Exploring the Nexus between Greenhouse Emissions, Environmental Degradation and Green Energy in Europe: A Critique of the Environmental Kuznets Curve
Abstract
:1. Introduction
2. Literature Review
- Policy choices playing a vital role in reducing environmental damage during the initial phases of development and expediting improvements as affluence increases;
- Technological progress potentially facilitating the separation of economic expansion from environmental degradation by permitting cleaner industrial processes and resource-efficient technology;
- Heightened environmental consciousness among the public potentially stimulating the need for more stringent legislation and eco-friendly goods and services.
3. Materials and Methods
3.1. Data
3.2. Methodology
4. Results and Discussions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ciegis, R.; Streimikiene, D.; Zavadskas, E.K. The use of the environmental Kuznets curve: Environmental and economic implications. Int. J. Environ. Pollut. 2008, 33, 313. [Google Scholar] [CrossRef]
- Granda, C.; Pérez, L.G.; Muñoz, J.C. The Environmental Kuznets Curve for Water Quality: An Analysis of its Appropriateness Using Unit Root and Cointegration Tests. Lect. Econ. 2009, 69, 221–244. [Google Scholar] [CrossRef]
- Grossman, G.M.; Krueger, A.B. Environmental Impacts of a North American Free Trade Agreement; NBER Working Paper No. 3914; National Bureau of Economic Research, Inc.: Cambridge, MA, USA, 1991. [Google Scholar] [CrossRef]
- Grossman, G.M.; Krueger, A.B. Economic Growth and the Environment. Q. J. Econ. 1995, 110, 353–377. [Google Scholar] [CrossRef]
- Panayotou, T. Empirical Tests and Policy Analysis of Environmental Degradation at Different Stages of Economic Development; Working Paper WP238; Technology and Employment Programme, International Labour Office: Geneva, Switzerland, 1993. [Google Scholar]
- Shafik, N. Economic Development and Environmental Quality: An Econometric Analysis. Oxf. Econ. Pap. 1994, 46 (Suppl. S1), 757–773. [Google Scholar] [CrossRef]
- Selden, T.M.; Song, D. Environmental Quality and Development: Is There a Kuznets Curve for Air Pollution Emissions? J. Environ. Econ. Manag. 1994, 27, 147–162. [Google Scholar] [CrossRef]
- Galeotti, M.; Lanza, A.; Pauli, F. Reassessing the environmental Kuznets curve for CO2 emissions: A robustness exercise. Ecol. Econ. 2006, 57, 152–163. [Google Scholar] [CrossRef]
- Bulai, V.-C.; Horobet, A.; Popovici, O.; Belascu, L.; Dumitrescu, S.A. A VaR-Based Methodology for Assessing Carbon Price Risk across European Union Economic Sectors. Energies 2021, 14, 8424. [Google Scholar] [CrossRef]
- Almeida, D.V.; Kolinjivadi, V.; Ferrando, T.; Roy, B.; Herrera, H.; Gonçalves, M.V.; Van Hecken, G. The “Greening” of Empire: The European Green Deal as the EU first agenda. Politi-Geogr. 2023, 105, 102925. [Google Scholar] [CrossRef]
- Barbier, E.B. Introduction to the environmental Kuznets curve special issue. Environ. Dev. Econ. 1997, 2, 369–381. [Google Scholar] [CrossRef]
- Magnani, E. The Environmental Kuznets Curve: Development path or policy result? Environ. Model. Softw. 2001, 16, 157–165. [Google Scholar] [CrossRef]
- Dinda, S. Environmental Kuznets Curve Hypothesis: A Survey. Ecol. Econ. 2004, 49, 431–455. [Google Scholar] [CrossRef]
- Kostakis, I.; Armaos, S.; Abeliotis, K.; Theodoropoulou, E. The investigation of EKC within CO2 emissions framework: Empirical evidence from selected cross-correlated countries. Sustain. Anal. Model. 2023, 3, 100015. [Google Scholar] [CrossRef]
- Kostakis, I.; Angeletopoulou, P.; Polyzou, E. Women in parliaments: Can they enhance environmental sustainability in the EU? Clean. Prod. Lett. 2024, 7, 100065. [Google Scholar] [CrossRef]
- Pata, U.K.; Caglar, A.E. Investigating the EKC hypothesis with renewable energy consumption, human capital, globalization and trade openness for China: Evidence from augmented ARDL approach with a structural break. Energy 2020, 216, 119220. [Google Scholar] [CrossRef]
- Isik, C.; Ongan, S.; Ozdemir, D.; Ahmad, M.; Irfan, M.; Alvarado, R.; Ongan, A. The increases and decreases of the environment Kuznets curve (EKC) for 8 OECD countries. Environ. Sci. Pollut. Res. 2021, 28, 28535–28543. [Google Scholar] [CrossRef]
- Ng, C.-F.; Choong, C.-K.; Lau, L.-S. Environmental Kuznets curve hypothesis: Asymmetry analysis and robust estimation under cross-section dependence. Environ. Sci. Pollut. Res. 2020, 27, 18685–18698. [Google Scholar] [CrossRef]
- Carson, R.T. The Environmental Kuznets Curve: Seeking Empirical Regularity and Theoretical Structure. Rev. Environ. Econ. Policy 2010, 4, 3–23. [Google Scholar] [CrossRef]
- Webber, D.J.; Allen, D.O. Environmental Kuznets curves: Mess or meaning? Int. J. Sustain. Dev. World Ecol. 2010, 17, 198–207. [Google Scholar] [CrossRef]
- Destek, M.A.; Sarkodie, S.A. Investigation of environmental Kuznets curve for ecological footprint: The role of energy and financial development. Sci. Total. Environ. 2019, 650, 2483–2489. [Google Scholar] [CrossRef]
- Dasgupta, S.; Laplante, B.; Wang, H.; Wheeler, D. Confronting the Environmental Kuznets Curve. J. Econ. Perspect. 2002, 16, 147–168. [Google Scholar] [CrossRef]
- Lawson, L.A.; Martino, R.; Nguyen-Van, P. Environmental convergence and environmental Kuznets curve: A unified empirical framework. Ecol. Model. 2020, 437, 109289. [Google Scholar] [CrossRef]
- Stern, D.I. The Rise and Fall of the Environmental Kuznets Curve. World Dev. 2004, 32, 1419–1439. [Google Scholar] [CrossRef]
- Apergis, N.; Ozturk, I. Testing Environmental Kuznets Curve hypothesis in Asian countries. Ecol. Indic. 2015, 52, 16–22. [Google Scholar] [CrossRef]
- Sarkodie, S.A.; Strezov, V. A review on Environmental Kuznets Curve hypothesis using bibliometric and meta-analysis. Sci. Total. Environ. 2019, 649, 128–145. [Google Scholar] [CrossRef]
- Stern, D.I.; Common, M.S.; Barbier, E.B. Economic growth and environmental degradation: The environmental Kuznets curve and sustainable development. World Dev. 1996, 24, 1151–1160. [Google Scholar] [CrossRef]
- Perman, R.; Stern, D.I. Evidence from panel unit root and cointegration tests that the Environmental Kuznets Curve does not exist. Aust. J. Agric. Resour. Econ. 2003, 47, 325–347. [Google Scholar] [CrossRef]
- Ulucak, R.; Bilgili, F. A reinvestigation of EKC model by ecological footprint measurement for high, middle and low income countries. J. Clean. Prod. 2018, 188, 144–157. [Google Scholar] [CrossRef]
- Destek, M.A.; Ulucak, R.; Dogan, E. Analyzing the environmental Kuznets curve for the EU countries: The role of ecological footprint. Environ. Sci. Pollut. Res. Int. 2018, 25, 29387–29396. [Google Scholar] [CrossRef]
- Gorus, M.S.; Aslan, M. Impacts of economic indicators on environmental degradation: Evidence from MENA countries. Renew. Sustain. Energy Rev. 2019, 103, 259–268. [Google Scholar] [CrossRef]
- Koengkan, M.; Fuinhas, J.A.; Silva, N. Exploring the capacity of renewable energy consumption to reduce outdoor air pollution death rate in Latin America and the Caribbean region. Environ. Sci. Pollut. Res. 2020, 28, 1656–1674. [Google Scholar] [CrossRef]
- Bjørnskov, C. Economic freedom and the greenhouse gas Kuznets curve. Eur. J. Political Econ. 2024, 82, 102530. [Google Scholar] [CrossRef]
- Bimonte, S.; Stabile, A. Land consumption and income in Italy: A case of inverted EKC. Ecol. Econ. 2017, 131, 36–43. [Google Scholar] [CrossRef]
- Dogan, E.; Inglesi-Lotz, R. The impact of economic structure to the environmental Kuznets curve (EKC) hypothesis: Evidence from European countries. Environ. Sci. Pollut. Res. 2020, 27, 12717–12724. [Google Scholar] [CrossRef] [PubMed]
- Pata, U.K. Renewable and non-renewable energy consumption, economic complexity, CO2 emissions, and ecological footprint in the USA: Testing the EKC hypothesis with a structural break. Environ. Sci. Pollut. Res. 2020, 28, 846–861. [Google Scholar] [CrossRef] [PubMed]
- Everett, T.; Ishwaran, M.; Ansaloni, G.P.; Rubin, A. Economic Growth and the Environment. 2010. Available online: https://mpra.ub.uni-muenchen.de/23585/ (accessed on 5 August 2024).
- Galeotti, M.; Manera, M.; Lanza, A. On the Robustness of Robustness Checks of the Environmental Kuznets Curve Hypothesis. Environ. Resour. Econ. 2006, 42, 551–574. [Google Scholar] [CrossRef]
- De Souza Mendonça, A.K.; De Andrade Conradi Barni, G.; Moro, M.F.; Bornia, A.C.; Kupek, E.; Fernandes, L. Hierarchical modeling of the 50 largest economies to verify the impact of GDP, population and renewable energy generation in CO2 emissions. Sustain. Prod. Consum. 2020, 22, 58–67. [Google Scholar] [CrossRef]
- Zafar, M.W.; Saleem, M.M.; Destek, M.A.; Caglar, A.E. The dynamic linkage between remittances, export diversification, education, renewable energy consumption, economic growth, and CO2 emissions in top remittance-receiving countries. Sustain. Dev. 2021, 30, 165–175. [Google Scholar] [CrossRef]
- Horobet, A.; Popovici, O.C.; Zlatea, E.; Belascu, L.; Dumitrescu, D.G.; Curea, S.C. Long-Run Dynamics of Gas Emissions, Economic Growth, and Low-Carbon Energy in the European Union: The Fostering Effect of FDI and Trade. Energies 2021, 14, 2858. [Google Scholar] [CrossRef]
- Horobet, A.; Mnohoghitnei, I.; Dumitrescu, D.G.; Curea, S.C.; Belascu, L. An Empirical Assessment of the Financial Development—Environmental Quality Nexus in the European Union. Amfiteatru Econ. 2022, 24, 613–629. [Google Scholar] [CrossRef]
- Fareed, Z.; Rehman, M.A.; Adebayo, T.S.; Wang, Y.; Ahmad, M.; Shahzad, F. Financial inclusion and the environmental deterioration in Eurozone: The moderating role of innovation activity. Technol. Soc. 2022, 69, 101961. [Google Scholar] [CrossRef]
- Ibrahim, M.; Vo, X.V. Exploring the relationships among innovation, financial sector development and environmental pollution in selected industrialized countries. J. Environ. Manag. 2021, 284, 112057. [Google Scholar] [CrossRef] [PubMed]
- Alqaralleh, H. Dynamic connectedness amongst green bonds, pollution allowance policy, social responsibility and uncertainty. J. Risk Financ. 2023, 25, 80–114. [Google Scholar] [CrossRef]
- Makpotche, M.; Bouslah, K.; M’zali, B. Corporate governance and green innovation: International evidence. Rev. Account. Financ. 2024, 23, 280–309. [Google Scholar] [CrossRef]
- Afzal, A.; Hasnaoui, J.A.; Firdousi, S.; Noor, R. Climate change and the European banking sector: The effect of green technology adaptation and human capital. Rev. Account. Financ. 2024, 23, 394–418. [Google Scholar] [CrossRef]
- Adebayo, T.S.; Kirikkaleli, D. Impact of renewable energy consumption, globalization, and technological innovation on environmental degradation in Japan: Application of wavelet tools. Environ. Dev. Sustain. 2021, 23, 16057–16082. [Google Scholar] [CrossRef]
- Dumitrescu, D.G.; Horobe, A.; Tudor, C.D.; Belascu, L. Renewables and Decarbonisation: Implications for Energy Policy in the European Union. Amfiteatru Econ. 2023, 25, 345–361. [Google Scholar] [CrossRef]
- Tudor, C.D.; Horobet, A.; Mnohoghithei, I.; Sova, R.; Belascu, L. Decarbonization through carbon intensity mitigation: Evidence from global and income-based panels. Econ. Res. Istraz. 2023, 36, 2188420. [Google Scholar] [CrossRef]
- Rahman, A.; Farrok, O.; Haque, M. Environmental impact of renewable energy source based electrical power plants: Solar, wind, hydroelectric, biomass, geothermal, tidal, ocean, and osmotic. Renew. Sustain. Energy Rev. 2022, 161, 112279. [Google Scholar] [CrossRef]
- Nathaniel, S.; Anyanwu, O.; Shah, M. Renewable energy, urbanization, and ecological footprint in the Middle East and North Africa region. Environ. Sci. Pollut. Res. 2020, 27, 14601–14613. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, R.R.; Moran, E.F. Turning the curve: A critical review of Kuznets approaches. Appl. Geogr. 2012, 32, 3–11. [Google Scholar] [CrossRef]
- Kaika, D.; Zervas, E. The environmental Kuznets curve (EKC) theory. Part B: Critical issues. Energy Policy 2013, 62, 1403–1411. [Google Scholar] [CrossRef]
- Stern, D.I. Progress on the environmental Kuznets curve? Environ. Dev. Econ. 1998, 3, 173–196. [Google Scholar] [CrossRef]
- Zhong, K. Does the digital finance revolution validate the Environmental Kuznets Curve? Empirical findings from China. PLoS ONE 2022, 17, e0257498. [Google Scholar] [CrossRef] [PubMed]
- Booth, G. The Environmental Kuznets Curve. World Econ. 2017, 18, 145–152. [Google Scholar]
- Müller-Fürstenberger, G.; Wagner, M. Exploring the Environmental Kuznets Hypothesis: Theoretical and Econometric Problems. Ecol. Econ. 2007, 62, 648–660. [Google Scholar] [CrossRef]
- Usman, M.; Jahanger, A. Heterogeneous effects of remittances and institutional quality in reducing environmental deficit in the presence of EKC hypothesis: A global study with the application of panel quantile regression. Environ. Sci. Pollut. Res. 2021, 28, 37292–37310. [Google Scholar] [CrossRef]
- Bah, M.M.; Abdulwakil, M.M.; Azam, M. Income heterogeneity and the Environmental Kuznets Curve hypothesis in Sub-Saharan African countries. GeoJournal 2020, 85, 617–628. [Google Scholar] [CrossRef]
- He, J.; Richard, P. Environmental Kuznets curve for CO2 in Canada. Ecol. Econ. 2010, 69, 1083–1093. [Google Scholar] [CrossRef]
- Altıntaş, H.; Kassouri, Y. Is the environmental Kuznets Curve in Europe related to the per-capita ecological footprint or CO2 emissions? Ecol. Indic. 2020, 113, 106187. [Google Scholar] [CrossRef]
- Destek, M.A.; Sinha, A. Renewable, non-renewable energy consumption, economic growth, trade openness and ecological footprint: Evidence from organisation for economic Co-operation and development countries. J. Clean. Prod. 2020, 242, 118537. [Google Scholar] [CrossRef]
- Boubellouta, B.; Kusch-Brandt, S. Testing the environmental Kuznets Curve hypothesis for E-waste in the EU28+2 countries. J. Clean. Prod. 2020, 277, 123371. [Google Scholar] [CrossRef]
- Neagu, O. The Link between Economic Complexity and Carbon Emissions in the European Union Countries: A Model Based on the Environmental Kuznets Curve (EKC) Approach. Sustainability 2019, 11, 4753. [Google Scholar] [CrossRef]
- Jóźwik, B.; Gavryshkiv, A.-V.; Kyophilavong, P.; Gruszecki, L.E. Revisiting the Environmental Kuznets Curve Hypothesis: A Case of Central Europe. Energies 2021, 14, 3415. [Google Scholar] [CrossRef]
- Sterpu, M.; Soava, G.; Mehedintu, A. Impact of Economic Growth and Energy Consumption on Greenhouse Gas Emissions: Testing Environmental Curves Hypotheses on EU Countries. Sustainability 2018, 10, 3327. [Google Scholar] [CrossRef]
- Armeanu, D.; Vintilă, G.; Andrei, J.V.; Gherghina, S.C.; Drăgoi, M.C.; Teodor, C. Exploring the link between environmental pollution and economic growth in EU-28 countries: Is there an environmental Kuznets curve? PLoS ONE 2018, 13, e0195708. [Google Scholar] [CrossRef]
- Bölük, G.; Mert, M. Fossil & renewable energy consumption, GHGs (greenhouse gases) and economic growth: Evidence from a panel of EU (European Union) countries. Energy 2014, 74, 439–446. [Google Scholar] [CrossRef]
- Al-Mulali, U.; Saboori, B.; Ozturk, I. Investigating the environmental Kuznets curve hypothesis in Vietnam. Energy Policy 2015, 76, 123–131. [Google Scholar] [CrossRef]
- Işık, C.; Ongan, S.; Özdemir, D.; Işık, C.; Ongan, S.; Özdemir, D. Testing the EKC hypothesis for ten US states: An application of heterogeneous panel estimation method. Environ. Sci. Pollut. Res. 2019, 26, 10846–10853. [Google Scholar] [CrossRef]
- Lorente, D.B.; Álvarez-Herranz, A. Economic growth and energy regulation in the environmental Kuznets curve. Environ. Sci. Pollut. Res. 2016, 23, 16478–16494. [Google Scholar] [CrossRef]
- Ritchie, H.; Rosado, P.; Roser, M. CO2 and Greenhouse Gas Emissions. Our World in DATA. 2023. Available online: https://ourworldindata.org/co2-and-greenhouse-gas-emissions (accessed on 6 June 2024).
- Das, R.; Das, S.; Bhattacharjee, C. CO2 Sequestration Using Algal Biomass and its Application as Bio Energy. Encycl. Renew. Sustain. Mater. 2020, 3, 372–384. [Google Scholar] [CrossRef]
- Ullah, A.; Raza, K.; Nadeem, M.; Mehmood, U.; Agyekum, E.B.; Elnaggar, M.F.; Agbozo, E.; Kamel, S. Does Globalization Cause Greenhouse Gas Emissions in Pakistan? A Promise to Enlighten the Value of Environmental Quality. Int. J. Environ. Res. Public Health 2022, 19, 8678. [Google Scholar] [CrossRef] [PubMed]
- Koornneef, J.; Van, T.; Van, A.T.; Ramírez, A. Carbon Dioxide Capture and Air Quality. In Chemistry, Emission Control, Radioactive Pollution and Indoor Air Quality; IntechOpen: London, UK, 2011. [Google Scholar] [CrossRef]
- Zhen, N.; Fu, B.; Lu, Y.; Wang, S. Poverty reduction, environmental protection and ecosystem services: A prospective theory for sustainable development. Chin. Geogr. Sci. 2014, 24, 83–92. [Google Scholar] [CrossRef]
- Barrero-Amórtegui, Y.; Maldonado, J.H. Gender composition of management groups in a conservation agreement framework: Experimental evidence for mangrove use in the Colombian Pacific. World Dev. 2021, 142, 105449. [Google Scholar] [CrossRef]
- Artiola, J.F.; Brusseau, M.L. The Role of Environmental Monitoring in Pollution Science. In Environmental and Pollution Science, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 149–162. [Google Scholar] [CrossRef]
- Owoade, O.K.; Abiodun, P.O.; Omokungbe, O.R.; Fawole, O.G.; Olise, F.S.; Popoola, O.O.; Jones, R.L.; Hopke, P.K. Spatial-temporal Variation and Local Source Identification of Air Pollutants in a Semi-urban Settlement in Nigeria Using Low-cost Sensors. Aerosol Air Qual. Res. 2021, 21, 200598. [Google Scholar] [CrossRef]
- Lotrecchiano, N.; Montano, L.; Bonapace, I.M.; Giancarlo, T.; Trucillo, P.; Sofia, D. Comparison Process of Blood Heavy Metals Absorption Linked to Measured Air Quality Data in Areas with High and Low Environmental Impact. Processes 2022, 10, 1409. [Google Scholar] [CrossRef]
- Jakubowski, B.; Frumkin, H. Environmental metrics for community health improvement. Natl. Inst. Health 2010, 7, A76. [Google Scholar]
- Bilgili, F.; Koçak, E.; Bulut, U. The dynamic impact of renewable energy consumption on CO2 emissions: A revisited Environmental Kuznets Curve approach. Renew. Sustain. Energy Rev. 2016, 54, 838–845. [Google Scholar] [CrossRef]
- Dogan, E.; Seker, F. The influence of real output, renewable and non-renewable energy, trade and financial development on carbon emissions in the top renewable energy countries. Renew. Sustain. Energy Rev. 2016, 60, 1074–1085. [Google Scholar] [CrossRef]
- Shahbaz, M.; Nasir, M.A.; Roubaud, D. Environmental degradation in France: The effects of FDI, financial development, and energy innovations. Energy Econ. 2018, 74, 843–857. [Google Scholar] [CrossRef]
- Dogan, E.; Turkekul, B. CO2 emissions, real output, energy consumption, trade, urbanization and financial development: Testing the EKC hypothesis for the USA. Environ. Sci. Pollut. Res. 2015, 23, 1203–1213. [Google Scholar] [CrossRef] [PubMed]
- Özokcu, S.; Özdemir, Z. Economic growth, energy, and environmental Kuznets curve. Renew. Sustain. Energy Rev. 2017, 72, 639–647. [Google Scholar] [CrossRef]
- Feng, G.; Gao, J.; Peng, B. An integrated panel data approach to modelling economic growth. J. Econ. 2022, 228, 379–397. [Google Scholar] [CrossRef]
- Tugcu, C.T.; Topcu, M. Total, renewable and non-renewable energy consumption and economic growth: Revisiting the issue with an asymmetric point of view. Energy 2018, 152, 64–74. [Google Scholar] [CrossRef]
- Demirguc-Kunt, A.; Levine, R. Finance, Financial Sector Policies, and Long-Run Growth; World Bank: Washington, DC, USA, 2008. [Google Scholar] [CrossRef]
- Pearson, R.W.; Boruch, R.F. Survey Research Designs: Towards a Better Understanding of Their Costs and Benefits; Springer Nature: Dordrecht, The Netherlands, 1986. [Google Scholar] [CrossRef]
- Pesaran, M.H. Testing Weak Cross-Sectional Dependence in Large Panels. Econ. Rev. 2014, 34, 1089–1117. [Google Scholar] [CrossRef]
- Pesaran, M.H. General diagnostic tests for cross-sectional dependence in panels. Empir. Econ. 2020, 60, 13–50. [Google Scholar] [CrossRef]
- Juodis, A.; Reese, S. The Incidental Parameters Problem in Testing for Remaining Cross-Section Correlation. J. Bus. Econ. Stat. 2021, 40, 1191–1203. [Google Scholar] [CrossRef]
- Pesaran, M.H.; Xie, Y. A Bias-Corrected CD Test for Error Cross-Sectional Dependence in Panel Data Models with Latent Factors. SSRN Electron. J. 2021, 4198155. [Google Scholar] [CrossRef]
- Pesaran, M.H. A simple panel unit root test in the presence of cross-section dependence. J. Appl. Econ. 2007, 22, 265–312. [Google Scholar] [CrossRef]
- Pesaran, M.H.; Yamagata, T. Testing Slope Homogeneity in Large Panels. J. Econ. 2008, 142, 50–93. [Google Scholar] [CrossRef]
- Blomquist, J.; Westerlund, J. Testing slope homogeneity in large panels with serial correlation. Econ. Lett. 2013, 121, 374–378. [Google Scholar] [CrossRef]
- Kao, C. Spurious regression and residual-based tests for cointegration in panel data. J. Econ. 1999, 90, 1–44. [Google Scholar] [CrossRef]
- Pedroni, P. Critical Values for Cointegration Tests in Heterogeneous Panels with Multiple Regressors. Oxf. Bull. Econ. Stat. 1999, 61, 653–670. [Google Scholar] [CrossRef]
- Pedroni, P. Panel Cointegration: Asymptotic and Finite Sample Properties of Pooled Time Series Tests with an Application to the PPP Hypothesis. Econom. Theory 2004, 20, 597–625. [Google Scholar] [CrossRef]
- Westerlund, J. New Simple Tests for Panel Cointegration. Econ. Rev. 2005, 24, 297–316. [Google Scholar] [CrossRef]
- Juodis, A.; Karavias, Y.; Sarafidis, V. A homogeneous approach to testing for Granger non-causality in heterogeneous panels. Empir. Econ. 2021, 60, 93–112. [Google Scholar] [CrossRef]
- Song, J.; Yang, W.; Zhao, C. Decision-dependent distributionally robust Markov decision process method in dynamic epidemic control. IISE Trans. 2023, 56, 458–470. [Google Scholar] [CrossRef]
- Dasgupta, M.; Mishra, S.K. Least Absolute Deviation Estimation of Linear Econometric Models: A Literature Review; RELX Group: Amsterdam, The Netherlands, 2004. [Google Scholar] [CrossRef]
- Choudhary, D.; Kejariwal, A.; Orsini, F. On the Runtime-Efficacy Trade-off of Anomaly Detection Techniques for Real-Time Streaming Data. arXiv 2017. [Google Scholar] [CrossRef]
- Bono, R.; Blanca, M.J.; Arnau, J.; Gómez-Benito, J. Non-normal Distributions Commonly Used in Health, Education, and Social Sciences: A Systematic Review. Front. Psychol. 2017, 8, 1602. [Google Scholar] [CrossRef]
- Chudik, A.; Pesaran, M.H. Common correlated effects estimation of heterogeneous dynamic panel data models with weakly exogenous regressors. J. Econ. 2015, 188, 393–420. [Google Scholar] [CrossRef]
- Cho, J.S.; Greenwood-Nimmo, M.; Shin, Y. Recent developments of the autoregressive distributed lag modelling framework. J. Econ. Surv. 2021, 37, 7–32. [Google Scholar] [CrossRef]
- Ditzen, J. Estimating Dynamic Common-Correlated Effects in Stata. Stata J. Promot. Commun. Stat. Stata 2018, 18, 585–617. [Google Scholar] [CrossRef]
- Turner, D.P.; Deng, H. A Conceptual Introduction to Regression. Headache J. Head Face Pain 2020, 60, 1047–1055. [Google Scholar] [CrossRef] [PubMed]
- Žarković, M.; Lakić, S.; Ćetković, J.; Pejović, B.; Redzepagic, S.; Vodenska, I.; Vujadinović, R. Effects of Renewable and Non-Renewable Energy Consumption, GHG, ICT on Sustainable Economic Growth: Evidence from Old and New EU Countries. Sustainability 2022, 14, 9662. [Google Scholar] [CrossRef]
- Ganić, M. Is financial integration driver of income inequality A panel co-integration analysis in Europe. Int. J. Econ. Policy Emerg. Econ. 2021, 14, 66–84. [Google Scholar] [CrossRef]
- Simionescu, M.; Radulescu, M.; Cifuentes-Faura, J. The role of natural resources rents and e-government in achieving sustainable development in the European Union. Resour. Policy 2024, 97, 105278. [Google Scholar] [CrossRef]
- Horobet, A.; Radulescu, M.; Bouraoui, T.; Mnohoghitnei, I.; Balsalobre-Lorente, D.; Belascu, L. Financial development and environmental degradation: Insights from European countries. Appl. Econ. 2024, 1–16. [Google Scholar] [CrossRef]
- An, H.; Razzaq, A.; Haseeb, M.; Mihardjo, L.W.W. The role of technology innovation and people’s connectivity in testing environmental Kuznets curve and pollution heaven hypotheses across the Belt and Road host countries: New evidence from Method of Moments Quantile Regression. Environ. Sci. Pollut. Res. 2020, 28, 5254–5270. [Google Scholar] [CrossRef] [PubMed]
- Machado, J.A.F.; Santos Silva, J. Quantiles via moments. J. Econom. 2019, 213, 145–173. [Google Scholar] [CrossRef]
- Rios-Avila, F. MMQREG: Stata Module to Estimate Quantile Regressions via Method of Moments. 2022. Available online: https://ideas.repec.org/c/boc/bocode/s458750.html (accessed on 6 June 2024).
- Ditzen, J.; Karavias, Y.; Westerlund, J. Testing and Estimating Structural Breaks in Time Series and Panel Data in Stata. 2021. Available online: https://repec.cal.bham.ac.uk/pdf/21-14.pdf (accessed on 6 June 2024).
- Addai, K.; Kirikkaleli, D. Insights from Poland on the long-run effect of energy productivity on environmental degradation: A Fourier ARDL-based approach. Environ. Sci. Pollut. Res. 2023, 30, 63453–63463. [Google Scholar] [CrossRef]
- Okumus, I.; Guzel, A.E.; Destek, M.A. Renewable, non-renewable energy consumption and economic growth nexus in G7: Fresh evidence from CS-ARDL. Environ. Sci. Pollut. Res. 2021, 28, 56595–56605. [Google Scholar] [CrossRef]
- Hepburn, C.; Beinhocker, E.; Farmer, J.D.; Teytelboym, A. Resilient and Inclusive Prosperity within Planetary Boundaries. China World Econ. 2014, 22, 76–92. [Google Scholar] [CrossRef]
- Ranjan, R. Preserving ecologically sensitive hotspots under endogenous regulation and valuation constraints. Nat. Resour. Model. 2017, 30, 12145. [Google Scholar] [CrossRef]
- Arafat, W.M.M.; Haq, I.U.; Mehmed, B.; Abbas, A.; Gamage, S.K.N.; Gasimli, O. The Causal nexus among energy consumption, environmental degradation, financial development and health outcome: Empirical study for Pakistan. Energies 2022, 15, 1859. [Google Scholar] [CrossRef]
- Firdous, R.; Chatrath, S.K.; Jadoon, A.K.; Iqbal, M.; Batool, S.A.; Hasan, Z.U. Exploring dynamic nexus between economic growth, environmental degradation, and public health in Pakistan: A moderated mediation approach. Int. J. Energy Econ. Policy 2023, 13, 241–249. [Google Scholar] [CrossRef]
- Sharif, A.; Mishra, S.; Sinha, A.; Jiao, Z.; Shahbaz, M.; Afshan, S. The renewable energy consumption-environmental degradation nexus in Top-10 polluted countries: Fresh insights from quantile-on-quantile regression approach. Renew. Energy 2020, 150, 670–690. [Google Scholar] [CrossRef]
- Jebli, M.B.; Youssef, S.B.; Ozturk, I. Testing environmental Kuznets curve hypothesis: The role of renewable and non-renewable energy consumption and trade in OECD countries. Ecol. Indic. 2016, 60, 824–831. [Google Scholar] [CrossRef]
- Apergis, N.; Payne, J.E. Renewable energy consumption and economic growth: Evidence from a panel of OECD countries. Energy Policy 2010, 38, 656–660. [Google Scholar] [CrossRef]
- Huang, L. Analysis and Research on Sustainable Growth of Environmental Resources Management. In Proceedings of the 2015 International Conference on Education, Management, Information and Medicine, Shenyang, China, 24–26 April 2015. [Google Scholar]
- A’Yun, I.Q.; Nasir, M.S.; bin Nasir, Z.A.; Abdulkarim, F.M.; Hussain, M. Testing the environmental kuznets curve (EKC) hypothesis in Indonesia and India: Autoregressive distributed lag (ARDL) model approach. J. Èkon. Pembang. Kaji. Masal. Èkon. Dan Pembang. 2023, 24, 320–330. [Google Scholar] [CrossRef]
- Jia, X.; Duić, N. Advanced methods and technologies towards environmental sustainability. Clean Technol. Environ. Policy 2021, 23, 709–710. [Google Scholar] [CrossRef]
- Emery, A.; Davies, A.; Griffiths, A.; Williams, K. Environmental and economic modelling: A case study of municipal solid waste management scenarios in Wales. Resour. Conserv. Recycl. 2007, 49, 244–263. [Google Scholar] [CrossRef]
- Ripple, W.J.; Wolf, C.; Lenton, T.M.; Gregg, J.W.; Natali, S.M.; Duffy, P.B.; Rockström, J.; Schellnhuber, H.J. Many risky feedback loops amplify the need for climate action. One Earth 2023, 6, 86–91. [Google Scholar] [CrossRef]
- Wang, B.; Dong, K.; Taghizadeh-Hesary, F. Can green finance promote high-quality energy development? The case of China. J. Risk Financ. 2023, 25, 64–79. [Google Scholar] [CrossRef]
- Delfanti, L.; Colantoni, A.; Recanatesi, F.; Bencardino, M.; Sateriano, A.; Zambon, I.; Salvati, L. Solar plants, environmental degradation and local socioeconomic contexts: A case study in a Mediterranean country. Environ. Impact Assess. Rev. 2016, 61, 88–93. [Google Scholar] [CrossRef]
- Gasparatos, A.; Doll, C.N.; Esteban, M.; Ahmed, A.; Olang, T.A. Renewable energy and biodiversity: Implications for transitioning to a Green Economy. Renew. Sustain. Energy Rev. 2017, 70, 161–184. [Google Scholar] [CrossRef]
- Chintrakarn, P.; Millimet, D.L. The environmental consequences of trade: Evidence from subnational trade flows. J. Environ. Econ. Manag. 2006, 52, 430–453. [Google Scholar] [CrossRef]
- Managi, S.; Hibiki, A.; Tsurumi, T. Does trade openness improve environmental quality? J. Environ. Econ. Manag. 2009, 58, 346–363. [Google Scholar] [CrossRef]
- Satrovic, E.; Cetindas, A.; Akben, I.; Damrah, S. Do natural resource dependence, economic growth and transport energy consumption accelerate ecological footprint in the most innovative countries? The moderating role of technological innovation. Gondwana Res. 2024, 127, 116–130. [Google Scholar] [CrossRef]
- Leal, P.H.; Caetano, R.V.; Marques, A.C. Is the Relocation of Polluting Industries Prompted by FDI Flow and Stock, Globalisation, Corruption and Regulation? Int. J. Environ. Res. Public Health 2021, 18, 1981. [Google Scholar] [CrossRef]
- Suleman, S.; Boukhris, M.; Kayani, U.N.; Thaker, H.M.T.; Cheong, C.W.H.; Hadili, A.; Tehseen, S. Are trade openness drivers relevant to carbon dioxide emission? A study of emerging economies. Int. J. Energy Econ. Policy 2024, 14, 183–196. [Google Scholar] [CrossRef]
Reference | Environmental Degradation Proxy (Air) | Countries | Sample Period | Results |
---|---|---|---|---|
Grossman and Krueger [3,4] | SO2, Smoke, Heavy Particles | 42 (Worldwide) | 1977, 1982, 1988 | EKC is confirmed except for Mexico |
Panayotou [5] | SO2, NOx, Suspended Particles Matter (SPM) | 68 (Worldwide) | 1980s | EKC is confirmed for all countries |
Selden and Song [7] | SO2, NOx, CO, SPM | 30 (Worldwide) | 1973–1975, 1979–1981, 1982–1984 | EKC confirmed for all countries |
Shafik [6] | SPM, CO2 and SO2 | 149 (Worldwide) | 1960–1990 | EKC confirmed for SPM and SO2, while for CO2, the results are mixed |
Stern et al. [27] | SO2 | Worldwide * | 1990 | EKC is not confirmed |
Perman and Stern [28] | SO2, CO2 | 74 (Worldwide) | 1960–1990 | EKC is not confirmed |
Galeotti et al. [8] | CO2 | 24 (OECD) | 1960–2002 | For 12 countries, the EKC stands, while for the other half, the EKC is not confirmed. |
Apergis and Ozturk [25] | CO2 | 14 (Asia) | 1990–2011 | EKC is confirmed for all countries |
Ulucak and Bilgili [29] | Ecological footprint (EF) | Worldwide | 1961–2013 | EKC is not confirmed |
Destek et al. [30] | Ecological footprint (EF) | EU countries | 1980–2013 | EKC is confirmed for all countries |
Sarkodie and Strezov [21] | CO2 | China, India, Iran, Indonesia and South Africa | 1982–2016 | EKC is confirmed only for China and Indonesia |
Gorus and Aslan [31] | CO2 | Middle East and North African countries | 1980–2013 | EKC is partially confirmed |
Koengkan et al. [32] | CO2 | Latin America and Caribbean countries | 1990–2016 | EKC is not confirmed |
Kostakis et al. [14] | CO2 | Middle East and North African countries | 1994–2014 | EKC is confirmed for all countries |
Kostakis et al. [15] | CO2 | 20 (EU) | 2004–2018 | EKC is partially confirmed |
Bjørnskov [33] | CO2 and Total Greenhouse Emissions | 155 (Worldwide) | 1975–2015 | EKC is not confirmed for democratic countries |
Choong et al. [18] | CO2 | 76 countries | 1971–2014 | Confirmed in 16 out of 76 countries but does not fit all countries (CCEMG estimator) and confirmed in 24 out of 76 countries based on AMG estimator |
Pata and Caglar [16] | CO2, Ecological footprint (EF) | China | 1980–2016 | EKC is not confirmed |
Bimonte and Stabil [34] | Emission of Building Permits per capita | 20 Italian regions | 1980–2008 | EKS is not confirmed |
Isik et al. [17] | CO2 | 8 OECD countries (USA, Turkey, Australia, Canada, France, Sweeden, Netherlands, Portugal) | 1962–2015 | EKC is confirmed for 4 out of 8 OECD countries |
Dogan and Inglesi-Lotz [35] | CO2 | European countries | 1980–2014 | The EKC is not confirmed when industrial share is used but is confirmed when aggregate growth is used. |
Pata [36] | CO2, Ecological footprint (EF) | USA | 1980–2016 | The EKC is confirmed |
Type of Variable | Notation | Variable Description | Unit of Measure | Description | Source |
---|---|---|---|---|---|
Dependent | CO2 | CO2 Emissions | Tonnes | Carbon dioxide (CO2) emissions from fossil fuels and industry. Land-use change is not included. | Our World in Data |
Dependent | GHG | Greenhouse gas emissions | Tonnes | Per capita greenhouse gas emissions include the carbon dioxide, methane and nitrous oxide from all sources, including land-use changes. They are measured in tonnes of carbon dioxide equivalents over a 100-year timescale. | Our World in Data |
Explanatory | GDP | Purchasing power-adjusted GDP per capita | PPS (current prices), index EU27_2020 = 100 and coefficient of variation | GDP per capita is calculated as the ratio of GDP to the average population in a specific year. Basic figures are expressed in purchasing power standards (PPS), representing a common currency that eliminates the differences in price levels between countries to allow meaningful volume comparisons of GDP. | Eurostat |
Explanatory | REN | Share of renewable energy in gross final energy consumption | Percentage | The indicator measures the share of renewable energy consumption in gross final energy consumption according to the Renewable Energy Directive. The gross final energy consumption is the energy used by end-consumers (final energy consumption) plus grid losses and self-consumption of power plants. | Eurostat |
Explanatory | TRD | Trade openness/ Trade as a share of GDP | Percentage | The sum of the exports and imports of goods and services, divided by gross domestic product, is expressed as a percentage. | Our World in Data |
Variable | Obs. | Mean | Std. Dev. | Min | Max | Skewness | Kurtosis |
---|---|---|---|---|---|---|---|
CO2 | 540 | 7.75 | 3.37 | 2.90 | 25.98 | 1.96 | 9.57 |
GHG | 540 | 9.85 | 4.04 | 3.27 | 27.96 | 1.43 | 5.68 |
GDP | 540 | 26,672.78 | 12,526.53 | 7300 | 86,800 | 1.84 | 7.93 |
REN | 540 | 19.49 | 14.24 | 0.10 | 77.36 | 1.52 | 5.67 |
TRD | 540 | 139.77 | 78.32 | 45.42 | 393.14 | 1.03 | 3.10 |
Variable | Cross-Sectional Dependency Tests | Panel Unit Root (CIPS) | ||||
---|---|---|---|---|---|---|
CD | CDw | CDw+ | CD* | Level | First Difference | |
lgCO2 | 57.98 * | −2.63 * | 1346.79 * | −0.26 | −2.069 | −4.185 * |
lgGHG | 44.54 * | −2.65 * | 1214.19 * | −0.21 | −1.974 | −4.321 * |
lgGDP | 72.6 * | −1.22 | 1599.02 * | 1.55 | −1.837 | −3.515 * |
lgGDPsq | 72.64 * | −1.22 | 1599.57 * | 1.61 | −1.821 | −3.502 * |
lgREN | 81.84 * | −2.28 | 1704.64 * | 0.32 | −2.398 * | −3.862 * |
lgTRD | 59.86 * | −0.47 | 1252.09 * | −0.92 | −1.466 | −2.972 * |
Test | Delta | p-Value |
---|---|---|
Blomquist and Westerlund (2013) [98] | 8.13 * | 0.00 |
Pesaran and Yamagata (2008) [97] | 13.79 * | 0.00 |
Cointegration Test | Statistic | p-Value |
---|---|---|
Augmented Dickey–Fuller | −1.22 | 0.11 |
Variance ratio | 1.89 ** | 0.03 |
Modified Phillips–Perron | 7.27 *** | 0.00 |
lgCO2 | lgGHG | lgGDP | lgGDPsq | lgREN | lgTRD | |
---|---|---|---|---|---|---|
lgCO2 | - | - | 50.86 *** | 47.23 *** | 1.76 | 19.93 *** |
lgGHG | - | - | 34.85 *** | 34.83 *** | 1.27 | 26.2 *** |
lgGDP | 4.79 ** | 7.58 *** | - | - | 0.65 | 7.67 *** |
lgGDPsq | 4.54 ** | 6.81 *** | - | - | 0.18 | 7.03 *** |
lgREN | 3.97 ** | 87.37 *** | 0.65 | 1.44 | - | 6.38 ** |
lgTRD | 16.90 *** | 36.65 *** | 25.11 *** | 25.17 *** | 14.25 * | - |
Dependent Variable | CO2 | GHG | ||||||
---|---|---|---|---|---|---|---|---|
Model Identifier | D1 | D2 | D3 | D4 | ||||
Coeff. | P > |z| | Coeff. | P > |z| | Coeff. | P > |z| | Coeff. | P > |z| | |
Short-run estimations | ||||||||
LD.lggdp | 31.738 ** | 0.04 | 35.716 * | 0.09 | 24.244 ** | 0.05 | 28.019 ** | 0.02 |
LD.lggdpsq | −1.518 ** | 0.04 | −1.743 * | 0.06 | −1.148 * | 0.06 | −1.337 ** | 0.03 |
LD.lgren | −0.012 *** | 0.01 | −0.433 *** | 0.09 | −0.167 ** | 0.03 | −0.189 ** | 0.03 |
LD.lgtrd | - | - | 0.637 * | 0.01 | - | - | 0.195 * | 0.07 |
LD.intvar1 | - | - | −0.004 * | 0.07 | - | - | −0.003 *** | 0.00 |
Long-run estimations | ||||||||
lr_lggdp | 30.738 ** | 0.04 | 34.716 * | 0.10 | 23.244 ** | 0.06 | 27.019 ** | 0.03 |
lr_lggdpsq | 0.048 *** | 0.00 | 0.049 *** | 0.00 | 0.049 *** | 0.00 | 0.052 *** | 0.00 |
lr_lgren | 0.000 | 0.84 | 0.005 | 0.17 | 0.000 | 0.98 | −0.040 ** | 0.02 |
lr_lgtrd | - | - | 0.001 | 0.83 | - | - | −0.008 | 0.23 |
lr_intvar1 | - | - | −0.001 *** | 0.00 | - | - | 0.000 | 0.55 |
R-squared | 69.00% | 44.00% | 67.00% | 47.00% | ||||
Turning point in the short run | 34,774 | 28,234 | 38,444 | 35,477 |
Group 1 | ||||||||
---|---|---|---|---|---|---|---|---|
Dependent Variable | CO2 | GHG | ||||||
Model Identifier | D1 | D2 | D3 | D4 | ||||
Coefficient | P > |z| | Coefficient | P > |z| | Coefficient | P > |z| | Coefficient | P > |z| | |
Short run estimations | ||||||||
LD.lgdp | 21.79 ** | 0.02 | 19.15 ** | 0.02 | 19.33 *** | 0.05 | 31.34 *** | 0.00 |
LD.lgdpsq | −1.04 ** | 0.02 | −0.90 ** | 0.02 | −0.92 ** | 0.06 | −1.49 *** | 0.00 |
LD.lren | −0.03 *** | 0.00 | −0.28 * | 0.06 | −0.02 ** | 0.03 | −0.16 | 0.31 |
LD.ltrd | - | - | 0.07 | 0.38 | - | - | 0.04 | 0.70 |
LD.intvar1 | - | - | 0.00 | 0.00 | - | - | 0.00 | 0.99 |
Long run estimations | ||||||||
lr_lgdp | 20.79 ** | 0.03 | 18.15 ** | 0.02 | 18.33 * | 0.06 | 30.34 *** | 0.00 |
lr_lgdpsq | 0.05 * | 0.00 | 0.00 | 0.31 | 0.05 *** | 0.00 | 0.01 *** | 0.00 |
lr_lren | 0.00 ** | 0.09 | 0.05 *** | 0.00 | 0.00 | 0.98 | 0.05 *** | 0.00 |
lr_ltrd | - | - | 0.02 *** | 0.01 | - | - | 0.01 *** | 0.00 |
lr_intvar1 | - | - | −0.02 | 0.20 | - | - | −0.01 *** | 0.00 |
R-squared | 0.56 | 0.55 | 0.56 | 0.57 | ||||
Turning point in short run | 36,476 | 42,154 | 36,117 | 35,750 | ||||
Group 2 | ||||||||
Dependent variable | CO2 | GHG | ||||||
Model identifier | D5 | D6 | D7 | D8 | ||||
Short Run estimations | Coefficient | P > |z| | Coefficient | P > |z| | Coefficient | P > |z| | Coefficient | P > |z| |
LD.lgdp | −6.12 *** | 0.00 | −8.34 ** | 0.02 | −7.14 *** | 0.01 | −10.77 *** | 0.01 |
LD.lgdpsq | 0.34 *** | 0.00 | 0.44 ** | 0.01 | 0.39 *** | 0.00 | 0.57 *** | 0.01 |
LD.lren | −0.35 *** | 0.00 | −0.33 *** | 0.00 | −0.19 ** | 0.02 | −0.20 ** | 0.04 |
LD.ltrd | - | - | 0.24 *** | 0.00 | - | - | 0.24 *** | 0.00 |
LD.intvar1 | - | - | −0.01 ** | 0.05 | - | - | −0.01 *** | 0.01 |
Long Run estimations | ||||||||
lr_lgdp | −7.12 *** | 0.00 | −9.34 *** | 0.01 | −8.14 *** | 0.00 | −11.77 *** | 0.00 |
lr_lgdpsq | 0.07 *** | 0.00 | 0.05 *** | 0.00 | 0.05 *** | 0.00 | 0.05 *** | 0.00 |
lr_lren | 0.13 | 0.61 | 0.01 | 0.75 | −0.03 ** | 0.01 | −0.05 * | 0.08 |
lr_ltrd | - | - | 0.01 ** | 0.04 | - | - | 0.03 ** | 0.02 |
lr_intvar1 | - | - | 0.00 | 0.16 | - | - | 0.00 | 0.39 |
R-squared | 0.48 | 0.49 | 0.61 | 0.58 |
Dependent Variable | CO2 | GHG | ||||||
---|---|---|---|---|---|---|---|---|
Model Identifier | D1 | D2 | D3 | D4 | ||||
Coefficient | P > |z| | Coefficient | P > |z| | Coefficient | P > |z| | Coefficient | P > |z| | |
Location | ||||||||
lgdp | 3.66 *** | 0.00 | 4.03 *** | 0.00 | 4.14 *** | 0.00 | 4.10 *** | 0.00 |
lgdpsq | 0.20 *** | 0.00 | 0.22 *** | 0.00 | 0.23 *** | 0.00 | 0.23 *** | 0.00 |
lren | −0.15 *** | 0.00 | −0.97 *** | 0.00 | −0.04 *** | 0.01 | −0.38 * | 0.09 |
ltrd | - | - | −0.37 *** | 0.00 | −0.13 | 0.28 | ||
intvar1 | - | - | 0.17 *** | 0.00 | 0.07 | 0.13 | ||
Scale | ||||||||
lgdp | 2.06 *** | 0.00 | 2.44 | 0.00 | 2.42 *** | 0.00 | 2.61 *** | 0.00 |
lgdpsq | −0.10 *** | 0.00 | −0.12 | 0.00 | −0.12 *** | 0.00 | −0.13 *** | 0.00 |
lren | −0.01 | 0.24 | 0.50 | 0.00 | 0.00 | 0.77 | 0.48 *** | 0.00 |
ltrd | - | - | 0.34 | 0.00 | 0.26 *** | 0.00 | ||
intvar1 | - | - | −0.09 | 0.01 | −0.09 *** | 0.00 | ||
Quantile 0.25 | ||||||||
lgdp | 5.56 *** | 0.00 | 6.34 *** | 0.00 | 6.50 *** | 0.00 | 6.32 *** | 0.00 |
lgdpsq | 0.29 *** | 0.00 | 0.33 *** | 0.00 | 0.34 *** | 0.00 | 0.33 *** | 0.00 |
lren | −0.14 *** | 0.00 | −1.44 *** | 0.00 | −0.04 ** | 0.03 | −0.79 *** | 0.00 |
ltrd | - | - | −0.69 *** | 0.00 | −0.36 *** | 0.01 | ||
intvar1 | - | - | 0.25 *** | 0.00 | 0.15 *** | 0.01 | ||
Quantile 0.50 | ||||||||
lgdp | 3.61 *** | 0.00 | 4.23 *** | 0.00 | 4.06 *** | 0.00 | 4.23 *** | 0.00 |
lgdpsq | 0.20 *** | 0.00 | 0.23 *** | 0.00 | 0.22 *** | 0.00 | 0.23 *** | 0.00 |
lren | −0.15 *** | 0.00 | −1.01 *** | 0.00 | −0.04 *** | 0.01 | −0.41 * | 0.08 |
ltrd | - | - | −0.40 *** | 0.00 | −0.15 | 0.23 | ||
intvar1 | - | - | 0.17 *** | 0.00 | 0.07 | 0.11 | ||
Quantile 0.75 | ||||||||
lgdp | 1.98 ** | 0.02 | 1.98 | 0.13 | 2.31 | 0.00 | 2.02 * | 0.06 |
lgdpsq | 0.12 *** | 0.00 | 0.12 * | 0.07 | 0.14 | 0.00 | 0.12 ** | 0.02 |
lren | −0.16 *** | 0.00 | −0.55 ** | 0.04 | −0.04 | 0.01 | 0.00 | 1.00 |
ltrd | - | - | −0.09 | 0.53 | 0.08 | 0.59 | ||
intvar1 | - | - | 0.09 * | 0.10 | 0.00 | 0.95 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Horobet, A.; Belascu, L.; Radulescu, M.; Balsalobre-Lorente, D.; Botoroga, C.-A.; Negreanu, C.-C. Exploring the Nexus between Greenhouse Emissions, Environmental Degradation and Green Energy in Europe: A Critique of the Environmental Kuznets Curve. Energies 2024, 17, 5109. https://doi.org/10.3390/en17205109
Horobet A, Belascu L, Radulescu M, Balsalobre-Lorente D, Botoroga C-A, Negreanu C-C. Exploring the Nexus between Greenhouse Emissions, Environmental Degradation and Green Energy in Europe: A Critique of the Environmental Kuznets Curve. Energies. 2024; 17(20):5109. https://doi.org/10.3390/en17205109
Chicago/Turabian StyleHorobet, Alexandra, Lucian Belascu, Magdalena Radulescu, Daniel Balsalobre-Lorente, Cosmin-Alin Botoroga, and Cristina-Carmencita Negreanu. 2024. "Exploring the Nexus between Greenhouse Emissions, Environmental Degradation and Green Energy in Europe: A Critique of the Environmental Kuznets Curve" Energies 17, no. 20: 5109. https://doi.org/10.3390/en17205109
APA StyleHorobet, A., Belascu, L., Radulescu, M., Balsalobre-Lorente, D., Botoroga, C. -A., & Negreanu, C. -C. (2024). Exploring the Nexus between Greenhouse Emissions, Environmental Degradation and Green Energy in Europe: A Critique of the Environmental Kuznets Curve. Energies, 17(20), 5109. https://doi.org/10.3390/en17205109