Innovation Solution in Photovoltaic Sector
Abstract
:1. Introduction
2. Materials and Methods
3. Literature Review
4. Results and Discussion
4.1. Environmental Analysis of Photovoltaic Farms
4.2. Analysis of Impact Factors Relating to Installation Efficiency
4.3. Terrain and Existing Infrastructure
4.4. Potential for Connection to the General Electricity Grid
- operational security of the power supply system;
- protection of the power supply system against damage caused by inappropriate operation of connected equipment, installations, and networks;
- protection of connected equipment, installations, and networks against damage in the event of failure or the introduction of restrictions on energy consumption or supply;
- compliance at the point of connection of equipment, installations, and networks with electricity quality parameters;
- compliance with environmental requirements;
- the ability to measure the quantities and parameters necessary for network operation and billing for energy consumed [56].
- -
- voltage peaks, caused by uneven load on the inverters;
- -
- voltage collapses, caused by insufficient energy production from photovoltaic modules;
- -
- crossing the PST indicator (short-term flicker severity value) at one customer causes flickering of the light at the other customers;
- -
- crossing the PLT indicator (long-term flicker severity value) can cause damage to household appliances;
- -
- rapid voltage changes lasting more than 1 s, crossing the RVC indicator (Rapid Voltage Change);
- -
- multiphase interruption, consisting of an interruption in the supply of electricity [59].
4.5. Daily Energy Price Differences
5. Conclusions
- Hourly fluctuations in energy prices affect the profitability of photovoltaic farms, as the price for each MWh produced varies according to the current supply and demand for electricity.
- Energy storage makes economic sense with sustained fluctuations in energy prices, allowing for the sale of energy produced at price peaks. This means that generated energy is put to better use than if there was no storage. Furthermore, storage facilities play a beneficial role in enhancing the robustness of Poland’s energy infrastructure. Through energy storage, they alleviate the burden on the infrastructure.
- The east–west orientation of photovoltaic farms is a good and cheaper alternative to energy storage. A farm with this orientation allows for energy production in the morning and afternoon when energy prices can compete with power supplied by farms with southern exposure.
- The DEEPLIST analysis presents the key factors in the selection and operation of photovoltaic farms.
6. Recommendation
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Igliński, B.; Piechota, G.; Kiełkowska, U.; Kujawski, W.; Pietrzak, M.B.; Skrzatek, M. The assessment of solar photovoltaic in Poland: The photovoltaics potential, perspectives and development. Clean Technol. Environ. Policy 2023, 25, 281–298. [Google Scholar] [CrossRef] [PubMed]
- Jäger-Waldau, A.; Kougias, I.; Taylor, N.; Thiel, C. How photovoltaics can contribute to GHG emission reductions of 55% in the EU by 2030. Renew. Sustain. Energy Rev. 2020, 126, 109836. [Google Scholar] [CrossRef]
- EUR 30328 EN; Energy Consumption and Energy Efficiency trends in the EU-28, 2000–2018. Publications Office of the European Union: Luxembourg, 2020.
- Marks-Bielska, R.; Bielski, S.; Pik, K.; Kurowska, K. The Importance of Renewable Energy Sources in Poland’s Energy Mix. Energies 2020, 13, 4624. [Google Scholar] [CrossRef]
- Boratyński, J.; Plich, M.; Przybyliński, M. Krótkookresowe efekty zmian cen energii w polskiej gospodarce. Stud. Prawno-Ekon. 2010, LXXXII, 217–239. [Google Scholar]
- Mukhtarov, S.; Mikayilov, J.I. Could financial development eliminate energy poverty through renewable energy in Poland? Energy Policy 2023, 182, 113747. [Google Scholar] [CrossRef]
- Anika, O.C.; Nnabuife, S.G.; Bello, A.; Okoroafor, E.R.; Kuang, B.; Villa, R. Prospects of low and zero-carbon renewable fuels in 1.5-degree net zero emission actualisation by 2050: A critical review. Carbon Capture Sci. Technol. 2022, 5, 100072. [Google Scholar] [CrossRef]
- Wolniak, R.; Skotnicka-Zasadzień, B. Development of Photovoltaic Energy in EU Countries as an Alternative to Fossil Fuels. Energies 2022, 15, 662. [Google Scholar] [CrossRef]
- Available online: https://globenergia.pl/ponad-21-energii-pochodzilo-z-oze-miks-energetyczny-i-struktura-produkcji-energii-w-polsce-w-2022-r/ (accessed on 16 October 2023).
- Zielony Potencjał Społeczny—Polska i Europa Środkowo-Wschodnia; Badanie IBRiS: Warszawa, Poland, 2020.
- ARE Monthly Bulletin, Statistical Information and Electricity, Photovoltaic Market in Poland 2022; Institute of Renewable Energy: Warsaw, Poland, 2022; Available online: www.are.waw.pl (accessed on 20 August 2023).
- Wicki, L.; Pietrzykowski, R.; Kusz, D. Factors Determining the Development of Prosumer Photovoltaic Installations in Poland. Energies 2022, 15, 5897. [Google Scholar] [CrossRef]
- Gough, M.; Santos, S.F.; Javadi, M.; Castro, R.; PS Catalão, J. Elastyczność prosumenta: Kompleksowy, najnowocześniejszy przegląd i analiza naukometryczna. Energies 2020, 13, 2710. [Google Scholar] [CrossRef]
- Borowski, P.F. Zonal and Nodal Models of Energy Market in European Union. Energies 2020, 13, 4182. [Google Scholar] [CrossRef]
- Khatib, T.; Deria, R. East-west oriented photovoltaic power systems: Model, benefits and technical evaluation. Energy Convers. Manag. 2022, 266, 115810. [Google Scholar] [CrossRef]
- Ortega-Gras, J.-J.; Bueno-Delgado, M.-V.; Cañavate-Cruzado, G.; Garrido-Lova, J. Twin Transition through the Implementation of Industry 4.0 Technologies: Desk-Research Analysis and Practical Use Cases in Europe. Sustainability 2021, 13, 13601. [Google Scholar] [CrossRef]
- Borowski, P.F. Digitization, Digital Twins, Blockchain, and Industry 4.0 as Elements of Management Process in Enterprises in the Energy Sector. Energies 2021, 14, 1885. [Google Scholar] [CrossRef]
- Gu, W.; Ma, T.; Ahmed, S.; Zhang, Y.; Peng, J. A comprehensive review and outlook of bifacial photovoltaic (bPV) technology. Energy Convers. Manag. 2020, 223, 113283. [Google Scholar] [CrossRef]
- Verlinden, P.J. Future challenges for photovoltaic manufacturing at the terawatt level. J. Renew. Sustain. Energy 2020, 12, 053505. [Google Scholar] [CrossRef]
- European Commission, European Green Deal. Available online: https://climate.ec.europa.eu/eu-action/european-green-deal_en (accessed on 20 August 2023).
- Brodziński, Z.; Brodzińska, K.; Szadziun, M. Photovoltaic Farms—Economic Efficiency of Investments in North-East Poland. Energies 2021, 14, 2087. [Google Scholar] [CrossRef]
- Kurowska, K.; Kryszk, H.; Bielski, S. Location and Technical Requirements for Photovoltaic Power Stations in Poland. Energies 2022, 15, 2701. [Google Scholar] [CrossRef]
- Zsiborács, H.; Hegedűsné Baranyai, N.; Vincze, A.; Háber, I.; Pintér, G. Economic and Technical Aspects of Flexible Storage Photovoltaic Systems in Europe. Energies 2018, 11, 1445. [Google Scholar] [CrossRef]
- Bódis, K.; Kougias, I.; Jäger-Waldau, A.; Taylor, N.; Szabó, S. A high-resolution geospatial assessment of the rooftop solar photovoltaic potential in the European Union. Renew. Sustain. Energy Rev. 2019, 114, 109309. [Google Scholar] [CrossRef]
- Iglinski, B.; Flisikowski, K.; Pietrzak, M.B.; Kiełkowska, U.; Skrzatek, M.; Zyadin, A.; Natarajan, K. Renewable Energy in the Pomerania Voivodeship—Institutional, Economic, Environmental and Physical Aspects in Light of EU Energy Transformation. Energies 2021, 14, 8221. [Google Scholar] [CrossRef]
- Chomać-Pierzecka, E.; Kokiel, A.; Rogozińska-Mitrut, J.; Sobczak, A.; Soboń, D.; Stasiak, J. Analysis and Evaluation of the Photovoltaic Market in Poland and the Baltic States. Energies 2022, 15, 669. [Google Scholar] [CrossRef]
- Patuk, I.; Borowski, P.F. Business plan of the company of repair and maintenance outboards and boats–“Technoservice”. World Sci. News 2017, 86, 193–204. [Google Scholar]
- Mostafa Azza, A.A.; Youssef, K.; Abdelrahman, M. Analysis of Photovoltaics in Egypt using SWOT and PESTLE. International J. Appl. Energy Syst. 2020, 2, 11–14. [Google Scholar] [CrossRef]
- Igliński, B.; Skrzatek, M.; Kujawski, W.; Cichosz, M.; Buczkowski, R. SWOT analysis of renewable energy sector in Mazowieckie Voivodeship (Poland): Current progress, prospects and policy implications. Environ. Dev. Sustain. 2022, 24, 77–111. [Google Scholar] [CrossRef]
- Korzeniewska, E.; Drzymała, A.; Szczęsny, A.; Zawiślak, R.; Seme, S. Aspekty prawno-ekonomiczne i ekologiczne dla elektrowni fotowoltaicznych. Przegląd Elektrotechniczny 2019, 95, 69–72. [Google Scholar] [CrossRef]
- Chen, X.M.; Li, Y.; Zhao, Z.G.; Ma, T.; Wang, R.Z. General method to obtain recommended tilt and azimuth angles for photovoltaic systems worldwide. Sol. Energy 2018, 172, 46–57. [Google Scholar] [CrossRef]
- Chen, X.M.; Li, Y.; Zhao, B.Y.; Wang, R.Z. Are the optimum angles of photovoltaic systems so important? Renew. Sustain. Energy Rev. 2020, 124, 109791. [Google Scholar] [CrossRef]
- Rynek Dnia Następnego. Available online: https://tge.pl/energia-elektryczna-rdn (accessed on 20 August 2023).
- Andruszkiewicz, J.; Lorenc, J. Ograniczanie Obciążeń Szczytowych Systemu Elektroenergetycznego przy Wykorzystaniu Zasobów Popytowych Sterowanych Strefami Cenowymi. Available online: http://leonardo-energy.pl/wp-content/uploads/2016/11/Ograniczenie-obciazen-szczytowych-systemu-elektroenergetycznego-przy-wyko.pdf (accessed on 20 August 2023).
- Jiang, S.; Wan, C.; Chen, C.; Cao, E.; Song, Y. Distributed photovoltaic generation in the electricity market: Status, mode and strategy. CSEE J. Power Energy Syst. 2018, 4, 263–272. [Google Scholar] [CrossRef]
- Kozioł, K. Analiza Strategiczna Przedsiębiorstwa na Poziomie Makrootoczenia; Uniwersytet Szczeciński: Szczecin, Poland, 2010; p. 79. [Google Scholar]
- Salim, A.M.; Dabous, S.A. SWOT Analysis of Solar Photovoltaic Systems in Public Housing Projects in the United Arab Emirates. In Proceedings of the 2022 Advances in Science and Engineering Technology International Conferences (ASET), Dubai, United Arab Emirates, 21–24 February 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Penc-Pietrzak, I. Stosowanie Metod Analizy Strategicznej w Planowaniu Strategicznym Przez duże Polskie Przedsiębiorstwa Przemysłowe; Zeszyty naukowe Nr 1126 Politechnika Łódzka: Łódź, Poland, 2012; p. 95. [Google Scholar]
- Ho, J.K.K. Formulation of a systemic PEST analysis for strategic analysis. Eur. Acad. Res. 2014, 2, 6478–6492. [Google Scholar]
- Perera, R. The PESTLE Analysis; Nerdynaut: Avissawella, Sri Lanka, 2017. [Google Scholar]
- Broda, K.; Tora, B. Bezpieczna Utylizacja, czy Recycling PV? Nowa Energia: Gdynia, Poland, 2021. [Google Scholar]
- Sołtysiak, M. Zarządzanie projektem budowy farmy fotowoltaicznej w zakresie pozyskiwania dokumentacji-studium przypadku. Zesz. Nauk. Politech. Częstochowskiej 2019, 33, 222–231. [Google Scholar] [CrossRef]
- Koncesja na Wytwarzanie Energii Elektrycznej (WEE). Available online: https://www.biznes.gov.pl/pl/opisy-procedur/-/proc/8 (accessed on 31 July 2023).
- Ministerstwo Klimatu i Środowiska; Polityka Energetyczna Polski do 2040 r. Available online: https://www.gov.pl/web/klimat/polityka-energetyczna-polski (accessed on 31 July 2023).
- Włodarczyk, R. Analysis of the Photovoltaic Waste-Recycling Process in Polish Conditions—A Short Review. Sustainability 2022, 14, 4739. [Google Scholar] [CrossRef]
- Ordóñez, J.; Jadraque, E.; Alegre, J.; Martínez, G. Analysis of the photovoltaic solar energy capacity of residential rooftops in Andalusia (Spain). Renew. Sustain. Energy Rev. 2010, 14, 2122–2130. [Google Scholar] [CrossRef]
- Yano, A.; Kadowaki, M.; Furue, A.; Tamaki, N.; Tanaka, T.; Hiraki, E.; Kato, Y.; Ishizu, F.; Noda, S. Shading and electrical features of a photovoltaic array mounted inside the roof of an east–west oriented greenhouse. Biosyst. Eng. 2010, 106, 367–377. [Google Scholar] [CrossRef]
- Abdeen, E.; Orabi, M.; Hasaneen, E.S. Optimum tilt angle for photovoltaic system in desert environment. Sol. Energy 2017, 155, 267–280. [Google Scholar] [CrossRef]
- Mehleri, E.D.; Zervas, P.L.; Sarimveis, H.; Palyvos, J.A.; Markatos, N.C. Determination of the optimal tilt angle and orientation for solar photovoltaic arrays. Renew. Energy 2010, 35, 2468–2475. [Google Scholar] [CrossRef]
- Amelia, A.R.; Irwan, Y.M.; Safwati, I.; Leow, W.Z.; Mat, M.H.; Rahim, M.S.A. Technologies of solar tracking systems: A review. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2020; Volume 767, p. 012052. [Google Scholar]
- Hafez, A.Z.; Yousef, A.M.; Harag, N.M. Solar tracking systems: Technologies and trackers drive types—A review. Renew. Sustain. Energy Rev. 2018, 91, 754–782. [Google Scholar] [CrossRef]
- Martín-Chivelet, N. Photovoltaic potential and land-use estimation methodology. Energy 2016, 94, 233–242. [Google Scholar] [CrossRef]
- Klimek, J. BUDOWA FARMY FOTOWOLTAICZNEJ O MOCY DO 26 MW WRAZ Z NIEZBĘDNĄ INFRASTRUKTURĄ TECHNICZNĄ NA DZIAŁKACH O NR EWID. 17, 18, 28, 29, 31, 60, 61 i 285 W OBRĘBIE Radwanki W GMINIE Margonin; Samorzad: Bydgoszcz, Poland, 2021. [Google Scholar]
- Biznes.gov.pl, Wpis do Rejestru Wytwórców Energii w Małej Instalacji. Available online: https://www.biznes.gov.pl/pl/opisy-procedur/-/proc/820 (accessed on 25 July 2023).
- Skibko, Z. Techniczne i Prawne Możliwości Przyłączania OZE do Sieci Elektroenergetycznej, Elektro.Info Journal 10/2015, Białystok 2015. Available online: https://www.elektro.info.pl/artykul/instalacje-elektroenergetyczne/61430,techniczne-i-prawne-mozliwosci-przylaczania-oze-do-sieci-elektroenergetycznej (accessed on 1 January 2024).
- Ustawa z Dnia 20 Lutego 2015 r. o Odnawialnych Źródłach Energii. DzU z Dnia, 3 April 2015; p. 478.
- Czaja, P. Bezpieczeństwo Pożarowe Instalacji Fotowoltaicznych; SUMA: Leeds, UK, 2021; Volume 150, p. 836. [Google Scholar]
- Kryteria Oceny Możliwości Przyłączenia oraz Wymagania Techniczne dla Mikroinstalacji i Małych Instalacji Przyłączanych do Sieci Dystrybucyjnej Niskiego Napięcia Operatora Systemu Dystrybucyjnego; PGE Dystrybucja S.A.: Lublin, Poland, 2014.
- Kurdyła, R. Influence of photovoltaic installations on the operation of the LV distribution network. Rzesz. Univ. Technol. J. Electr. Eng. 2022, 39, 21–32. [Google Scholar]
- Dyrektywa Parlamentu Europejskiego i Rady (UE) 2019/944 z Dnia 5 Czerwca 2019 r. w Sprawie Wspólnych Zasad Rynku Wewnętrznego Energii Elektrycznej; Dziennik Urzędowy Unii Europejskiej 158/125 z; European Union: Maastricht, The Netherlands, 2019.
- Niklewicz-Pijaczyńska, M. Paradygmat prosumenta wobec aktualnych wyzwań transformacji energetycznej. Folia Iurid. Univ. Wratislav. 2022, 11, 84–101. [Google Scholar]
- Akbari, H.; Browne, M.C.; Ortega, A.; Huang, M.J.; Hewitt, N.J.; Norton, B.; McCormack, S.J. Efficient energy storage technologies for photovoltaic systems. Sol. Energy 2019, 192, 144–168. [Google Scholar] [CrossRef]
- Toledo, O.M.; Oliveira Filho, D.; Diniz, A.S.A.C. Distributed photovoltaic generation and energy storage systems: A review. Renew. Sustain. Energy Rev. 2010, 14, 506–511. [Google Scholar] [CrossRef]
- Rafał, K.; Grabowski, P. Magazynowanie Energii 2021, PAN Journals 1/65/2021. Available online: https://journals.pan.pl/dlibra/publication/136844/edition/119700/content/academia-magazyn-polskiej-akademii-nauk-nr-1-65-energetyka-magazynowanie-energii-rafal-krzysztof-grabowski-pawel-2021?language=en (accessed on 15 July 2023).
- Tahiri, A.; Smith, K.M.; Thorsen, J.E.; Hviid, C.A.; Svendsen, S. Staged control of domestic hot water storage tanks to support district heating efficiency. Energy 2023, 263, 125493. [Google Scholar] [CrossRef]
- Ordóñez, Á.; Sánchez, E.; Rozas, L.; García, R.; Parra-Domínguez, J. Net-metering and net-billing in photovoltaic self-consumption: The cases of Ecuador and Spain. Sustain. Energy Technol. Assess. 2022, 53, 102434. [Google Scholar] [CrossRef]
- Trela, M.; Dubel, A. Net-metering vs. net-billing from the investors perspective—Impacts of changes in RES financing in Poland on the profitability of a joint photovoltaic panels and heat pump system. Energies 2021, 15, 227. [Google Scholar] [CrossRef]
- TGE, Rynek Dnia Następnego. Available online: https://tge.pl/energia-elektryczna-rdn?dateShow=02-06-2023&dateAction=next (accessed on 1 August 2023).
- Ramasamy, V.; Zuboy, J.; O’Shaughnessy, E.; Feldman, D.; Desai, J.; Woodhouse, M.; Basore, P.; Margolis, R. U.S. Solar Photovoltaic System and Energy Storage Cost Benchmarks, with Minimum Sustainable Price Analysis for Q1 2022; National Renewable Energy LaboratoryClean Kilowatts, LLC: Golden, CO, USA, 2022. [Google Scholar]
- Parra, D.; Swierczynski, M.; Stroe, D.I.; Norman, S.A.; Abdon, A.; Worlitschek, J.; O’Doherty, T.; Rodrigues, L.; Gillott, M.; Zhang, X. An interdisciplinary review of energy storage for communities: Challenges and perspectives. Renew. Sustain. Energy Rev. 2017, 79, 730–749. [Google Scholar] [CrossRef]
Title of the Paper | Main Issue Discussed in the Paper |
---|---|
A comprehensive review and outlook of bifacial photovoltaic (bPV) technology | The paper discusses the advantages, disadvantages, potential, and limitations of bifacial photovoltaic modules representing a new technology compared to traditional modules [18]. |
Future challenges for photovoltaic manufacturing at the terawatt level | The work identifies the key role of renewable energy sources in creating a zero-carbon energy economy, in which photovoltaics and energy storage are to take centre stage. Attention is drawn to aspects such as the rapid development of photovoltaic technology and cost reduction as well as problems of reducing the silver used in module production [19]. |
European Green Deal | The article explains the concept of the European Green Deal, the main climate plans, and how to implement them [20]. |
Photovoltaic Farms—Economic Efficiency of Investments in North-East Poland | The study investigates the economic viability of photovoltaic farms in northeastern Poland, taking into account a number of impact factors in the investment, such as farm size, solar exposure within the area as well as power plant cost and financing [21]. |
Location and Technical Requirements for Photovoltaic Power Stations in Poland | The paper presents photovoltaics as one of the fastest growing and most-promising renewable energy sources, which is expected to form the economic backbone of the Polish energy policy. It also identifies technical and location requirements as well as constraints affecting existing and planned photovoltaic farms [22]. |
Development of Photovoltaic Energy in EU Countries as an Alternative to Fossil Fuels | Photovoltaics is discussed as an alternative to fossil fuels, representing the cornerstone of the EU’s energy policy and an important stage in the transition towards a zero-emission economy. The article presents a series of statistics that show the leading and fast-growing countries in the photovoltaic segment [8]. |
The Importance of Renewable Energy Sources in Poland’s Energy Mix | The text describes renewable energy sources as an important aspect of Poland’s energy mix. It highlights various zero-emission alternatives for energy production, along with their most significant disadvantages, advantages, and future development potential [4]. |
Economic and Technical Aspects of Flexible Storage Photovoltaic Systems in Europe | The study investigates photovoltaic prosumer installations in selected European countries from an economic and a technical point of view, while also surveying the ability to store the energy produced and its impact on the cost-effectiveness of micro-installations [23]. |
A high-resolution geospatial assessment of the rooftop solar photovoltaic potential in the European Union | This paper uses the collected data and the developed methodology to assess the potential of roof-mounted photovoltaic modules in the European Union, giving consideration to the key points of difference in technical and economic analyses for each country [24]. |
Renewable Energy in the Pomerania Voivodeship—Institutional, Economic, Environmental and Physical Aspects in Light of EU Energy Transformation | This study outlines a PEST analysis to identify the macro-environment in Pomerania in the context of renewable energy sources. It uses the results to identify the economic and environmental potential for the development of wind and solar power plants. The paper examines the region’s potential, following up with a discussion of the importance of the implementation of the energy policy objectives in Poland and in the European Union [25]. |
Analysis and Evaluation of the Photovoltaic Market in Poland and the Baltic States | The work examines the market and prospects for photovoltaics in Poland and the Baltic States, identifying energy trends, energy prices, and total energy distribution for each country over the years. The analysis and data suggest that development potential for renewable energy sources, mainly photovoltaics, should inform each country’s energy policy as a way to achieve energy independence [26]. |
Business plan of the company of repair and maintenance outboards and boats—“Technoservice” | This paper presents the concept of DEEPLIST analysis, describing its key components to be used in further research [27]. |
Analysis of Photovoltaics in Egypt using SWOT and PESTLE | The text presents two analyses of photovoltaics in Egypt to be used as a template for market assessment in each subsequent country. The paper carries out a SWOT analysis to identify four determinants of PV development: strengths, weaknesses, opportunities, and threats.The second analysis is PESTLE, and the authors used it to identify the key macroeconomic factors of the photovoltaic market in Egypt [28]. |
SWOT analysis of renewable energy sector in Mazowieckie Voivodeship (Poland): current progress, prospects and policy implications | The article presents the current market for renewable energy sources in Mazowieckie Province and the potential for its development. In order to highlight the differences, limitations, and opportunities, the authors conducted a SWOT analysis of each of the energy sources studied. The study covered wind, solar, hydro, and bio- and geothermal energy. The research found that solar, wind, and bioenergy should form the backbone of renewable energy development in Mazowieckie Province [29]. |
Parameter Factor Description/Characteristic and Factor Description | ||
---|---|---|
Factors | Positive | Negative |
Demographic | Population growth leads to a greater demand for energy, thus increasing the need for photovoltaics. Age structure—Ageing societies may be more willing to invest in green technologies, including solar PV, due to greater environmental awareness and long-term financial benefits. Sex—women often show higher environmental awareness and a greater commitment to sustainability and environmental issues. Men are more likely to trust new technologies, which may contribute to a positive perception of and interest in photovoltaics as an innovative solution. | Population density—in densely populated areas, such as large cities, the limited availability of space can make it difficult to install solar panels on private properties. Older people may be less open to new technologies and may have concerns about operating and maintaining photovoltaic panels. |
Economic | Economies of scale—greater investment allows for a better cost/power kWp (Kilo Watt Peak) performance Financial support programmes—non-repayable grants of up to several tens of percent of eligible costs and attractive credit termsGrowing demand for electricity guaranteeing investment stability in the long term Hourly energy sales rates, particularly beneficial for farms with WE orientation (east–west), with a more even daily distribution of energy production | Increase in inflation and interest rates, lengthening the investment return period Sustained sales prices without consideration of real costs—extended payback period |
Ecological | A clean and inexhaustible source of energy Displaces emission-intensive sources of energy production Technology developed for PV module disposal and recycling Silicon as a basic panel component—low environmental impact of production | Generation of photovoltaic waste Intermediate products and media used in production as potential environmental hazards Satisfactory level of insolation (900–1200 kWh/m2) |
Political | National and European support programmes (financial, administrative, formal, and legal) | Energy prices artificially regulated by government Problems with obtaining planning permits (lack of a developed energy infrastructure in Poland) Lack of sustained and expansive development of energy infrastructure suitable for renewable energy, due to the prevailing political preference for fossil fuels |
Legal | Hourly rates applied for selling energy to the grid Production licensing and sale of electricity | Complex administrative procedures for construction and operation Lengthy administrative procedures National and EU regulations on the RES market High degree of regulation at national and EU levels (tax rates, excise duty, and energy price regulation) |
Information | Outreach activities to popularise photovoltaics as a source of green energy Local, national, and EU programmes to promote photovoltaics Industry events (trade fairs, conferences, and symposia) | Relatively low awareness of RES and distributed energy in Poland |
Socio-cultural | Large and growing public acceptance of RES and photovoltaics in particular Growing sensitivity in Poland to environmental issues Prosumers’ quest for energy independence The rise of an “industry”: large companies, associations, NGOs, dedicated websites, magazines, etc. | Part of the population attached to traditional methods of energy production from fossil fuels Action by the coal “lobby” to impede environmentally friendly solutions |
Technology | Technological developments to generate more power from the same area Trackers allowing PV panels to be repositioned according to the position of the sun Inverters with power reduction option—better cooperation with overloaded grid (source needed) Development of energy infrastructure to enable the connection of additional distributed sources Development of technologies related to the processing of photovoltaic components—creating a closed circuit Development of energy storage facilities—allowing energy to be sold at the optimum point in the daily production cycle | none |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Czepło, F.; Borowski, P.F. Innovation Solution in Photovoltaic Sector. Energies 2024, 17, 265. https://doi.org/10.3390/en17010265
Czepło F, Borowski PF. Innovation Solution in Photovoltaic Sector. Energies. 2024; 17(1):265. https://doi.org/10.3390/en17010265
Chicago/Turabian StyleCzepło, Filip, and Piotr F. Borowski. 2024. "Innovation Solution in Photovoltaic Sector" Energies 17, no. 1: 265. https://doi.org/10.3390/en17010265
APA StyleCzepło, F., & Borowski, P. F. (2024). Innovation Solution in Photovoltaic Sector. Energies, 17(1), 265. https://doi.org/10.3390/en17010265