Toward Wireless Smart Grid Communications: An Evaluation of Protocol Latencies in an Open-Source 5G Testbed
Abstract
:1. Introduction
2. Related Works
3. Materials and Methods
3.1. 5G Network
3.2. Low-Latency Protocol Testing—GOOSE
3.3. Latency Evaluation
3.4. Session-Based Protocols—Modbus and DNP3
4. Testbed Results
4.1. GOOSE Results
4.2. Modbus and DNP3
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
OT | Operational Technology |
WAN | Wide Area Network |
DER | Distributed Energy Resource |
SCADA | Supervisory Control and Data Acquisition |
GOOSE | Generic Object-Oriented Substation Events |
SV | Sampled Value |
MMS | Manufacturing Message Specification |
R-GOOSE | Routable GOOSE |
MiTM | Man in the Middle |
FDIA | False Data Injection Attack |
OAI | OpenAirInterface |
RAN | Radio Access Network |
MEC | Multi-access Edge Computing |
NSA | Non-Stand Alone |
HIL | Hardware In the Loop |
DUT | Device Under Test |
IED | Intelligent Electronic Device |
UE | User Equipment |
CN | Core Network |
gNB | gNodeB |
VNF | Virtualized Network Function |
USRP | Universal Software Radio Peripheral |
TDD | Time Division Duplex |
GTP | GPRS Tunnelling Protocol |
References
- Cali, U.; Kuzlu, M.; Pipattanasomporn, M.; Kempf, J.; Bai, L. Smart Grid Standards and Protocols. In Digitalization of Power Markets and Systems Using Energy Informatics; Springer International Publishing: Cham, Switzerland, 2021; pp. 39–58. [Google Scholar] [CrossRef]
- International Electrotechnical Commission. Communication Networks and Systems for Power Utility Automation—Part 7-4: Basic Communication Structure—Compatible Logical Node Classes and Data Object Classes; International Electrotechnical Commission: Geneva, Switzerland, 2020. [Google Scholar]
- Modbus Organization, Inc. MODBUS Application Protocol Specification v1.1b3; Industrial Automation Systems Tech. Rep.; Modicon Inc.: Kansas, MO, USA, 2012; Available online: https://modbus.org/docs/Modbus_Application_Protocol_V1_1b3.pdf (accessed on 31 December 2023).
- IEEE Std 1815-2012 (Revis. IEEE Std 1815-2010); IEEE Standard for Electric Power Systems Communications-Distributed Network Protocol (DNP3). IEEE: Piscataway, NJ, USA, 2012; pp. 1–821. Available online: https://ieeexplore.ieee.org/document/6327578 (accessed on 31 December 2023). [CrossRef]
- Kholidy, H.A.; Karam, A.; Sidoran, J.; Rahman, M.A.; Mahmoud, M.; Badr, M.; Mahmud, M.; Sayed, A.F. Toward Zero Trust Security IN 5G Open Architecture Network Slices. In Proceedings of the MILCOM 2022—2022 IEEE Military Communications Conference (MILCOM), Rockville, MD, USA, 28 November–2 December 2022; pp. 577–582. [Google Scholar] [CrossRef]
- Xu, S.; Shen, Y.; Xue, S.; Hu, S. 26-/39-GHz Low-Profile Dual-Circularly-Polarized Hybrid Antenna With Integrated Single Feed. IEEE Trans. Antennas Propag. 2023, 71, 8548–8555. [Google Scholar] [CrossRef]
- Kumar, S.; Dixit, A.S.; Malekar, R.R.; Raut, H.D.; Shevada, L.K. Fifth Generation Antennas: A Comprehensive Review of Design and Performance Enhancement Techniques. IEEE Access 2020, 8, 163568–163593. [Google Scholar] [CrossRef]
- Hussain, S.M.S.; Ustun, T.S.; Kalam, A. A Review of IEC 62351 Security Mechanisms for IEC 61850 Message Exchanges. IEEE Trans. Ind. Inform. 2020, 16, 5643–5654. [Google Scholar] [CrossRef]
- Nishiuchi, T.; Fujita, S.; Watanabe, Y.; Iwamoto, M.; Sawada, K. Packet Analysis and Information Theory on Attack Detection for Modbus TCP. In Proceedings of the IECON 2023—49th Annual Conference of the IEEE Industrial Electronics Society, Singapore, 16–19 October 2023; pp. 1–6. [Google Scholar] [CrossRef]
- Cebe, M.; Akkaya, K. A Bandwidth-Efficient Secure Authentication Module for Smart Grid DNP3 Protocol. In Proceedings of the 2020 Resilience Week (RWS), Salt Lake City, UT, USA, 19–23 October 2020; pp. 160–166. [Google Scholar] [CrossRef]
- Nikaein, N.; Marina, M.K.; Manickam, S.; Dawson, A.; Knopp, R.; Bonnet, C. OpenAirInterface: A flexible platform for 5G research. ACM Sigcomm Comput. Commun. Rev. 2014, 44, 33–38. [Google Scholar] [CrossRef]
- OpenAirInterface Software Alliance. The OpenAirInterface Initiative. Available online: http://www.openairinterface.org/ (accessed on 14 December 2023).
- Li, B.; Li, Z.; Chen, F.; Zhou, H.; Wang, Y.; Zhou, J.; Hou, W. Research on The Requirements and Deployment of 5G MEC in Power Grid Applications. In Proceedings of the 2021 IEEE 2nd International Conference on Information Technology, Big Data and Artificial Intelligence (ICIBA), Chongqing, China, 17–19 December 2021; Volume 2, pp. 351–355. [Google Scholar] [CrossRef]
- Hui, H.; Ding, Y.; Shi, Q.; Li, F.; Song, Y.; Yan, J. 5G network-based Internet of Things for demand response in smart grid: A survey on application potential. Appl. Energy 2020, 257, 113972. [Google Scholar] [CrossRef]
- S, S.R.; Dragičević, T.; Siano, P.; Prabaharan, S.S. Future Generation 5G Wireless Networks for Smart Grid: A Comprehensive Review. Energies 2019, 12, 2140. [Google Scholar] [CrossRef]
- Nguyen, V.G.; Grinnemo, K.J.; Cheng, J.; Taheri, J.; Brunstrom, A. On the Use of a Virtualized 5G Core for Time Critical Communication in Smart Grid. In Proceedings of the 2020 8th IEEE International Conference on Mobile Cloud Computing, Services, and Engineering (MobileCloud), Oxford, UK, 3–6 August 2020; pp. 1–8. [Google Scholar] [CrossRef]
- Jafary, P.; Supponen, A.; Repo, S. Network Architecture for IEC61850-90-5 Communication: Case Study of Evaluating R-GOOSE over 5G for Communication-Based Protection. Energies 2022, 15, 3915. [Google Scholar] [CrossRef]
- Demidov, I.; Melgarejo, D.C.; Pinomaa, A.; Ault, L.; Jolkkonen, J.; Leppa, K. IEC-61850 Performance Evaluation in a 5G Cellular Network: UDP and TCP Analysis. In Handbook of Smart Energy Systems; Springer International Publishing: Cham, Switzerland, 2021; pp. 1–33. [Google Scholar] [CrossRef]
- Zerihun, T.A.; Lundkvist, H.; Acevedo, S.S. Performance Evaluation of IEC 61850 GOOSE Messages over a 5G Network for Protection Coordination in Smart Grid. In Proceedings of the 2023 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm), Glasgow, UK, 31 October–3 November 2023; pp. 1–6. [Google Scholar] [CrossRef]
- Adrah, C.M.; Palma, D.; Kure, O.; Heegaard, P.E. Deploying 5G architecture for protection systems in smart distribution grids. In Proceedings of the 2022 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), New Orleans, LA, USA, 24–28 April 2022; pp. 1–5. [Google Scholar] [CrossRef]
- Pan, Y.; Wu, D.; Du, D.; Wang, H. Design and Performance Analysis of Protocol Conversion between 5G and Modbus TCP. In Proceedings of the 2023 42nd Chinese Control Conference (CCC), Tianjin, China, 24–26 July 2023; pp. 6262–6267. [Google Scholar] [CrossRef]
- Boutsiadis, E.; Pasialis, N.; Lettas, N.; Tsiamitros, D.; Stimoniaris, D. Distributed Generation Control Using Ripple Signaling and a Multiprotocol Communication Embedded Device. Energies 2023, 16, 7604. [Google Scholar] [CrossRef]
- Thulasiraman, P.; Hackett, M.; Musgrave, P.; Edmond, A.; Seville, J. Anomaly Detection in a Smart Microgrid System Using Cyber-Analytics: A Case Study. Energies 2023, 16, 7151. [Google Scholar] [CrossRef]
- Estrada, C.A.; Fuertes, W.; Cruz, H.O. An implementation of an artifact for security in 5G networks using deep learning methods. Period. Eng. Nat. Sci. 2021, 9, 603–614. [Google Scholar] [CrossRef]
- Altaleb, H.; Zoltán, R. Addressing Cybersecurity Challenges in 5G-enabled IoT and Critical Infrastructures: A Comprehensive Overview. In Proceedings of the 2023 IEEE 27th International Conference on Intelligent Engineering Systems (INES), Nairobi, Kenya, 26–28 July 2023; pp. 000131–000136. [Google Scholar]
- Boeding, M.; Scalise, P.; Hempel, M.; Sharif, H. [Accepted] Evaluating the Latency Impact for Time-Critical Operational Technology Applications of Transitioning IEC-61850 GOOSE Operations to 5G. In Proceedings of the 2024 IEEE 20th Consumer Communications & Networking Conference (CCNC), Las Vegas, NV, USA, 12–15 January 2024; pp. 1–2. [Google Scholar]
- Automation, M. Libiec61850: Open Source Library for IEC 61850. 2016. Available online: http://libiec61850.com/libiec61850/ (accessed on 19 December 2023).
- Rohith, R.; Moharir, M.; Shobha, G. SCAPY—A powerful interactive packet manipulation program. In Proceedings of the 2018 International Conference on Networking, Embedded and Wireless Systems (ICNEWS), Bangalore, India, 27–28 December 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Rodofile, N.R.; Radke, K.; Foo, E. Framework for SCADA Cyber-Attack Dataset Creation. In Proceedings of the Australasian Computer Science Week Multiconference, ACSW ’17, Geelong, Australia, 31 January–3 February 2017; Association for Computing Machinery: New York, NY, USA, 2017. [Google Scholar] [CrossRef]
- 3rd Generation Partnership Project (3GPP). 3GPP Release 15 Specifications. 3gpp Stand. Release 15. 2019. Available online: https://www.3gpp.org/specifications-technologies/releases/release-15 (accessed on 15 October 2023).
- 3rd Generation Partnership Project (3GPP). 3GPP Release 16 Specifications. 3gpp Stand. Release 16. 2020. Available online: https://www.3gpp.org/specifications-technologies/releases/release-16 (accessed on 15 October 2023).
- Ettus Research. Ettus Research B210 USRP Technical Specifications. 2023. Available online: https://www.ettus.com/all-products/ub210-kit/ (accessed on 14 December 2023).
- Foundation, W. Wireshark: Network Protocol Analyzer. 2022. Available online: https://www.wireshark.org/ (accessed on 19 December 2023).
- 3rd Generation Partnership Project (3GPP). 3GPP Release 17 Specifications. 3gpp Stand. Release 17. 2022. Available online: https://www.3gpp.org/specifications-technologies/releases/release-17 (accessed on 15 October 2023).
- Aguero, J.R.; Takayesu, E.; Novosel, D.; Masiello, R. Modernizing the Grid: Challenges and Opportunities for a Sustainable Future. IEEE Power Energy Mag. 2017, 15, 74–83. [Google Scholar] [CrossRef]
- Hossain, E.; Hossain, J.; Un-Noor, F. Utility Grid: Present Challenges and Their Potential Solutions. IEEE Access 2018, 6, 60294–60317. [Google Scholar] [CrossRef]
L2-Eth | TCP | TCP 2-Hop | 5G | 5G-TLS | ||
---|---|---|---|---|---|---|
Dev 1 | Latency | 14.152 | 15.316 | 15.797 | 19.214 | 19.056 |
CI 95 % Spread ± | 0.171 | 0.391 | 1.476 | 0.205 | 0.226 | |
Difference from L2-Eth | - | 1.164 | 1.645 | 5.062 | 4.904 | |
Dev 2 | Latency | 5.797 | 6.415 | 6.478 | 10.267 | 10.325 |
CI 95 Spread % ± | 0.082 | 0.302 | 0.299 | 0.105 | 0.110 | |
Difference from L2-Eth | - | 0.618 | 0.681 | 4.470 | 4.528 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boeding, M.; Scalise, P.; Hempel, M.; Sharif, H.; Lopez, J., Jr. Toward Wireless Smart Grid Communications: An Evaluation of Protocol Latencies in an Open-Source 5G Testbed. Energies 2024, 17, 373. https://doi.org/10.3390/en17020373
Boeding M, Scalise P, Hempel M, Sharif H, Lopez J Jr. Toward Wireless Smart Grid Communications: An Evaluation of Protocol Latencies in an Open-Source 5G Testbed. Energies. 2024; 17(2):373. https://doi.org/10.3390/en17020373
Chicago/Turabian StyleBoeding, Matthew, Paul Scalise, Michael Hempel, Hamid Sharif, and Juan Lopez, Jr. 2024. "Toward Wireless Smart Grid Communications: An Evaluation of Protocol Latencies in an Open-Source 5G Testbed" Energies 17, no. 2: 373. https://doi.org/10.3390/en17020373
APA StyleBoeding, M., Scalise, P., Hempel, M., Sharif, H., & Lopez, J., Jr. (2024). Toward Wireless Smart Grid Communications: An Evaluation of Protocol Latencies in an Open-Source 5G Testbed. Energies, 17(2), 373. https://doi.org/10.3390/en17020373