Hydrogen Storage Potential in Natural Gas Deposits in the Polish Lowlands
Abstract
:1. Introduction
1.1. Hydrogen Storage in Natural Gas Deposits
1.2. Assessment of Hydrogen Storage Capacity in Geological Structures
1.3. Purpose of Research
2. Materials and Methods
- RG denotes the original exploitable resources (mld m3);
- GEF denotes the gas expansion factor;
- denotes hydrogen density in the reservoir condition (kg/m3).
- P denotes pressure;
- R denotes the gas constant 4160 J/kg·K for hydrogen [60];
- T denotes temperature;
- b denotes the covolume 15.84 cm3/mol for hydrogen [61].
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- COM/2019/640. Communication from the Commission—The European Green Deal. 2019. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM%3A2019%3A640%3AFIN (accessed on 1 December 2023).
- Council of the EU and the European Council Fit for 55—The EU’s Plan for a Green Transition—Consilium. Available online: https://www.consilium.europa.eu/en/policies/green-deal/fit-for-55-the-eu-plan-for-a-green-transition/ (accessed on 13 November 2023).
- COM/2020/301. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions: A Hydrogen Strategy for a Climate-Neutral Europe. 2020. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52020DC0301 (accessed on 1 December 2023).
- Energy policy of Poland. In Energy Policy of Poland until 2040; Ministry of Climate and Environment: Warsaw, Poland, 2021.
- PHE. Polish Hydrogen Strategy until 2030 with an Outlook until 2040; PHE: Warsaw, Poland, 2021.
- Uliasz-Misiak, B.; Lewandowska-Śmierzchalska, J.; Matuła, R.; Tarkowski, R. Prospects for the Implementation of Underground Hydrogen Storage in the EU. Energies 2022, 15, 9535. [Google Scholar] [CrossRef]
- Tarkowski, R.; Uliasz-Misiak, B. Towards Underground Hydrogen Storage: A Review of Barriers. Renew. Sustain. Energy Rev. 2022, 162, 112451. [Google Scholar] [CrossRef]
- Kruck, O.; Crotogino, F.; Prelicz, R.; Rudolph, T. A Overview on All Known Underground Storage Technologies for Hydrogen. 2013. Available online: https://hyunder.eu/wp-content/uploads/2016/01/D3.1_Overview-of-all-known-underground-storage-technologies.pdf (accessed on 1 December 2023).
- Panfilov, M. Underground and Pipeline Hydrogen Storage. In Compendium of Hydrogen Energy; Elsevier: Amsterdam, The Netherlands, 2016; Volume 2, pp. 91–115. [Google Scholar]
- Ponomarev-Stepnoy, N.N.; Stolyarevsky, A.Y. Major Aspects of Strategy of Hydrogen-Base Power Development with Nuclear Energy Sources. In Proceedings of the International Conference on Fifty Years of Nuclear Power—The Next Fifty Years; International Atomic Energy Agency: Vienna, Austria, 2004. [Google Scholar]
- Zivar, D.; Kumar, S.; Foroozesh, J. Underground Hydrogen Storage: A Comprehensive Review. Int. J. Hydrogen Energy 2021, 46, 23436–23462. [Google Scholar] [CrossRef]
- Khilyuk, L.F.; Chilingar, G.V.; Robertson, J.O.; Endres, B. Hazards of Gas Storage Fields. Gas Migr. 2000, 290–305. [Google Scholar] [CrossRef]
- Wallace, R.L.; Cai, Z.; Zhang, H.; Zhang, K.; Guo, C. Utility-Scale Subsurface Hydrogen Storage: UK Perspectives and Technology. Int. J. Hydrogen Energy 2021, 49, 25137–25159. [Google Scholar] [CrossRef]
- Chen, F.; Ma, Z.; Nasrabadi, H.; Chen, B.; Saad Mehana, M.Z.; Van Wijk, J. Capacity Assessment and Cost Analysis of Geologic Storage of Hydrogen: A Case Study in Intermountain-West Region USA. Int. J. Hydrogen Energy 2023, 48, 9008–9022. [Google Scholar] [CrossRef]
- Wei, L.; Jie, C.; Deyi, J.; Xilin, S.; Yinping, L.; Daemen, J.J.K.; Chunhe, Y. Tightness and Suitability Evaluation of Abandoned Salt Caverns Served as Hydrocarbon Energies Storage under Adverse Geological Conditions (AGC). Appl. Energy 2016, 178, 703–720. [Google Scholar] [CrossRef]
- Lord, A.S. Overview of Geologic Storage of Natural Gas with an Emphasis on Assessing the Feasibility of Storing Hydrogen; Albuquerque, NM, USA, 2009. Available online: https://www.osti.gov/servlets/purl/975258 (accessed on 1 December 2023).
- Lysyy, M.; Fernø, M.; Ersland, G. Seasonal Hydrogen Storage in a Depleted Oil and Gas Field. Int. J. Hydrogen Energy 2021, 49, 25160–25174. [Google Scholar] [CrossRef]
- Muhammed, N.S.; Haq, B.; Abdullah, D.; Shehri, A.; Al-Ahmed, A.; Rahman, M.M.; Zaman, E.; Iglauer, S. Hydrogen Storage in Depleted Gas Reservoirs: A Comprehensive Review. Fuel 2022, 337, 127032. [Google Scholar] [CrossRef]
- Hollis, A.P. Some Petroleum Engineering Considerations in the Changeover of the Rough Gas Field to the Storage Mode. J. Pet. Technol. 1984, 36, 797–804. [Google Scholar] [CrossRef]
- Feldmann, F.; Hagemann, B.; Ganzer, L.; Panfilov, M. Numerical Simulation of Hydrodynamic and Gas Mixing Processes in Underground Hydrogen Storages. Environ. Earth Sci. 2016, 75, 1165. [Google Scholar] [CrossRef]
- Muhammed, N.S.; Haq, B.; Al Shehri, D.; Al-Ahmed, A.; Rahman, M.M.; Zaman, E. A Review on Underground Hydrogen Storage: Insight into Geological Sites, Influencing Factors and Future Outlook. Energy Rep. 2022, 8, 461–499. [Google Scholar] [CrossRef]
- Katz, D.L.; Tek, M.R. Overview on Underground Storage of Natural Gas. J. Pet. Technol. 1981, 33, 943–951. [Google Scholar] [CrossRef]
- Luboń, K.; Tarkowski, R. Numerical Simulation of Hydrogen Injection and Withdrawal to and from a Deep Aquifer in NW Poland. Int. J. Hydrogen Energy 2020, 45, 2068–2083. [Google Scholar] [CrossRef]
- Sainz-Garcia, A.; Abarca, E.; Rubi, V.; Grandia, F. Assessment of Feasible Strategies for Seasonal Underground Hydrogen Storage in a Saline Aquifer. Int. J. Hydrogen Energy 2017, 42, 16657–16666. [Google Scholar] [CrossRef]
- Amid, A.; Mignard, D.; Wilkinson, M. Seasonal Storage of Hydrogen in a Depleted Natural Gas Reservoir. Int. J. Hydrogen Energy 2016, 41, 5549–5558. [Google Scholar] [CrossRef]
- Kanaani, M.; Sedaee, B.; Asadian-Pakfar, M. Role of Cushion Gas on Underground Hydrogen Storage in Depleted Oil Reservoirs. J. Energy Storage 2022, 45, 103783. [Google Scholar] [CrossRef]
- Lord, A.S.; Kobos, P.H.; Borns, D.J. Geologic Storage of Hydrogen: Scaling up to Meet City Transportation Demands. Int. J. Hydrogen Energy 2014, 39, 15570–15582. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, Y.; Katterbauer, K.; Al Shehri, A.; Sun, S.; Hoteit, I. Phase Equilibrium in the Hydrogen Energy Chain. Fuel 2022, 328, 125324. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, Y.; Katterbauer, K.; Al Shehri, A.; Sun, S.; Hoteit, I. Deep Learning–Assisted Phase Equilibrium Analysis for Producing Natural Hydrogen. Int. J. Hydrogen Energy 2024, 50, 473–486. [Google Scholar] [CrossRef]
- Lankof, L.; Tarkowski, R. Assessment of the Potential for Underground Hydrogen Storage in Bedded Salt Formation. Int. J. Hydrogen Energy 2020, 45, 19479–19492. [Google Scholar] [CrossRef]
- Caglayan, D.G.; Weber, N.; Heinrichs, H.U.; Linßen, J.; Robinius, M.; Kukla, P.A.; Stolten, D. Technical Potential of Salt Caverns for Hydrogen Storage in Europe. Int. J. Hydrogen Energy 2020, 45, 6793–6805. [Google Scholar] [CrossRef]
- Lankof, L.; Urbańczyk, K.; Tarkowski, R. Assessment of the Potential for Underground Hydrogen Storage in Salt Domes. Renew. Sustain. Energy Rev. 2022, 160, 112309. [Google Scholar] [CrossRef]
- Aftab, A.; Hassanpouryouzband, A.; Naderi, H.; Xie, Q.; Sarmadivaleh, M. Quantifying Onshore Salt Deposits and Their Potential for Hydrogen Energy Storage in Australia. J. Energy Storage 2023, 65, 107252. [Google Scholar] [CrossRef]
- Bradshaw, M.; Rees, S.; Wang, L.; Szczepaniak, M.; Cook, W.; Voegeli, S.; Boreham, C.; Wainman, C.; Wong, S.; Southby, C.; et al. Australian Salt Basins—Options for Underground Hydrogen Storage. APPEA J. 2023, 63, 285–304. [Google Scholar] [CrossRef]
- Hui, S.; Yin, S.; Pang, X.; Chen, Z.; Shi, K. Potential of Salt Caverns for Hydrogen Storage in Southern Ontario, Canada. Mining 2023, 3, 399–408. [Google Scholar] [CrossRef]
- Cavanagh, A.J.; Yousefi, S.H.; Wilkinson, M.; Groenenberg, R.M. Hydrogen Storage Potential of Existing European Gas Storage Sites in Depleted Gas Fields and Aquifers; HyUSPRe: Los Angeles, CA, USA, 2022. [Google Scholar]
- Barison, E.; Donda, F.; Merson, B.; Le Gallo, Y.; Réveillère, A. An Insight into Underground Hydrogen Storage in Italy. Sustainability 2023, 15, 6886. [Google Scholar] [CrossRef]
- Alms, K.; Ahrens, B.; Graf, M.; Nehler, M. Linking Geological and Infrastructural Requirements for Large-Scale Underground Hydrogen Storage in Germany. Front. Energy Res. 2023, 11, 1172003. [Google Scholar] [CrossRef]
- English, J.M.; English, K.L. Overview of Hydrogen and Geostorage Potential in Ireland. First Break 2023, 41, 41–49. [Google Scholar] [CrossRef]
- RISC. Hydrogen Storage Potential of Depleted Oil and Gas Fields in Western Australia Literature Review and Scoping Study; Geological Survey of Western Australia: Cascade, Australia, 2021.
- Okoroafor, E.R.; Kim, T.W.; Nazari, N.; Watkins, H.Y.; Saltzer, S.D.; Kovscek, A.R. Assessing the Underground Hydrogen Storage Potential of Depleted Gas Fields in Northern California. In Proceedings of the SPE Annual Technical Conference and Exhibition, Houston, TX, USA, 3–5 October 2022. [Google Scholar] [CrossRef]
- Lackey, G.; Freeman, G.M.; Buscheck, T.A.; Haeri, F.; White, J.A.; Huerta, N.; Goodman, A. Characterizing Hydrogen Storage Potential in U.S. Underground Gas Storage Facilities. Geophys. Res. Lett. 2023, 50, e2022GL101420. [Google Scholar] [CrossRef]
- Scafidi, J.; Wilkinson, M.; Gilfillan, S.M.V.; Heinemann, N.; Haszeldine, R.S. A Quantitative Assessment of the Hydrogen Storage Capacity of the UK Continental Shelf. Int. J. Hydrogen Energy 2021, 46, 8629–8639. [Google Scholar] [CrossRef]
- Emmel, B.; Bjørkvik, B.; Frøyen, T.L.; Cerasi, P.; Stroisz, A. Evaluating the Hydrogen Storage Potential of Shut down Oil and Gas Fields along the Norwegian Continental Shelf. Int. J. Hydrogen Energy 2023, 48, 24385–24400. [Google Scholar] [CrossRef]
- Ventisky, E.; Gilfillan, S.M.V. Assessment of the Onshore Storage Capacity of Hydrogen in Natural Gas Fields in Argentina. Geoenergy 2023, 18, 2023. [Google Scholar] [CrossRef]
- Qiu, Y.; Zhou, S.; Wang, J.; Chou, J.; Fang, Y.; Pan, G.; Gu, W. Feasibility Analysis of Utilising Underground Hydrogen Storage Facilities in Integrated Energy System: Case Studies in China. Appl. Energy 2020, 269, 115140. [Google Scholar] [CrossRef]
- Ślizowski, J.; Urbańczyk, K.; Łaciak, M.; Lankof, L.; Serbin, K. Effectiveness of Natural Gas and Hydrogen Storage in Salt Caverns. Przemysł Chem. 2017, 96, 60–64. [Google Scholar] [CrossRef]
- Luboń, K.T.; Tarkowski, R. Numerical Simulation of Hydrogen Storage in the Konary Deep Saline Aquifer Trap. Gospod. Surowcami Miner. 2023, 39, 103–124. [Google Scholar] [CrossRef]
- Bouteldja, M.; Le Gallo, Y. From Hydrogen Storage Potential to Hydrogen Capacities in Underground Hydrogen Storages; European Association of Geoscientists & Engineers: Utrecht, The Netherlands, 2023; Volume 2023, pp. 1–5. [Google Scholar] [CrossRef]
- Hassanpouryouzband, A.; Joonaki, E.; Edlmann, K.; Haszeldine, R.S. Offshore Geological Storage of Hydrogen: Is This Our Best Option to Achieve Net-Zero? ACS Energy Lett. 2021, 6, 2181–2186. [Google Scholar] [CrossRef]
- Mouli-Castillo, J.; Heinemann, N.; Edlmann, K. Mapping Geological Hydrogen Storage Capacity and Regional Heating Demands: An Applied UK Case Study. Appl. Energy 2021, 283, 116348. [Google Scholar] [CrossRef]
- Szamałek, K.; Szuflicki, M.; Mizerski, W. (Eds.) Bilans Perspektywicznych Zasobów Kopalin Polski; Państwowy Instytut Geologiczny—PIB: Warsaw, Poland, 2020.
- Wójcik, K.; Zacharski, J.; Łojek, M.; Wróblewska, S.; Kiersnowski, H.; Wa’skiewiczwa’skiewicz, K.; Wójcicki, A.; Laskowicz, R.; Sobié, K.; Peryt, T.; et al. New Opportunities for Oil and Gas Exploration in Poland-A Review. Energies 2022, 15, 1739. [Google Scholar] [CrossRef]
- Mazurek, S.; Tymiński, M.; Malon, A.; Szuflicki, M. (Eds.) Mineral Resources of Poland, 6th ed.; Polish Geological Institute—National Research Institute: Warsaw, Poland, 2022.
- MIDAS PIG-PIB. Available online: http://geoportal.pgi.gov.pl/portal/page/portal/midas (accessed on 13 November 2023).
- Jurga, B.; Kiersnowski, H.; Sidorczuk, M.; Pachytel, R. Crude Oil, Natural Gas—Mineral Resources of Poland as Seen by Polish Geological Survey; Polish Geological Institute: Warsaw, Poland, 2020.
- Uliasz-Misiak, B. CO2 Storage Capacity Classification and Site Selection Criteria. Gospod. Surowcami Miner. Miner. Resour. Manag. 2009, 25, 97–108. [Google Scholar]
- Holloway, S.; Rochelle, C.; Bateman, K.; Pearce, J.; Baily, H.; Metcalfe, R. The Underground Disposal of Carbon Dioxide: Final Report; Holloway, S., Ed.; British Geological Survey: Nottingham, UK, 1996.
- Johnston, I.A. The Noble-Abel Equation of State: Thermodynamic Derivations for Ballistics Modelling; Defence Science and Technology Organisation Edinburgh (Australia) Weapons Systems Div: Edinburgh, Australia, 2005.
- Bolton, W. Engineering Science, 7th ed.; Routledge: London, UK, 2020; ISBN 9780367554453. [Google Scholar]
- San Marchi, C.; Somerday, B.P. Thermodynamics of Gaseous Hydrogen and Hydrogen Transport in Metals. In Proceedings of the MRS Online Proceedings Library (OPL), Volume 1098: Symposium HH—The Hydrogen Economy; Cambridge University Press: Cambridge, UK, 2008; Volume 1098. [Google Scholar]
- H2data.de. H2data.de—Hydrogen Fact Sheet. Available online: http://www.h2data.de/ (accessed on 10 November 2023).
- Hystories Hydrogen Storage Resource for Depleted Fields and Aquifers in Europe. Available online: https://hystories.eu/hydrogen-storage-resource-for-depleted-fields-and-aquifers-in-europe/ (accessed on 10 November 2023).
Parameters | Resources (mln m3) | Depth (m) | Pressure (MPa) | Temperature (°K) | Recovery Factor (%) |
---|---|---|---|---|---|
Mean value | 600.78 | 2387.82 | 26.68 | 357.88 | 58.54 |
Median value | 213.97 | 2454.50 | 27.52 | 362.50 | 59.22 |
Standard deviation | 1414.38 | 794.43 | 9.62 | 26.13 | 36.79 |
Kurtosis | 47.37 | −1.18 | −0.20 | −1.02 | −1.44 |
Skewness | 6.14 | −0.01 | 0.35 | −0.04 | −0.25 |
Minimum value | 1.26 | 1030.00 | 9.56 | 310.00 | 0.00 |
Maximum value | 12,617.74 | 4008.50 | 55.00 | 409.37 | 100.00 |
Mean value | 600.78 | 2387.82 | 26.68 | 357.88 | 58.54 |
Parameters | Theoretical H2 Storage Capacity (Mt) | Theoretical H2 Energy Equivalent (TWh) | Technical H2 Storage Capacity (Mt) | Technical H2 Energy Equivalent (TWh) |
---|---|---|---|---|
Mean value | 0.11 | 4.49 | 0.08 | 3.21 |
Median value | 0.03 | 1.17 | 0.02 | 0.74 |
Standard deviation | 0.25 | 9.89 | 0.19 | 7.57 |
Kurtosis | 12.32 | 12.32 | 14.30 | 14.30 |
Skewness | 3.54 | 3.54 | 3.77 | 3.77 |
Minimum value | 0.00 | 0.02 | 0.00 | 0.01 |
Maximum value | 1.34 | 52.82 | 1.07 | 42.26 |
Mean value | 0.11 | 4.49 | 0.08 | 3.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uliasz-Misiak, B.; Lewandowska-Śmierzchalska, J.; Matuła, R. Hydrogen Storage Potential in Natural Gas Deposits in the Polish Lowlands. Energies 2024, 17, 374. https://doi.org/10.3390/en17020374
Uliasz-Misiak B, Lewandowska-Śmierzchalska J, Matuła R. Hydrogen Storage Potential in Natural Gas Deposits in the Polish Lowlands. Energies. 2024; 17(2):374. https://doi.org/10.3390/en17020374
Chicago/Turabian StyleUliasz-Misiak, Barbara, Joanna Lewandowska-Śmierzchalska, and Rafał Matuła. 2024. "Hydrogen Storage Potential in Natural Gas Deposits in the Polish Lowlands" Energies 17, no. 2: 374. https://doi.org/10.3390/en17020374
APA StyleUliasz-Misiak, B., Lewandowska-Śmierzchalska, J., & Matuła, R. (2024). Hydrogen Storage Potential in Natural Gas Deposits in the Polish Lowlands. Energies, 17(2), 374. https://doi.org/10.3390/en17020374