The Role of Deadwood in Forests between Climate Change Mitigation, Biodiversity Conservation, and Bioenergy Production: A Comparative Analysis Using a Bottom–Up Approach
Abstract
:1. Introduction
1.1. The Ecological Significance and Functions of Deadwood in Forest Ecosystems
1.2. From Waste to Resource: The Bioenergy Potential of Deadwood and Its Ecological Implications
2. Materials and Methods
2.1. Questionnaire Construction
2.2. Sampling and Administration of Questionnaire
2.3. Data Collection and Statistical Processing
3. Results
3.1. Description of the Student Sample
3.2. Perceived Importance of Deadwood in Forests
3.3. Preferred Deadwood Management Strategies
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Löfroth, T.; Birkemoe, T.; Shorohova, E.; Dynesius, M.; Fenton, N.J.; Drapeau, P.; Tremblay, J.A. Deadwood Biodiversity, Advances in Global Change Research; Springer International Publishing: Cham, Switzerland, 2023. [Google Scholar] [CrossRef]
- Merganičová, K.; Merganič, J.; Svoboda, M.; Bače, R.; Šebeň, V. Deadwood in forest ecosystems. In Forest Ecosystems—More than Just Trees; Blanco, J.A., Lo, Y.H., Eds.; InTech: Rijeka, Croatia, 2012; pp. 81–108. [Google Scholar]
- Schuck, A.; Meyer, P.; Menke, N.; Lier, M.; Lindner, M. Forest Biodiversity Indicator: Dead Wood—A Proposed Approach towards Operationalising the MCPFE Indicator. In EFI Proceedings Monitoring and Indicators of Forest Biodiversity in Europe—From Ideas to Operationality; Marchetti, M., Ed.; European Forest Institute: Joensuu, Finland, 2004; pp. 49–77. [Google Scholar]
- Bütler Sauvain, R. Dead Wood in Managed Forests: How Much and How Much Is Enough? Development of a Snag Quantification Method by Remote Sensing & GIS and Snag Targets Based on Three-Toed Woodpeckers’ Habitat Requirements; EPFL: Lausanne, Switzerland, 2003. [Google Scholar]
- Grove, S.J. Saproxylic insect ecology and the sustainable management of forests. Annu. Rev. Ecol. Syst. 2002, 33, 1–23. [Google Scholar] [CrossRef]
- Mason, F.; Zapponi, L. The forest biodiversity artery: Towards forest management for saproxylic conservation. iForest 2016, 9, 205–216. [Google Scholar] [CrossRef]
- Radu, S. The ecological role of deadwood in natural forests. In Nature Conservation. Concepts and Practice; Gafta, D., Akeroyd, J., Eds.; Springer Link: Berlin/Heidelberg, Germany, 2004; pp. 137–141. [Google Scholar]
- Ranius, T.; Kindvall, O.; Kruys, N.; Jonsson, B.G. Modelling dead wood in Norway spruce stands subject to different management regimes. For. Ecol. Manag. 2003, 182, 13–29. [Google Scholar] [CrossRef]
- Lasota, J.; Błońska, E.; Piaszczyk, W.; Wiecheć, M. How the deadwood of different tree species in various stages of decomposition affected nutrient dynamics? J. Soils Sediments 2018, 18, 2759–2769. [Google Scholar] [CrossRef]
- Herrmann, S.; Bauhus, J. Nutrient retention and release in coarse woody debris of three important central European tree species and the use of NIRS to determine deadwood chemical properties. For. Ecosyst. 2018, 5, 22. [Google Scholar] [CrossRef]
- Holub, S.M.; Spears, J.D.H.; Lajtha, K. A reanalysis of nutrient dynamics in coniferous coarse woody debris. Can. J. For. Res. 2001, 31, 1894–1902. [Google Scholar] [CrossRef]
- Bond-Lamberty, B.; Wang, C.; Gower, S.T. Annual carbon flux from woody debris for a boreal black spruce fire chronosequence. J. Geophys. Res. 2002, 108, 8220. [Google Scholar] [CrossRef]
- De Meo, I.; Agnelli, A.E.; Graziani, A.; Kitikidou, K.; Lagomarsino, A.; Milios, E.; Radoglou, K.; Paletto, A. Deadwood volume assessment in Calabrian pine (Pinus brutia Ten.) peri-urban forests: Comparison between two sampling methods. J. Sust. For. 2017, 36, 666–686. [Google Scholar] [CrossRef]
- Winter, S.; Fischer, H.S.; Fischer, A. Relative Quantitative Reference Approach for Naturalness Assessments of forests. For. Ecol. Manag. 2010, 259, 1624–1632. [Google Scholar] [CrossRef]
- Rondeux, J.; Sanchez, C. Review of indicators and field methods for monitoring biodiversity within national forest inventories. Core variable: Deadwood. Environ. Monit. Assess. 2010, 164, 617–630. [Google Scholar] [CrossRef]
- Vandekerkhove, K.; De Keersmaeker, L.; Menke, N.; Meyer, P.; Verschelde, P. When nature takes over from man: Dead wood accumulation in previously managed oak and beech woodlands in North-western and Central Europe. For. Ecol. Manag. 2009, 258, 425–435. [Google Scholar] [CrossRef]
- MCPFE. Ministerial Conference on the Protection of Forests in Europe. Background information. In Proceedings of the MCPFE Expert Level Meeting, Vienna, Austria, 10–11 June 2002. [Google Scholar]
- Verkerk, P.J.; Lindner, M.; Zanchi, G.; Zudin, S. Assessing impacts of intensified biomass removal on deadwood in European forests. Ecol. Indic. 2011, 11, 27–35. [Google Scholar] [CrossRef]
- Deuffic, P.; Lyser, S. Biodiversity or bioenergy: Is deadwood conservation an environmental issue for French forest owners? Can. J. For. Res. 2012, 42, 1491–1502. [Google Scholar] [CrossRef]
- Dahlberg, A.; Thor, G.; Allmér, J.; Jonsell, M.; Jonsson, M.; Ranius, T. Modelled impact of Norway spruce logging residue extraction on biodiversity in Sweden. Can. J. For. Res. 2011, 41, 1220–1232. [Google Scholar] [CrossRef]
- Hiron, M.; Jonsell, M.; Kubart, A.; Thor, G.; Schroeder, M.; Dahlberg, A.; Johansson, V.; Ranius, T. Consequences of bioenergy wood extraction for landscape-level availability of habitat for dead wood-dependent organisms. J. Environ. Manag. 2017, 198, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Cowie, A.L.; Berndes, G.; Bentsen, N.S.; Brandão, M.; Cherubini, F.; Egnell, G.; George, B.; Gustavsson, L.; Hanewinkel, M.; Harris, Z.M.; et al. Applying a science-based systems perspective to dispel misconceptions about climate effects of forest bioenergy. GCB Bioenergy 2021, 13, 1210–1231. [Google Scholar] [CrossRef]
- Lindblom, P.G.; Rasmussen, R.O. Bioenergy and Regional Development in the Nordic Countries; Nordregio Working Paper; Nordregio: Stockholm, Sweden, 2008; Volume 5, 96p. [Google Scholar]
- Chisika, S.N.; Park, J.; Yeom, C. Paradox of deadwood circular bioeconomy in Kenya’s public forests. Sustainability 2021, 13, 7051. [Google Scholar] [CrossRef]
- Johansson, V.; Felton, A.; Ranius, T. Long-term landscape scale effects of bioenergy extraction on dead wood-dependent species. For. Ecol. Manag. 2016, 371, 103–113. [Google Scholar] [CrossRef]
- Russell, M.B.; Fraver, S.; Aakala, T.; Gove, J.H.; Woodall, C.W.; D’Amato, A.W.; Ducey, M.J. Quantifying carbon stores and decomposition in dead wood: A review. For. Ecol. Manag. 2015, 350, 107–128. [Google Scholar] [CrossRef]
- Humphrey, J.W.; Sippola, A.-L.; Lempérière, G.; Dodelin, B.; Alexander, K.N.A.; Butler, J.E. Deadwood as an Indicator of Biodiversity in European Forests: From Theory to Operational Guidance. In EFI Proceedings Monitoring and Indicators of Forest Biodiversity in Europe—From Ideas to Operationality; Marchetti, M., Ed.; European Forest Institute: Joensuu, Finland, 2004; pp. 193–206. [Google Scholar]
- Lassauce, A.; Paillet, Y.; Jactel, H.; Bouget, C. Deadwood as a surrogate for forest biodiversity: Meta-analysis of correlations between deadwood volume and species richness of saproxylic organisms. Ecol. Indic. 2011, 11, 1027–1039. [Google Scholar] [CrossRef]
- Venier, L.A.; Hébert, C.; De Grandpré, L.; Arsenault, A.; Walton, R.; Morris, D.M. Modelling deadwood supply for biodiversity conservation: Considerations, challenges and recommendations. For. Chron. 2015, 91, 407–416. [Google Scholar] [CrossRef]
- Giuntoli, J.; Barredo, J.I.; Avitabile, V.; Camia, A.; Cazzaniga, N.E.; Grassi, G.; Jasinevičius, G.; Jonsson, R.; Marelli, L.; Robert, N.; et al. The quest for sustainable forest bioenergy: Win-win solutions for climate and biodiversity. Renew. Sustain. Energy Rev. 2022, 159, 112180. [Google Scholar] [CrossRef]
- Repo, A.; Eyvindson, K.; Halme, P.; Mönkkönen, M. Forest bioenergy harvesting changes carbon balance and risks biodiversity in boreal forest landscapes. Can. J. For. Res. 2020, 50, 1184–1193. [Google Scholar] [CrossRef]
- Schulze, E.D.; Sierra, C.A.; Egenolf, V.; Woerdehoff, R.; Irslinger, R.; Baldamus, C.; Stupak, I.; Spellmann, H. The climate change mitigation effect of bioenergy from sustainably managed forests in Central Europe. GCB Bioenergy 2020, 12, 186–197. [Google Scholar] [CrossRef]
- Schulze, E.D.; Stupak, I.; Hessenmöller, D. The climate mitigation potential of managed versus unmanaged spruce and beech forests in Central Europe. In Bioenergy with Carbon Capture and Storage; Academic Press: Cambridge, MA, USA, 2019; pp. 131–149. [Google Scholar]
- Chambers, J.Q.; Higuchi, N.; Schimel, J.P.; Ferreira, L.V.; Melack, J.M. Decomposition and carbon cycling of dead trees in tropical forests of the central Amazon. Oecologia 2000, 122, 380–388. [Google Scholar] [CrossRef]
- Palace, M.; Keller, M.; Asner, G.P.; Silva, J.N.M.; Passos, C. Necromass in undisturbed and logged forests in the Brazilian Amazon. For. Ecol. Manag. 2007, 238, 309–318. [Google Scholar] [CrossRef]
- Pelyukh, O.; Paletto, A.; Zahvoyska, L. People’s attitudes towards deadwood in forest: Evidence from the Ukrainian Carpathians. J. For. Sci. 2019, 65, 171–182. [Google Scholar] [CrossRef]
- Kovács, B.; Uchiyama, Y.; Miyake, Y.; Penker, M.; Kohsaka, R. An explorative analysis of landscape value perceptions of naturally dead and cut wood: A case study of visitors to Kaisho Forest, Aichi, Japan. J. For. Res. 2020, 25, 291–298. [Google Scholar] [CrossRef]
- Rathmann, J.; Sacher, P.; Volkmann, N.; Mayer, M. Using the visitor-employed photography method to analyse deadwood perceptions of forest visitors: A case study from Bavarian Forest National Park, Germany. Eur. J. For. Res. 2020, 139, 431–442. [Google Scholar] [CrossRef]
- Pastorella, F.; Avdagić, A.; Čabaravdić, A.; Mraković, A.; Osmanović, M.; Paletto, A. Tourists’ perception of deadwood in mountain forests. Ann. For. Res. 2016, 59, 311–326. [Google Scholar] [CrossRef]
- Paletto, A.; Becagli, C.; De Meo, I. Aesthetic preferences for deadwood in forest landscape: A case study in Italy. J. Environ. Manag. 2022, 311, 114829. [Google Scholar] [CrossRef] [PubMed]
- Mutz, M.; Piégay, H.; Gregory, K.J.; Borchardt, D.; Reich, M.; Schmieder, K. Perception and evaluation of dead wood in streams and rivers by German students. Limnologica 2006, 36, 110–118. [Google Scholar] [CrossRef]
- Reips, U.D. Standards for Internet-based experimenting. Exp. Psychol. 2002, 49, 243. [Google Scholar] [CrossRef] [PubMed]
- Wright, K.B. Researching Internet-based populations: Advantages and disadvantages of online survey research, online questionnaire authoring software packages, and web survey services. J. Comput. Mediat. Commun. 2005, 10, 1083–1091. [Google Scholar] [CrossRef]
- Chen, D.-C.; Hou, J.-C.; Zheng, Q.-D. The Empirical Research on the Impact of Applying VR Technology to Students’ Skill Learning in Machining Processing Courses on Questionnaire Evaluation. In Innovative Technologies and Learning; Cheng, Y.-P., Pedaste, M., Bardone, E., Huang, Y.-M., Eds.; Springer: Cham, Switzerland, 2024; pp. 97–107. [Google Scholar]
- Regmi, P.R.; Waithaka, E.; Paudyal, A.; Simkhada, P.; Van Teijlingen, E. Guide to the design and application of online questionnaire surveys. Nepal J. Epidemiol. 2016, 6, 640. [Google Scholar] [CrossRef]
- Likert, R.A. A technique for the measurement of attitudes. Arch. Psychol. 1932, 40, 5–53. [Google Scholar]
- Paletto, A.; Bayraktar, S.; Becagli, C.; De Meo, I. Young Generations’ Perception of the Role of Deadwood in Forests: Comparison between Italy and Türkiye. Ecologies 2023, 4, 426–441. [Google Scholar] [CrossRef]
- Parker, C.; Scott, S.; Geddes, A. Snowball Sampling. In SAGE Research Methods Foundations; Sage Publications Inc.: Thousand Oaks, CA, USA, 2019. [Google Scholar] [CrossRef]
- McKight, P.; Najab, J. Kruskal-Wallis test. In The Corsini Encyclopedia of Psychology; John Wiley & Sons: New York, NY, USA, 2010. [Google Scholar]
- Hotelling, H. Analysis of complex of statistical variables into principal component. J. Educ. Psychol. 1933, 24, 417–441. [Google Scholar] [CrossRef]
- Berkup, S.B. Working with Generations X and Y in Generation Z period: Management of different generations in business life. Med. J. Soc. Sci. 2014, 5, 218–229. [Google Scholar] [CrossRef]
- Malikova, I. Perception of Global Issues of Environment and Circular Economy by Generation Z. In Proceedings of the 20th International Scientific Conference Globalization and its Socio-Economic Consequences, SHS Web of Conferences 92, Zilina, Slovakia, 21–22 October 2020; EDP Sciences: Les Ulis, France, 2021. [Google Scholar]
- Gundersen, V.S.; Frivold, L.H. Public preferences for forest structures: A review of quantitative surveys from Finland, Norway and Sweden. Urban For. Urban Green. 2008, 7, 241–258. [Google Scholar] [CrossRef]
- Kraigher, H.; Jurc, D.; Kalan, P.; Kutnar, L.; Levanic, T.; Rupel, M.; Smolej, I. Beech coarse woody debris characteristics in two virgin forest reserves in southern Slovenia. Wood Sci. Technol. 2002, 69, 91–134. [Google Scholar]
- Fadai, A.; Fuchs, M.; Winter, W. Wood-Based Construction for Multi-story Buildings: Application of Cement Bonded Wood Composites as Structural Element. In Materials and Joints in Timber Structures; Aicher, S., Reinhardt, H.-W., Garrecht, H., Eds.; Springer: Dordrecht, The Netherlands, 2014; pp. 471–484. [Google Scholar]
- Lachat, T.; Bütler, R. Îlots de sénescence et arbres-habitat pour augmenter la biodiversité en forêt. La. Forêt. 2008, 6, 20–21. [Google Scholar]
- Bače, R.; Svoboda, M. Hodnocení Aspektů Managementu Mrtvého Dřeva v Hospodářských Lesích a Předběžný Návrh Doporučení. 2012. Available online: https://home.czu.cz/storage/507/74451_dwm_f3.2012.pdf (accessed on 15 May 2024).
- Vítková, L.; Bače, R.; Kjučukov, P.; Svoboda, M. Deadwood management in Central European forests: Key considerations for practical implementation. For. Ecol. Manag. 2018, 429, 394–405. [Google Scholar] [CrossRef]
- Bače, R.; Svoboda, M.; Vítková, L. Deadwood Management in Production Forests. In Management Guidelines for Forest Managers in Central European Temperate Forests; Department of Forest Ecology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague: Prague, Czech Republic, 2019. [Google Scholar]
- Greenbaum, A. Nature connoisseurship. Environ. Values 2005, 14, 389–407. [Google Scholar] [CrossRef]
- Jonsson, B.G.; Kruys, N.; Ranius, T. Ecology of species living on deadwood-lessons for dead wood management. Silva Fenn. 2005, 39, 289–309. [Google Scholar] [CrossRef]
- Kellert, S.R. Values and perceptions of invertebrates. Biol. Conserv. 1993, 7, 845–855. [Google Scholar] [CrossRef]
- Doerfler, I.; Gossner, M.; Müller, J.; Seibold, S.; Weisser, W. Deadwood enrichment combining integrative and segregative conservation elements enhances biodiversity of multiple taxa in managed forests. Biol. Conserv. 2018, 228, 70–78. [Google Scholar] [CrossRef]
- Sacher, P.; Meyerhoff, J.; Mayer, M. Evidence of the association between deadwood and forest recreational site choices. For. Pol. Econ. 2022, 135, 102638. [Google Scholar] [CrossRef]
Management Strategy | Description |
---|---|
Strategy 1 | This strategy is based on leaving both standing dead trees and lying deadwood in the forest while paying attention to the forest fires and insect pollution risks. This strategy is the one closest to the natural processes of mortality in undisturbed forests; therefore, standing dead trees and lying deadwood are evenly distributed throughout the forest. |
Strategy 2 | In this strategy, only standing dead trees with a diameter greater than 60–70 cm are left in the forest, while lying deadwood and small standing dead trees are removed. This strategy is focused on the conservation of habitat trees that provide ecological niches (microhabitats) such as cavities, bark pockets, large dead branches, epiphytes, cracks, sap runs, or trunk rot. |
Strategy 3 | In this strategy, deadwood is removed during silvicultural interventions, leaving only small quantities of lying deadwood scattered in the forest and some standing dead trees with a diameter greater than 60–70 cm. This strategy is typical of managed forests where a small amount of deadwood is left in favor of soil fertility and biodiversity conservation. |
Strategy 4 | In this strategy, specific and delimited high biodiversity value areas are created where deadwood—both standing dead trees and lying deadwood—is conserved. This strategy is based on the biodiversity conservation in specific extended rotation stands characterized by a high amount of standing dead trees and lying deadwood of all decay classes. |
Characteristics/Countries | Iran | Italy | Türkiye |
---|---|---|---|
Gender | |||
Male | 41.6 | 41.0 | 35.5 |
Female | 58.4 | 59.0 | 64.5 |
Age | |||
Less than 25 years old | 59.8 | 89.0 | 45.4 |
Between 25 and 34 years old | 24.8 | 11.0 | 46.2 |
More than 34 years old | 15.4 | 0.0 | 8.5 |
Membership in environmental associations | |||
Yes | 24.8 | 5.2 | 13.8 |
No | 75.2 | 94.8 | 86.2 |
Functions/Countries | Iran | Italy | Türkiye | Kruskal–Wallis Test |
---|---|---|---|---|
Positive effects | ||||
Bioenergy production | 2.95 ± 1.10 | 3.14 ± 0.93 | 2.53 ± 1.09 | Observed value = 59.645; Critical value = 5.991; p < 0.0001 |
Provision of microhabitats for wildlife | 3.05 ± 0.97 | 3.73 ± 0.58 | 3.33 ± 0.88 | Observed value = 94.261; Critical value = 5.991; p < 0.0001 |
Provision of food for wildlife | 2.60 ± 1.11 | 3.34 ± 0.90 | 2.89 ± 1.08 | Observed value = 74.950; Critical value = 5.991; p < 0.0001 |
Soil fertilization | 2.84 ± 1.08 | 3.80 ± 0.48 | 3.37 ± 0.84 | Observed value = 174.095; Critical value = 5.991; p < 0.0001 |
Climate change mitigation | 2.59 ± 1.13 | 3.02 ± 0.99 | 2.88 ± 1.21 | Observed value = 29.573; Critical value = 5.991; p < 0.0001 |
Soil protection | 2.80 ± 1.05 | 3.16 ± 1.00 | 2.84 ± 1.19 | Observed value = 19.367; Critical value = 5.991; p < 0.0001 |
Negative effects | ||||
Increased risk of forest fires | 2.95 ± 1.07 | 3.54 ± 0.74 | 2.62 ± 1.22 | Observed value = 97.365; Critical value = 5.991; p < 0.0001 |
Increased risk of pests | 2.62 ± 1.12 | 3.10 ± 0.89 | 2.37 ± 1.20 | Observed value = 55.325; Critical value = 5.991; p < 0.0001 |
Options/Countries | Iran | Italy | Türkiye |
---|---|---|---|
Always remove deadwood for economic reasons | 23.4 | 26.7 | 19.4 |
Remove deadwood only under simple technical conditions | 42.6 | 54.8 | 51.1 |
Do not remove deadwood for ecological reasons | 34.0 | 18.6 | 29.5 |
Chi-square (χ2) test | Observed value = 55.325; Critical value = 5.991; p < 0.0001 |
Strategy/Countries | Türkiye | Iran | Italy | Kruskal–Wallis Test |
---|---|---|---|---|
Strategy 1 | 2.57 ± 1.01 | 3.04 ± 0.98 | 2.28 ± 1.13 | Observed value = 94.113; Critical value = 5.991; p < 0.0001 |
Strategy 2 | 2.24 ± 0.93 | 2.78 ± 0.95 | 1.79 ± 0.97 | Observed value = 162.159; Critical value = 5.991; p < 0.0001 |
Strategy 3 | 2.20 ± 1.01 | 2.66 ± 1.07 | 2.02 ± 0.99 | Observed value = 73.370; Critical value = 5.991; p < 0.0001 |
Strategy 4 | 1.98 ± 1.24 | 2.48 ± 1.17 | 1.92 ± 1.24 | Observed value = 51.223; Critical value = 5.991; p < 0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Meo, I.; Sefidi, K.; Bayraktar, S.; Sergiacomi, C.; Paletto, A. The Role of Deadwood in Forests between Climate Change Mitigation, Biodiversity Conservation, and Bioenergy Production: A Comparative Analysis Using a Bottom–Up Approach. Energies 2024, 17, 5108. https://doi.org/10.3390/en17205108
De Meo I, Sefidi K, Bayraktar S, Sergiacomi C, Paletto A. The Role of Deadwood in Forests between Climate Change Mitigation, Biodiversity Conservation, and Bioenergy Production: A Comparative Analysis Using a Bottom–Up Approach. Energies. 2024; 17(20):5108. https://doi.org/10.3390/en17205108
Chicago/Turabian StyleDe Meo, Isabella, Kiomars Sefidi, Selim Bayraktar, Carlotta Sergiacomi, and Alessandro Paletto. 2024. "The Role of Deadwood in Forests between Climate Change Mitigation, Biodiversity Conservation, and Bioenergy Production: A Comparative Analysis Using a Bottom–Up Approach" Energies 17, no. 20: 5108. https://doi.org/10.3390/en17205108
APA StyleDe Meo, I., Sefidi, K., Bayraktar, S., Sergiacomi, C., & Paletto, A. (2024). The Role of Deadwood in Forests between Climate Change Mitigation, Biodiversity Conservation, and Bioenergy Production: A Comparative Analysis Using a Bottom–Up Approach. Energies, 17(20), 5108. https://doi.org/10.3390/en17205108