The Impact of Ambient Weather Conditions and Energy Usage Patterns on the Performance of a Domestic Off-Grid Photovoltaic System
Abstract
:1. Introduction
2. Description of the Site and System
2.1. Site Description
2.2. System Description
3. Materials and Methods
3.1. Meteorological Parameter Measurement
3.2. Electrical Parameter Measurement
4. Results and Discussion
4.1. Meteorological Parameters
4.2. Electrical Parameters
4.3. Impact of Ambient Weather Conditions and Energy Usage on PV System
4.4. Performance Evaluation of the System
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jarboui, S.; Alofaysan, H. Global Energy Transition and the Efficiency of the Largest Oil and Gas Companies. Energies 2024, 17, 2271. [Google Scholar] [CrossRef]
- Kim, S.; Choi, Y.; Kim, S. Simulation Modeling in Supply Chain Management Research of Ethanol: A Review. Energies 2023, 16, 7429. [Google Scholar] [CrossRef]
- Khalid, W.; Jamil, M.; Khan, A.A.; Awais, Q. Open-Source Internet of Things-Based Supervisory Control and Data Acquisition System for Photovoltaic Monitoring and Control Using HTTP and TCP/IP Protocols. Energies 2024, 17, 4083. [Google Scholar] [CrossRef]
- Shahab, A.; Ullah, Z.F.; Muhammad, N. Electrical performance degradation analysis of field exposed silicon-based PV modules. J. Mech. Contin. Math. Sci. 2021, 16, 27–35. [Google Scholar]
- Nethmini Silva, T.; Arachchige, U.; Kumaragamage, C.; Perera, V. Solar Energy Technologies: A Complete review of the Solar system technologies. J. Res. Technol. Eng. 2024, 5, 84–111. Available online: https://www.researchgate.net/publication/377594872 (accessed on 14 August 2024).
- Overen, O.K.; Meyer, E.L. Solar Energy Resources and Photovoltaic Power Potential of an Underutilised Region: A Case of Alice, South Africa. Energies 2022, 15, 4646. [Google Scholar] [CrossRef]
- Walker, A.; Desai, J. Understanding Solar Photovoltaic System Performance; U.S. Department of Energy: Washington, DC, USA, 2021. [Google Scholar]
- Aboagye, B.; Gyamfi, S.; Ofosu, E.A.; Djordjevic, S. Degradation analysis of installed solar photovoltaic (PV) modules under outdoor conditions in Ghana. Energy Rep. 2021, 7, 6921–6931. [Google Scholar] [CrossRef]
- Sharma, V.; Chandel, S. Performance and degradation analysis for long term reliability of solar photovoltaic systems: A review. Renew. Sustain. Energy Rev. 2013, 27, 753–767. [Google Scholar] [CrossRef]
- Li, G.; Xie, S.; Wang, B.; Xin, J.; Li, Y.; Du, S. Photovoltaic Power Forecasting with a Hybrid Deep Learning Approach. IEEE Access 2020, 8, 175871–175880. [Google Scholar] [CrossRef]
- Fu, X.; Wang, X.; Gong, Y.; Wang, Y.; Zhang, Y. Impact of Snow Weather on PV Power Generation and Improvement of Power Forecasting. In Proceedings of the 2023 International Conference on Power Energy Systems and Applications (ICoPESA), Nanjing, China, 24–26 February 2023; pp. 448–453. [Google Scholar] [CrossRef]
- IEC 61724; Photovoltaic System Performance Monitoring—Guidelines for Measurement, Data Exchange and Analysis. IEC: Geneva, Switzerland, 1998.
- Srimathi, R.; Meenakshi, J.; Vijayabhasker, R.; Belay, S.S. Performance Evaluation and Estimation of Energy Measures of Grid-Connected PV Module. Int. J. Photoenergy 2022, 2022, 7228470. [Google Scholar] [CrossRef]
- Khalid, A.M.; Mitra, I.; Warmuth, W.; Schacht, V. Performance ratio—Crucial parameter for grid connected PV plants. Renew. Sustain. Energy Rev. 2016, 65, 1139–1158. [Google Scholar] [CrossRef]
- Drif, M.; Pérez, P.J.; Aguilera, J.; Almonacid, G.; Gomez, P.; De la Casa, J.; Aguilar, J.D. Univer Project. A grid connected photovoltaic system of 200 kWp at Jaén University. Overview and performance analysis. Sol. Energy Mater. Sol. Cells 2007, 91, 670–683. [Google Scholar] [CrossRef]
- Malvoni, M.; Kumar, N.M.; Chopra, S.S.; Hatziargyriou, N. Performance and degradation assessment of large-scale grid-connected solar photovoltaic power plant in tropical semi-arid environment of India. Sol. Energy 2020, 203, 101–113. [Google Scholar] [CrossRef]
- Abdul-Ganiyu, S.; Quansah, D.A.; Ramde, E.W.; Seidu, R.; Adaramola, M.S. Investigation of solar photovoltaic-thermal (PVT) and solar photovoltaic (PV) performance: A case study in Ghana. Energies 2020, 13, 2701. [Google Scholar] [CrossRef]
- Kumar, M.; Chandel, S.S.; Kumar, A. Performance analysis of a 10 MWp utility scale grid-connected canal-top photovoltaic power plant under Indian climatic conditions. Energy 2020, 204, 117903. [Google Scholar] [CrossRef]
- Dahbi, H.; Aoun, N.; Sellam, M. Performance analysis and investigation of a 6 MW grid-connected ground-based PV plant installed in hot desert climate conditions. Int. J. Energy Environ. Eng. 2021, 12, 577–587. [Google Scholar] [CrossRef]
- Anang, N.; Azman, S.N.A.S.N.; Muda, W.M.W.; Dagang, A.N.; Daud, M.Z. Performance analysis of a grid-connected rooftop solar PV system in Kuala Terengganu, Malaysia. Energy Build. 2021, 248, 111182. [Google Scholar] [CrossRef]
- Santos, L.S.C.D.; de Lima, L.C.; Sacramento, E.M.D.; Souto, R.S. Performance Analysis of a Photovoltaic System installed in the Northeast of Brazil. Int. J. Adv. Eng. Res. Sci 2022, 9, 37–43. [Google Scholar] [CrossRef]
- Wassie, Y.T.; Ahlgren, E.O. Performance and reliability analysis of an off-grid PV mini-grid system in rural tropical Africa: A case study in southern Ethiopia. Dev. Eng. 2023, 8, 100106. [Google Scholar] [CrossRef]
- Supapo, K.R.M.; Lozano, L.; Querikiol, E.M. Performance Evaluation of an Existing Renewable Energy System at Gilutongan Island, Cebu, Philippines. J. Eng. 2024, 2024, 3131377. [Google Scholar] [CrossRef]
- Gulkowski, S.; Krawczak, E. Long-Term Energy Yield Analysis of the Rooftop PV System in Climate Conditions of Poland. Sustainability 2024, 16, 3348. [Google Scholar] [CrossRef]
- Mangherini, G.; Diolaiti, V.; Bernardoni, P.; Andreoli, A.; Vincenzi, D. Review of Façade Photovoltaic Solutions for Less Energy-Hungry Buildings. Energies 2023, 16, 6901. [Google Scholar] [CrossRef]
- Meyer, E.L.; Overen, O.K. Blue skies and red sunsets: Reliability of performance parameters of various p-n junction photovoltaic module technologies. Cogent Eng. 2019, 6, 1691805. [Google Scholar] [CrossRef]
- Overen, O.K.; Obileke, K.C.; Meyer, E.L.; Makaka, G.; Apeh, O.O. A hybrid solar-biogas system for post-COVID-19 rural energy access. Clean Energy 2024, 8, 84–99. [Google Scholar] [CrossRef]
- Kipp & Zonen. Instruction Manual: CMP Series Pyranometer; Kipp & Zonen: Delft, The Netherlands, 2016; pp. 1–29. [Google Scholar]
- Campbell Scientific. MP100A Temperature and Relative Humidity Probe. 2012; pp. 1–26. Available online: https://s.campbellsci.com/documents/us/manuals/hygrovue5.pdf (accessed on 5 August 2024).
- Apeh, O.O.; Meyer, E.L.; Overen, O.K. Modeling and experimental analysis of battery charge controllers for comparing three off-grid photovoltaic power plants. Heliyon 2021, 7, e08331. [Google Scholar] [CrossRef]
- Overen, O.K.; Meyer, E.L. Seasonal Performance of a 3.8 kWp Rooftop PV System in Zone 2 Climate of South Africa. 2019. Available online: https://www.sasec.org.za/papers2019/79.pdf (accessed on 12 August 2024).
- Dwivedi, P.; Sudhakar, K.; Soni, A.; Solomin, E.; Kirpichnikova, I. Advanced cooling techniques of P.V. modules: A state of art. Case Stud. Therm. Eng. 2020, 21, 100674. [Google Scholar] [CrossRef]
- Kelvin, O.O.; Edson, M.L.; Golden, M. Thermal, economic and environmental analysis of a low-cost house in alice, South Africa. Sustainability 2017, 9, 425. [Google Scholar] [CrossRef]
- Meyer, E.L.; Apeh, O.O.; Overen, O.K. Electrical and meteorological data acquisition system of a commercial and domestic microgrid for monitoring pv parameters. Appl. Sci. 2020, 10, 9092. [Google Scholar] [CrossRef]
- Santhakumari, M.; Sagar, N. A review of the environmental factors degrading the performance of silicon wafer-based photovoltaic modules: Failure detection methods and essential mitigation techniques. Renew. Sustain. Energy Rev. 2019, 110, 83–100. [Google Scholar] [CrossRef]
- Kong, X.; Zhang, L.; Xu, W.; Li, H.; Kang, Y.; Wu, J.; Fan, M. Performance comparative study of a concentrating photovoltaic/thermal phase change system with different heatsinks. Appl. Therm. Eng. 2022, 208, 118–223. [Google Scholar] [CrossRef]
- van Dyk, E.E.; Meyer, E.L. Analysis of the effect of parasitic resistances on the performance of photovoltaic modules. Renew. Energy 2004, 29, 333–344. [Google Scholar] [CrossRef]
- Hasan, K.; Yousuf, S.B.; Tushar, M.S.H.K.; Das, B.K.; Das, P.; Islam, M.S. Effects of different environmental and operational factors on the PV performance: A comprehensive review. Energy Sci. Eng. 2022, 10, 656–675. [Google Scholar] [CrossRef]
- Seme, S.; Sreden, K.; Bojan, Š.; Had, M. Analysis of the performance of photovoltaic systems in Slovenia. Sol. Energy 2019, 180, 550–558. [Google Scholar] [CrossRef]
- Ayompe, L.M.; Duffy, A.; McCormack, S.J.; Conlon, M. Measured performance of a 1.72 kW rooftop grid connected photovoltaic system in Ireland. Energy Convers. Manag. 2011, 52, 816–825. [Google Scholar] [CrossRef]
- Kumar, B.S.; Sudhakar, K. Performance evaluation of 10 MW grid connected solar photovoltaic power plant in India. Energy Reports 2015, 1, 184–192. [Google Scholar] [CrossRef]
- Mayer, D.; Heidenreich, M. Task 2: Performance analysis of stand alone PV-systems from rational use of energy point of view performance analysis of stand alone PV systems. In Proceedings of the 3rd World Conference onPhotovoltaic Energy Conversion, Osaka, Japan, 11–18 May 2003; pp. 2155–2158. [Google Scholar]
- Köntges, M.; Kurtz, S.; Packard, C.; Jahn, U.; Berger, K.A.; Kato, K. Performance and Reliability of Photovoltaic Systems Subtask 3.2: Review of Failures of Photovoltaic Modules: IEA PVPS Task 13: External Final Report IEA-PVPS; International Energy Agency, Photovoltaic Power Systems Programme: Paris, France, 2014. [Google Scholar]
- Buma, C.L. Performance evaluation of an off-grid building integrated photovoltaic system in alice, eastern cape province, South Africa. Ph.D. Dissertation, University of Fort, Alice, South Africa, 2018. [Google Scholar]
- Marion, B.; Adelstein, J.; Boyle, K.E.; Hayden, H.; Hammond, B.; Fletcher, T.; Canada, B.; Narang, D.; Kimber, A.; Mitchell, L.; et al. Performance parameters for grid-connected PV systems. In Proceedings of the Conference Record of the Thirty-first IEEE Photovoltaic Specialists Conference, 2005, Lake Buena Vista, FL, USA, 3–7 January 2005; pp. 1601–1606. [Google Scholar] [CrossRef]
HIP-190N1-BO-02 | Specification |
---|---|
Maximum power (Pmax) | 190 W |
Maximum power voltage (Vmp) | 37.6 V |
Maximum power current (Imp) | 5.05 A |
Open circuit voltage (Voc) | 46.4 V |
Short circuit current (Isc) | 5.57 A |
Maximum system voltage | 600 V |
Reference irradiance at STC | 1 kW/m2 |
Cell type | Mono-crystalline silicon |
Design | 66 cells connected in series |
Cell efficiency | 18.5% |
Module efficiency | 16.1% |
Dimension | 144.30 × 81.2 × 3.5 (cm) |
Nominal mass | 14.0 kg |
Class | H |
Wind resistance grade | 217 |
FLEX Max 80 MPPT | Specification |
---|---|
Nominal battery voltage | 12–60 V |
Maximum output current | 80 A at 40 °C |
PV open-circuit voltage (Voc) | Condition/145 V start-up and operating |
Standby power consumption | Less than 1 W |
Power conservation efficiency | 97.5% at 80 Amp in a 48 V system |
Charging regulation | Bulk, absorption, float, and equalization |
Multiplus 48/5000 | Specification |
---|---|
Inverter frequency | 50 Hz |
Input frequency range | 45–65 Hz |
Input voltage | 38–66 V |
Input voltage range | 180–265 VAC |
AC input current | 6.3–50 A |
Inverter voltage | 230 VAC ± 2% |
Continuous output power | 25 °C 5 kVA |
Peak power | 10 kW |
Zero-load power | 25 W |
Maximum efficiency | 94–95% |
Energy (kWh) | Winter Month | Summer Month |
---|---|---|
PV supply | 376.29 | 366.38 |
Energy stored | 237.38 | 215.38 |
Energy discharged | 169.30 | 182.75 |
House consumption | 209.50 | 236.35 |
Winter Days | |||||
---|---|---|---|---|---|
Solar Radiation | Solar PV | Battery | Load | ||
Charging | Discharging | ||||
Average | 420.31 W/m2 | 812.25 W | 468.07 W | 241.47 W | 187.21 W |
Total energy | 9.25 kWh/m2 | 17.06 kWh | 9.13 kWh | 6.88 kWh | 8.99 kWh |
Daily average energy (per day) | 4.62 kWh/m2 | 8.53 kWh | 4.567 kWh | 3.44 kWh | 4.49 kWh |
Summer Days | |||||
Solar Radiation | Solar PV | Battery | Load | ||
Charging | Discharging | ||||
Average | 361.13 W/m2 | 1127.33 W | 900.86 W | 682.35 W | 492.54 W |
Total energy | 10.29 kWh/m2 | 29.34 kWh | 18.9 kWh | 20.78 kWh | 23.64 kWh |
Average energy (per day) | 5.15 kWh/m2 | 14.67 kWh | 9.45 kWh | 10.39 kWh | 11.82 kWh |
Winter Days | |||||
---|---|---|---|---|---|
Solar Radiation | Solar PV | Battery | Load | ||
Charging | Discharging | ||||
Average | 425.47 W/m2 | 1321.68 W | 911.35 W | 557.61 W | 481.31 W |
Total energy | 9.36 kWh/m2 | 30.40 kWh | 18.55 kWh | 18.14 kWh | 46.21 kWh |
Daily average energy (per day) | 4.68 kWh/m2 | 15.20 kWh | 9.23 kWh | 9.07 kWh | 23.10 kWh |
Summer Days | |||||
Solar Radiation | Solar PV | Battery | Load | ||
Charging | Discharging | ||||
Average | 490.84 W/m2 | 691.42 W | 454.89 W | 238.83 W | 203.70 W |
Total energy | 13.99 kWh/m2 | 17.29 kWh | 9.10 kWh | 6.69 kWh | 19.56 kWh |
Average energy (per day) | 7.00 kWh/m2 | 8.64 kWh | 4.55 kWh | 3.34 kWh | 9.78 kWh |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mcingani, I.; Meyer, E.L.; Overen, O.K. The Impact of Ambient Weather Conditions and Energy Usage Patterns on the Performance of a Domestic Off-Grid Photovoltaic System. Energies 2024, 17, 5013. https://doi.org/10.3390/en17195013
Mcingani I, Meyer EL, Overen OK. The Impact of Ambient Weather Conditions and Energy Usage Patterns on the Performance of a Domestic Off-Grid Photovoltaic System. Energies. 2024; 17(19):5013. https://doi.org/10.3390/en17195013
Chicago/Turabian StyleMcingani, Iviwe, Edson L. Meyer, and Ochuko K. Overen. 2024. "The Impact of Ambient Weather Conditions and Energy Usage Patterns on the Performance of a Domestic Off-Grid Photovoltaic System" Energies 17, no. 19: 5013. https://doi.org/10.3390/en17195013
APA StyleMcingani, I., Meyer, E. L., & Overen, O. K. (2024). The Impact of Ambient Weather Conditions and Energy Usage Patterns on the Performance of a Domestic Off-Grid Photovoltaic System. Energies, 17(19), 5013. https://doi.org/10.3390/en17195013