Can Technological Advancement Empower the Future of Renewable Energy? A Panel Autoregressive Distributed Lag Approach
Abstract
:1. Introduction
2. Literature Review
2.1. ICT and Renewable Energy Consumption
2.2. Patents and Renewable Energy Consumption
2.3. Research and Development (R&D) and Renewable Energy Consumption
2.4. Research Gap
3. Data and Methods
3.1. Data
3.2. Methodology
3.2.1. Cross-Section Dependence Tests
- -
- Breusch and Pagan (1980) [77] test statistics (LM):
- -
- Pesaran (2004) [75] scaled LM test statistics:
- -
- Pesaran (2004) [75] CD test Statistics:
- -
- Pesaran et al. (2008) [76] bias-corrected scaled LM test statistics:
3.2.2. Unit Root Tests
3.2.3. Estimation Methods
3.2.4. Robustness Methods
3.2.5. Causality Test
4. Results
4.1. Cross-Section Dependence Test Results
4.2. Unit Root Test Results
4.3. Panel ARDL (PMG) Test Results
4.4. Robustness Test Results
4.5. Causality Test Results
5. Conclusions, Recommendations, and Limitations
6. Recommendations
7. Limitations
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hosseini, S.E.; Wahid, M.A. Utilization of palm solid residue as a source of renewable and sustainable energy in Malaysia. Renew. Sustain. Energy Rev. 2014, 40, 621–632. [Google Scholar] [CrossRef]
- Hosseini, S.E.; Abdul Wahid, M. Pollutant in palm oil production process. J. Air Waste Manag. Assoc. 2015, 65, 773–781. [Google Scholar] [CrossRef] [PubMed]
- Borgi, H.; Mabrouk, F.; Bousrih, J.; Mekni, M. Environmental Change and Inclusive Finance: Does Governance Quality Matter for African Countries? Sustainability 2023, 15, 3533. [Google Scholar] [CrossRef]
- Zahraee, S.M.; Hatami, M.; Bavafa, A.A.; Ghafourian, K.; Rohani, J.M. Application of statistical taguchi method to optimize main elements in the residential buildings in Malaysia based energy consumption. Appl. Mech. Mater. 2014, 606, 265–269. [Google Scholar] [CrossRef]
- Chami, R.; Cosimano, T.; Fullenkamp, C.; Oztosun, S. Nature’s solution to climate change. Financ. Dev. Mag. 2019, 56, 34–38. [Google Scholar]
- Lee, C.C.; Yan, J. Will artificial intelligence make energy cleaner? Evidence of nonlinearity. Appl. Energy 2024, 363, 123081. [Google Scholar] [CrossRef]
- Hassan, Q.; Tabar, V.S.; Sameen, A.Z.; Salman, H.M.; Jaszczur, M. A review of green hydrogen production based on solar energy; techniques and methods. Energy Harvest. Syst. 2024, 11, 20220134. [Google Scholar] [CrossRef]
- Hassan, Q.; Abdulateef, A.M.; Hafedh, S.A.; Al-samari, A.; Abdulateef, J.; Sameen, A.Z.; Jaszczur, M. Renewable energy-to-green hydrogen: A review of main resources routes, processes and evaluation. Int. J. Hydrogen Energy 2023, 48, 17383–17408. [Google Scholar] [CrossRef]
- Bousrih, J. The impact of digitalization on the banking sector: Evidence from fintech countries. Asian Econ. Financ. Rev. 2023, 13, 269–278. [Google Scholar] [CrossRef]
- Hepbasli, A. A key review on energetic analysis and assessment of renewable energy resources for a sustainable future. Renew. Sustain. Energy Rev. 2008, 12, 593–661. [Google Scholar] [CrossRef]
- Goodwin, S.; Olazabal, M.; Castro, A.J.; Pascual, U. Global mapping of urban nature-based solutions for climate change adaptation. Nat. Sustain. 2023, 6, 458–469. [Google Scholar] [CrossRef]
- Kothari, D.P.; Ranjan, R.; Singal, K.C. Renewable Energy Sources and Emerging Technologies, 2nd ed.; PHI Learning Private Ltd.: Delhi, India, 2021. [Google Scholar]
- Nazir, M.S.; Alturise, F.; Alshmrany, S.; Nazir, H.M.J.; Bilal, M.; Abdalla, A.N.; Sanjeevikumar, P.; Ali, Z.M. Wind Generation Forecasting Methods and Proliferation of Artificial Neural Network: A Review of Five Years Research Trend. Sustainability 2020, 12, 3778. [Google Scholar] [CrossRef]
- Yao, F.; Qin, Z.; Wang, X.; Noor, A.; Sharma, S.; Hunjet, A. The evolution of renewable energy environments utilizing artificial intelligence to enhance energy efficiency and finance. Heliyon 2023, 9, e16160. [Google Scholar] [CrossRef] [PubMed]
- Al-Falahi, M.D.A.; Jayasinghe, S.D.G.; Enshaei, H. A review on recent size optimization methodologies for standalone solar and wind hybrid renewable energy system. Energy Convers. Manag. 2017, 143, 252. [Google Scholar] [CrossRef]
- Adebayo, S.; Agyekum, E.; Altuntaş, M.; Khudoyqulov, S.; Zawbaa, H.; Kamel, S. Does information and communication technology impede environmental degradation? Fresh insights from non-parametric approaches. Heliyon 2022, 8, e09108. [Google Scholar] [CrossRef]
- Li, J.; Ma Qu, Y.; Wang, J. The impact of artificial intelligence on firms’ energy and resource efficiency: Empirical evidence from China. Resour. Policy 2023, 82, 103507. [Google Scholar] [CrossRef]
- Lau, C.; Gozgor, G.; Mahalik, M.; Patel, G.; Li, J. Introducing a new measure of energy transition: Green quality of energy mix and its impact on CO2 emissions. Energy Econ. 2023, 122, 106702. [Google Scholar] [CrossRef]
- Gaur, L.; Afaq, A.; Arora, G.; Khan, N. Artificial intelligence for carbon emissions using system of systems theory. Ecol. Inform. 2023, 76, 102165. [Google Scholar] [CrossRef]
- Qin, M.; Hu, W.; Qi, X.; Chang, T. Do the benefits outweigh the disadvantages? Exploring the role of artificial intelligence in renewable energy. Energy Econ. 2024, 131, 107403. [Google Scholar] [CrossRef]
- Wang, J.; Wang, W.; Liu, Y.; Wu, H. Can industrial robots reduce carbon emissions? Based on the perspective of energy rebound effect and labor factor flow in China. Technol. Soc. 2023, 72, 102208. [Google Scholar] [CrossRef]
- Yu, H.; Wei, W.; Li, J.; Li, Y. The impact of green digital finance on energy resources and climate change mitigation in carbon neutrality: Case of 60 economies. Res. Policy 2023, 79, 103116. [Google Scholar] [CrossRef]
- Olabi, A.G.; Abdelghafar, A.A.; Maghrabie, H.M.; Sayed, E.T.; Rezk, H.; Al Radi, M.; Abdelkareem, M.A. Application of artificial intelligence for prediction, optimization, and control of thermal energy storage systems. Therm. Sci. Eng. Prog. 2023, 39, 101730. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Y.; Pan, A.; Han, M.; Veglianti, E. Carbon emission reduction effects of industrial robot applications: Heterogeneity characteristics and influencing mechanisms. Technol. Soc. 2022, 70, 102034. [Google Scholar] [CrossRef]
- Zatsarinnaya, Y.; Rep’ev, E.; Gainullin, R. Distributed generation as a trend in the transformation of the electric power industry in Russia. In Proceedings of the 2021 International Conference on Electrotechnical Complexes and Systems (ICOECS), Ufa, Russia, 16–18 November 2021; pp. 64–67. [Google Scholar]
- Ajibade, S.-S.M.; Bekun, F.V.; Adedoyin, F.F.; Gyamfi, B.A.; Adediran, A.O. Machine Learning Applications in Renewable Energy (MLARE) Research: A Publication Trend and Bibliometric Analysis Study (2012–2021). Clean Technol. 2023, 5, 497–517. [Google Scholar] [CrossRef]
- Khan, Z.; Ali, S.; Dong, K.; Li, R.Y.M. How does fiscal decentralization affect CO2 emissions? The roles of institutions and human capital. Ecol. Econ. 2021, 94, 105060. [Google Scholar] [CrossRef]
- Zhao, J.; Jiang, Q.; Dong, X.; Dong, K.; Jiang, H. How does industrial structure adjustment reduce CO2 emissions? Spatial and mediation effects analysis for China. Ecol. Econ. 2022, 105, 105704. [Google Scholar] [CrossRef]
- Zhou, Y.; Zheng, S.; Liu, Z.; Wen, T.; Ding, Z.; Yan, J.; Zhang, G. Passive and active phase change materials integrated building energy systems with advanced machine-learning based climate-adaptive designs, intelligent operations, uncertainty-based analysis and optimizations: A state-of-the-art review. Renew. Sustain. Energy Rev. 2020, 130, 109889. [Google Scholar] [CrossRef]
- Zhou, Y. Artificial neural network-based smart aerogel glazing in low-energy buildings: A state-of-the-art review. iScience 2021, 24, 103420. [Google Scholar] [CrossRef]
- Ahmad, T.; Zhu, H.; Zhang, D.; Tariq, R.; Bassam, A.; Ullah, F.; AlGhamdi, A.S.; Alshamrani, S.S. Energetics systems and artificial intelligence: Applications of industry 4.0. Energy Rep. 2022, 8, 334–361. [Google Scholar] [CrossRef]
- Bidwell, D.; Sovacool, B.K. Uneasy tensions in energy justice and systems transformation. Nat. Energy 2023, 8, 317–320. [Google Scholar] [CrossRef]
- Zhao, C.; Wang, K.; Dong, X.; Dong, K. Is smart transportation associated with reduced carbon emissions? The case of China. Energy Econ. 2022, 105, 105715. [Google Scholar] [CrossRef]
- Kosonen, R.; Zhou, Y.; Cao, S.; Hamdy, M. Multi-objective optimization of an interactive buildings-vehicles energy sharing network with high energy flexibility using the Pareto archive NSGA-II algorithm. Energy Convers. Manag. 2020, 218, 113017. [Google Scholar]
- Hensen, J.L.M.; Zhou, Y.; Cao, S.; Hasan, A. Heuristic battery-protective strategy for energy management of an interactive renewables–buildings–vehicles energy sharing network with high energy flexibility. Energy Convers. Manag. 2020, 214, 112891. [Google Scholar]
- Esperon-Rodriguez, M.; Tjoelker, M.G.; Lenoir, J.; Baumgartner, J.B.; Beaumont, L.J.; Nipperess, D.A.; Gallagher, R.V. Climate change increases global risk to urban forests. Nat. Clim. Change 2022, 12, 950–955. [Google Scholar] [CrossRef]
- Zhao, C.; Dong, X.; Dong, K. Quantifying the energy trilemma in China and assessing its nexus with smart transportation. Smart Resil. Transp. 2022, 4, 78–104. [Google Scholar] [CrossRef]
- Naeem, M.A.; Appiah, M.; Taden, J.; Amoasi, R.; Gyamfi, B.A. Transitioning to clean energy: Assessing the impact of renewable energy, bio-capacity and access to clean fuel on carbon emissions in OECD economies. Energy Econ. 2023, 127, 107091. [Google Scholar] [CrossRef]
- Taghizadeh-Hesary, F.; Dong, K.; Zhao, C.; Phoumin, H. Can financial and economic means accelerate renewable energy growth in the climate change era? The case of China. Econ. Anal. Policy 2023, 78, 730–743. [Google Scholar] [CrossRef]
- Zhao, C.; Taghizadeh-Hesary, F.; Dong, K.; Dong, X. Breaking carbon lock-in: The role of green financial inclusion for China. J. Environ. Plan. Manag. 2024, 67, 564–593. [Google Scholar] [CrossRef]
- Gyimah, J.; Yao, X.; Tachega, M.; Hayford, I.; Opoku-Mensah, E. Renewable energy consumption and economic growth: New evidence from Ghana. Energy 2022, 248, 123559. [Google Scholar] [CrossRef]
- Su, J.; Yang, W. Unlocking the Power of ChatGPT: A Framework for Applying Generative AI in Education. ECNU Rev. Educ. 2023, 6, 355–366. [Google Scholar] [CrossRef]
- Lyu, W.; Liu, Y. Soft skills, hard skills: What matters most? Evidence from job postings. Appl. Energy 2021, 300, 117307. [Google Scholar] [CrossRef]
- Višković, A.; Franki, V.; Jevtic, D. Artificial intelligence as a facilitator of the energy transition. In Proceedings of the 2022 45th Jubilee International Convention on Information, Communication and Electronic Technology (MIPRO), Opatija, Croatia, 23–27 May 2022; pp. 494–499. [Google Scholar] [CrossRef]
- Abdalla, A.; Shahzad Nazir, M.; Tao, H.; Cao, S.; Ji, R.; Jiang, M.; Yao, L. Integration of energy storage system and renewable energy sources based on artificial intelligence: An overview. J. Energy Storage 2021, 40, 102811. [Google Scholar] [CrossRef]
- Lei, Y.; Liang, Z.; Ruan, P. Evaluation on the impact of digital transformation on the economic resilience of the energy industry in the context of artificial intelligence. Energy Rep. 2023, 9, 785–792. [Google Scholar] [CrossRef]
- Chang, L.; Taghizadeh-Hesary, F.; Berk Saydaliev, H. How do ICT and renewable energy impact sustainable development? Renew. Energy 2022, 199, 123–131. [Google Scholar] [CrossRef]
- Makeeva, E.; Popov, K.; Teplova, O. Patenting for profitability: Green energy innovations and firm performance in BRICS countries. Front. Environ. Sci. 2024, 12, 1332792. [Google Scholar] [CrossRef]
- Lee, C.; Chen, M.; Yuan, Z. Is information and communication technology a driver for renewable energy? Energy Econ. 2023, 12, 106786. [Google Scholar] [CrossRef]
- Lin, X.; Zhao, Y.; Ahmad, M.; Ahmed, Z.; Rjoub, H.; Adebayo, T.S. Linking Innovative Human Capital, Economic Growth, and CO2 Emissions: An Empirical Study Based on Chinese Provincial Panel Data. Int. J. Environ. Res. Public Health 2021, 18, 8503. [Google Scholar] [CrossRef]
- Lee, C.C.; Qin, S.; Li, Y. Does industrial robot application promote green technology innovation in the manufacturing industry? Technol. Forcast. Soc. 2022, 183, 121893. [Google Scholar] [CrossRef]
- Yang, W.; Wang, D. Can industrial robot applications help cross the middle-income trap? empirical evidence based on crossed-country panel data. Technol. Forcast. Soc. 2023, 192, 122583. [Google Scholar] [CrossRef]
- Guo, Y.; Xia, X.; Zhang, S.; Zhang, D. Environmental regulation, government R&D funding and green technology innovation: Evidence from China provincial data. Sustainability 2018, 10, 940. [Google Scholar] [CrossRef]
- Nie, L.; Gong, H.; Zhao, D.; Lai, X.; Chang, M. Heterogeneous knowledge spillover channels in universities and green technology innovation in local firms: Stimulating quantity or quality? Front. Psychol. 2022, 13, 943655. [Google Scholar] [CrossRef] [PubMed]
- Aiello, F.; Cardamone, P.; Mannarino, L.; Pupo, V. Green patenting and corporate social responsibility: Does family involvement in business matter? Corp. Soc. Responsib. Environ. Manag. 2021, 28, 1386–1396. [Google Scholar] [CrossRef]
- Churchill, S.A.; Inekwe, J.; Smyth, R.; Zhang, X. R&D intensity and carbon emissions in the G7: 1870–2014. Energy Econ. 2019, 80, 30–37. [Google Scholar]
- Churchill, S.A.; Inekwe, J.; Kris, I. R&D expenditure and energy consumption in OECD nations. Energy Econ. 2021, 100, 105376. [Google Scholar] [CrossRef]
- Dinda, S. Environmental Kuznets Curve Hypothesis: A Survey. Ecol. Econ. 2004, 49, 431–455. [Google Scholar] [CrossRef]
- Newell, R.G. The Role of Markets and Policies in Delivering Innovation for Climate Change Mitigation. Oxf. Rev. Econ. Policy 2010, 26, 253–269. [Google Scholar] [CrossRef]
- Chmielewski, W.; Postuła, M.; Dubel, P. The Impact of Expenditure on Research and Development on Selected Energy Factors in the European Union. Energies 2023, 16, 3554. [Google Scholar] [CrossRef]
- Busru, S.A.; Shanmugasundaram, G. Effects of Innovation Investment on Profitability and Moderating Role of Corporate Governance: Empirical Study of Indian Listed Firms. Indian J. Corp. Gov. 2017, 10, 97–117. [Google Scholar] [CrossRef]
- Ayaydin, H.; Karaaslan, I. The effect of research and development investment on firms’ financial performance: Evidence from manufacturing firms in Turkey. J. Knowl. Econ. Knowl. Manag. 2014, 9, 43–59. [Google Scholar]
- Kiraci, M.; Celikay, F.; Celikay, D. The Effects of Firms’ R & D Expenditures on Profitability: An Analysis with Panel Error Correction Model for Turkey. Int. J. Bus. Soc. Sci. 2016, 7, 233–240. [Google Scholar]
- Xie, H.; Yang, J.; Yu, W.; Yang, Y.; Wu, W. The Time-lag Effect of R&D Investment on the Value of Listed Companies in China: A Cross-industry Analysis. J. Creat. Value 2020, 6, 239496432092354. [Google Scholar] [CrossRef]
- Hsu, F.J.; Chen, M.Y.; Chen, Y.C.; Wang, W.C. An empirical study on the relationship between R&D and financial performance. J. Appl. Financ. Bank. 2013, 3, 107–119. [Google Scholar]
- Wang, W.; Khelfaoui, I.; Ahmed, D.; Xie, Y.; Hafeez, M.; Meskher, H. Nexus between information and communication technologies and life expectancies of low-income countries: Does technological advancement increase their life span? SSM-Popul. Health 2024, 25, 101600. [Google Scholar] [CrossRef] [PubMed]
- Gulnara, A.; Leonid, G.; Alexander, S. Indicators of Information and Communication Technology. In Encyclopedia of Information Science and Technology, 4th ed.; IGI Global: Hershey, PA, USA, 2018. [Google Scholar]
- Triulzi, G.; Alstott, J.; Magee, C. Estimating technology performance improvement rates by mining patent data. Technol. Forecast. Soc. Change 2020, 158, 120100. [Google Scholar] [CrossRef]
- Weiyu, Z.; Othman, A.; Guli, T. Role of Technological Acquisition and R&D Expenditure in Innovative Investment. Front. Psychol. 2022, 13, 855295. [Google Scholar] [CrossRef]
- Hong, S.; Hui, E.C.M.; Lin, Y. Relationships between carbon emissions and urban population size and density, based on geo-urban scaling analysis: A multi-carbon source empirical study. Urban Clim. 2022, 46, 101337. [Google Scholar] [CrossRef]
- Liu, Y.; Tang, L.; Liu, G. Carbon Dioxide Emissions Reduction through Technological Innovation: Empirical Evidence from Chinese Provinces. Int. J. Environ. Res. Public Health 2022, 19, 9543. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Javed, A.; Subhani, B.H.; Javed, A.; Rapposelli, A. Accessing the efficacy of green growth, energy efficiency, and green innovation for environmental performance in top manufacturing nations in the framework of sustainable development. Qual. Quant. 2024. [Google Scholar] [CrossRef]
- Pesaran, M.H.; Shin, Y.; Smith, R.P. Pooled mean group estimation of dynamic heterogeneous panels. J. Am. Stat. Assoc. 1999, 94, 621–634. [Google Scholar] [CrossRef]
- Pesaran, M.H.; Smith, R. Estimating long-run relationships from dynamic heterogeneous panels. J. Econom. 1995, 68, 79–113. [Google Scholar] [CrossRef]
- Pesaran, M.H. General diagnostic tests for cross-section dependence in panels. Cambridge Working Papers. Economics 2004, 1240, 1. [Google Scholar]
- Pesaran, M.H. An Autoregressive Distributed-Lag Modelling Approach to Cointegration Analysis. In Econometrics and Economic Theory in the 20th Century: The Ragnar Frisch Centennial Symposium; Cambridge University Press: Cambridge, UK, 2008; pp. 371–413. [Google Scholar]
- Breusch, T.S.; Pagan, A.R. The Lagrange multiplier test and its applications to model specification in econometrics. Rev. Econ. Stud. 1980, 47, 239–253. [Google Scholar] [CrossRef]
- Pesaran, M.H. A simple panel unit root test in the presence of cross-section dependence. J. Appl. Econom. 2007, 22, 265–312. [Google Scholar] [CrossRef]
- Shahbaz, M.; Destek, M.A.; Polemis, M. Do foreign capital and financial development affect clean energy consumption and carbon emissions? Evidence from BRICS and Next-11 countries. SPOUDAI-J. Econ. Bus. 2018, 68, 20–50. [Google Scholar]
- Wang, J.; Zhang, S.; Zhang, Q. The relationship of renewable energy consumption to financial development and economic growth in China. Renew. Energy 2021, 170, 897–904. [Google Scholar] [CrossRef]
- Nyeadi, J.D. The impact of financial development and foreign direct investment on environmental sustainability in Sub-Saharan Africa: Using PMG-ARDL approach. Econ. Res.-Ekon. Istraživanja 2023, 36, 2106270. [Google Scholar] [CrossRef]
- Ebaidalla, E.M. The impact of taxation, technological innovation and trade openness on renewable energy investment: Evidence from the top renewable energy producing countries. Energy 2024, 306, 132539. [Google Scholar] [CrossRef]
- Dumitrescu, E.I.; Hurlin, C. Testing for Granger non-causality in heterogeneous panels. J. Econ. Model. 2012, 29, 1450–1460. [Google Scholar] [CrossRef]
- Harvey, I. Intellectual Property Rights: The Catalyst to Deliver Low Carbon Technologies; The Climate Group: London, UK, 2008. [Google Scholar]
- Johnstone, N.; Haščič, I.; Popp, D. Renewable Energy Policies and Technological Innovation: Evidence Based on Patent Counts. Environ. Resour. Econ. 2010, 45, 133–155. [Google Scholar] [CrossRef]
- Khezri, M.; Heshmati, A.; Khodaei, M. The role of R&D in the effectiveness of renewable energy determinants: A spatial econometric analysis. Energy Econ. 2021, 99, 105287. [Google Scholar]
- Narayan, P.K.; Smyth, R. What determines migration flows from low-income to high-income countries? An empirical investigation of Fiji–Us migration 1972–2001. Contemp. Econ. Policy 2006, 24, 332–342. [Google Scholar] [CrossRef]
Variables | Symbol | Description |
---|---|---|
Renewable energy consumption | REN | Percentage of renewable energy consumption to total final energy consumption. |
Information and communication technology | ICT | Percentage of ICT goods exports to total goods exports. It represents the effect of ICT trade on renewable energy. |
Patent applications | Patent | Number of patent applications, residents. |
Research and development | RD | Research and development expenditure as a percentage of GDP. |
Communication and technology | COMM | Communications, computers, etc., as a percentage of service exports. It represents the ICT infrastructure of a country. |
Urban population | Upop | Proportion of the total population living in cities |
Variable | Obs | Mean | Std. Dev. | Min | Max |
---|---|---|---|---|---|
lnREN | 198 | 3.2538 | 1.0093 | −0.1625 | 4.4313 |
lnICT | 198 | 0.7950 | 1.9242 | −3.0932 | 3.4250 |
lnPatent | 198 | 7.2163 | 3.2713 | 2.0794 | 14.1708 |
lnRD | 198 | 0.3397 | 0.7718 | −1.5642 | 1.3542 |
lnCOMM | 198 | 3.5684 | 0.5605 | 1.6169 | 4.3288 |
lnUpop | 198 | 4.3472 | 0.2035 | 3.5801 | 4.5611 |
Variable | lnREN | lnICT | lnPatent | lnRD | lnCOMM | lnUpop |
---|---|---|---|---|---|---|
lnREN | 1.0000 | |||||
lnICT | −0.5296 *** (0.000) | 1.0000 | ||||
lnPatent | −0.6423 *** (0.000) | 0.6504 *** (0.000) | 1.0000 | |||
lnRD | −0.1791 ** (0.012) | 0.2695 *** (0.000) | 0.5977 *** (0.000) | 1.0000 | ||
lnCOMM | −0.3108 *** (0.000) | 0.6358 *** (0.000) | 0.4711 *** (0.000) | 0.2482 *** (0.000) | 1.0000 | |
lnUpop | 0.4631 *** (0.000) | −0.7426 *** (0.000) | −0.5889 *** (0.000) | −0.0103 (0.885) | −0.4420 *** (0.000) | 1.0000 |
Test | Statistic | Prob. |
---|---|---|
Breusch–Pagan LM | 283.8156 | 0.0000 |
Pesaran scaled LM | 29.2054 | 0.0000 |
Pesaran CD | −1.8338 | 0.067 |
CIPS | CADF | |||
---|---|---|---|---|
I(0) | I(1) | I(0) | I(1) | |
lnREN | −2.172 | −3.964 *** | −2.269 * (0.058) | −2.691 *** (0.002) |
lnICT | −2.225 * | −4.106 *** | −1.990 (0.238) | −3.146 *** (0.000) |
lnPatent | −2.036 | −4.700 *** | −1.762 (0.498) | −2.492 ** (0.012) |
lnRD | −1.591 | −3.869 *** | −1.671 (0.608) | −2.742 *** (0.001) |
lnCOMM | −1.854 | −4.211 *** | −1.948 * (0.280) | −2.491 ** (0.012) |
lnUpop | −1.947 | −2.317 * | −2.273 * (0.056) | −2.045 (0.189) |
Coefficient | z-Statistic (p Value) | |
---|---|---|
Long-Run Equation | ||
lnICT | 0.0414 ** | 2.35 (0.019) |
lnPatent | 0.0498 | 0.93 (0.350) |
lnRD | −0.3950 *** | −5.06 (0.000) |
lnCOMM | 0.1395 ** | 2.25 (0.025) |
lnUpop | 6.0980 *** | 5.90 (0.000) |
Short-Run Equation | ||
COINTEQ01 | −0.3050 *** | −3.67 (0.000) |
ΔlnICT | 0.0564 | 0.76 (0.450) |
ΔlnPatent | −0.1134 | −1.36 (0.174) |
ΔlnRD | −0.0010 | −0.01 (0.993) |
ΔlnCOMM | 0.0974 | 1.50 (0.134) |
ΔlnUpop | −1.4226 | −0.10 (0.917) |
C | −7.4411 *** | −3.57 (0.000) |
Sweden | Costa Rica | United Kingdom | Iceland | Germany | Uruguay | China | New Zealand | Norway | |
---|---|---|---|---|---|---|---|---|---|
COINTEQ01 | −0.4687 *** (0.001) | −0.6631 *** (0.000) | −0.4913 *** (0.000) | −0.1938 *** (0.000) | −0.0655 *** (0.000) | −0.5963 *** (0.000) | −0.0118 *** (0.001) | −0.1860 *** (0.001) | −0.0729 *** (0.000) |
lnICT | 0.1177 *** (0.000) | −0.0275 *** (0.000) | −0.0424 *** (0.000) | 0.0028 *** (0.000) | −0.2123 ** (0.008) | −0.1384 *** (0.000) | 0.5176 *** (0.000) | 0.2869 *** (0.000) | 0.0037 ** (0.040) |
lnPatent | 0.1265 *** (0.003) | −0.0260 *** (0.000) | −0.7119 (0.164) | −0.0224 *** (0.000) | −0.2497 (0.189) | −0.1718 *** (0.000) | 0.0274 ** (0.041) | 0.0264 *** (0.000) | −0.0191 ** (0.015) |
lnRD | 0.3574 *** (0.003) | 0.1119 *** (0.001) | 0.4574 *** (0.001) | 0.0430 *** (0.001) | −0.7496 * (0.096) | 0.2095 *** (0.000) | −0.2359 ** (0.032) | −0.1668 (0.180) | −0.0357 * (0.055) |
lnCOMM | 0.2420 ** (0.035) | 0.0925 *** (0.002) | 0.4760 (0.264) | −0.0060 *** (0.000) | −0.1811 (0.204) | −0.0558 *** (0.000) | 0.2304 *** (0.000) | 0.0845 *** (0.000) | 0.0061 * (0.062) |
lnUpop | 15.6010 (0.898) | 80.0582 (0.898) | −47.7318 (0.860) | 23.6259 (0.927) | 5.4356 (0.987) | −59.8497 (0.943) | −8.7753 (0.864) | −19.2483 (0.918) | −1.9222 (0.980) |
C | −11.2170 (0.674) | −16.8459 (0.561) | −47.7318 (0.188) | −4.5696 (0.526) | −1.5608 (0.201) | −14.6421 (0.326) | −0.0659 (0.935) | −4.5434 (0.681) | −1.6868 * (0.067) |
Coefficient | t-Statistic | |
---|---|---|
lnICT | 0.0353 * | 0.083 |
lnPatent | −0.0175 | 0.684 |
lnRD | −0.1874 *** | 0.004 |
lnCOMM | 0.1878 *** | 0.000 |
lnUpop | 12.6749 *** | 0.000 |
Null Hypothesis: | W-Stat. | Zbar-Stat. | p Value | Decision |
---|---|---|---|---|
LOG(ICT) does not Granger cause LOG(REN) LOG(REN) does not Granger cause LOG(ICT) | 4.4954 *** 2.8503 | 3.7430 1.2755 | 0.000 0.202 | Unidirectional causality ICT → REN |
LOG(PATENT) does not Granger cause LOG(REN) LOG(REN) does not Granger cause LOG(PATENT) | 2.6518 3.7652 ** | 0.9777 2.6479 | 0.328 0.008 | Unidirectional causality PAT← REN |
LOG(RD) does not Granger cause LOG(REN) LOG(REN) does not Granger cause LOG(RD) | 3.8092 ** 2.2571 | 2.7137 0.3857 | 0.007 0.700 | Unidirectional causality RD → REN |
LOG(COMM) does not Granger cause LOG(REN) LOG(REN) does not Granger cause LOG(COMM) | 3.5393 ** 4.3374 *** | 2.3090 3.5061 | 0.021 0.001 | Bidirectional causality COM↔ REN |
LOG(UPOP) does not Granger cause LOG(REN) LOG(REN) does not Granger cause LOG(UPOP) | 6.4803 *** 3.6920 ** | 6.7205 2.5380 | 0.000 0.011 | Bidirectional causality Upop↔ REN |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elhaj, M.; Bousrih, J.; Alofaysan, H. Can Technological Advancement Empower the Future of Renewable Energy? A Panel Autoregressive Distributed Lag Approach. Energies 2024, 17, 5126. https://doi.org/10.3390/en17205126
Elhaj M, Bousrih J, Alofaysan H. Can Technological Advancement Empower the Future of Renewable Energy? A Panel Autoregressive Distributed Lag Approach. Energies. 2024; 17(20):5126. https://doi.org/10.3390/en17205126
Chicago/Turabian StyleElhaj, Manal, Jihen Bousrih, and Hind Alofaysan. 2024. "Can Technological Advancement Empower the Future of Renewable Energy? A Panel Autoregressive Distributed Lag Approach" Energies 17, no. 20: 5126. https://doi.org/10.3390/en17205126
APA StyleElhaj, M., Bousrih, J., & Alofaysan, H. (2024). Can Technological Advancement Empower the Future of Renewable Energy? A Panel Autoregressive Distributed Lag Approach. Energies, 17(20), 5126. https://doi.org/10.3390/en17205126