.; Li, B.; Yang, J.; Shi, Y. Comparison between regenerative organic Rankine cycle (RORC) and basic organic Rankine cycle (BORC) based on thermoeconomic multi-objective optimization considering exergy efficiency and levelized energy cost (LEC). Energy Convers. Manag. 2015, 96, 58–71. [Google Scholar] [CrossRef]
- Li, J.; Yang, Z.; Hu, S.; Yang, F.; Duan, Y. Effects of shell-and-tube heat exchanger arranged forms on the thermo-economic performance of organic Rankine cycle systems using hydrocarbons. Energy Convers. Manag. 2020, 203, 112248. [Google Scholar] [CrossRef]
- Anugraha, R.P.; Renanto, R.; Maulana, R.A.; Kusumo, R.D. Techno-economical study on the production of high octane gasoline in light naphtha plant. J. Chem. Technol. Metall. 2024, 59, 81–86. [Google Scholar] [CrossRef]
- de Oliveira Neto, R.; Sotomonte, C.A.R.; Coronado, C.J.; Nascimento, M.A. Technical and economic analyses of waste heat energy recovery from internal combustion engines by the Organic Rankine Cycle. Energy Convers. Manag. 2016, 129, 168–179. [Google Scholar] [CrossRef]
- Bahrami, M.; Pourfayaz, F.; Kasaeian, A. Low global warming potential (GWP) working fluids (WFs) for Organic Rankine Cycle (ORC) applications. Energy Rep. 2022, 8, 2976–2988. [Google Scholar] [CrossRef]
- Wang, D.; Ling, X.; Peng, H.; Liu, L.; Tao, L. Efficiency and optimal performance evaluation of organic Rankine cycle for low grade waste heat power generation. Energy 2013, 50, 343–352. [Google Scholar] [CrossRef]
Parameter Name | Parameter Value | Parameter Name | Parameter Value |
---|---|---|---|
Outlet temperature of production well (°C) | 200 | Pinch temperature (°C) | 10 |
Geothermal mass flow (kg/s) | 50–80 | Cold water temperature (°C) | 20 |
Re-injection temperature (°C) | 40 | Heat exchanger structure | Shell and tube type |
Parameter Name | Optimization Results | |||
---|---|---|---|---|
Mass flow rate of a heat source (kg/s) | 50 | 60 | 70 | 80 |
Network (kW) | 4186 | 4883 | 5542 | 6168 |
Evaporator heat exchange area (m2) | 1367 | 1617 | 1866 | 2114 |
Condenser heat exchange area (m2) | 2784 | 3230 | 3655 | 4066 |
Generation efficiency | 14.52% | 14.26% | 14% | 13.76% |
Levelized cost of energy (USD) | 0.0176 | 0.0177 | 0.0179 | 0.0183 |
Name | Molecular Mass (kg/kmol) | (MPa) | (K) | ODP | GWP |
---|---|---|---|---|---|
R600 | 58.12 | 3.80 | 425.15 | 0 | 4 |
R123 | 152.93 | 3.67 | 456.85 | 0.02 | 120 |
R1233zd | 130.5 | 3.57 | 438.75 | 0 | 1 |
R245fa | 134.05 | 3.64 | 427.21 | 0 | 990 |
R134a | 102.03 | 4.06 | 374.18 | 0 | 1400 |
R1234yf | 114.04 | 3.38 | 367.85 | 0 | 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Z.; Wu, W.; Si, Y. Optimization of Organic Rankine Cycle for Hot Dry Rock Power System: A Stackelberg Game Approach. Energies 2024, 17, 5151. https://doi.org/10.3390/en17205151
Hu Z, Wu W, Si Y. Optimization of Organic Rankine Cycle for Hot Dry Rock Power System: A Stackelberg Game Approach. Energies. 2024; 17(20):5151. https://doi.org/10.3390/en17205151
Chicago/Turabian StyleHu, Zhehao, Wenbin Wu, and Yang Si. 2024. "Optimization of Organic Rankine Cycle for Hot Dry Rock Power System: A Stackelberg Game Approach" Energies 17, no. 20: 5151. https://doi.org/10.3390/en17205151
APA StyleHu, Z., Wu, W., & Si, Y. (2024). Optimization of Organic Rankine Cycle for Hot Dry Rock Power System: A Stackelberg Game Approach. Energies, 17(20), 5151. https://doi.org/10.3390/en17205151